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Abstract
The IEEE 802.11ay is an emerging system that will become a full member of the big family of the IEEE 802.11 standards
in the near future. Compared to its predecessor IEEE 802.11ad, it promises to offer higher system flexibility and more
reliable wireless communication links for short distances in millimeter-wave bands. This paper provides a simulation-based
performance study of IEEE 802.11ay single carrier-physical (SC-PHY) layer for different transmission modes and scenarios.
For this purpose, a MATLAB-based IEEE 802.11ay SC-PHY simulator is introduced. Next, 60 GHz indoor channel models
based on extensive real-world indoor measurements, conducted by ourselves, are created and used to analyze the performance
of IEEE 802.1ay SC-PHY in terms of Bit Error Ratio and data throughput. Both the simulator and channel models are available
online. A phase noise behavioral model to emulate channel impairments is also considered and used in this work. The obtained
results show how the IEEE 802.11ay SC-PHY system employing different transmission modes is influenced under various
channel conditions.

Keywords 60GHz indoor channel model · IEEE 802.11ay · phase noise · PHY-level simulation · RF measurement · WLAN

1 Introduction

Wireless Local Area Networks (WLANs) can employ dif-
ferent IEEE 802.11 technologies [1] to realize a wireless
communication link in awide range of licensed or unlicensed
(Industrial Scientific Medical—ISM) radio frequency (RF)
bands. Effective utilization of the RF spectrum and flexible
system configurations are among the main requirements on
the fifth generation (5G) networks [2,3]. Therefore, in the last
decade, the already big family of the IEEE 802.11 standards
has been extended with several new members. Standards,1

like IEEE 802.11ah/af/ad/ay, can ensure reliable data trans-
mission in a wide range of the RF spectrum (from sub-1GHz
up to 60GHz).

1 In this work, expressions ”IEEE 802.11 standard” and ”IEEE 802.11
technology” are interchangeable.
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The IEEE 802.11ay standard,2 as the successor of
IEEE 802.11ad [4], was approved in March 2021. With
focus on the license-free millimeter-waves (mm-Waves) of
the RF spectrum, it was developed to create a short-range (in
terms of several hundreds of meters) 60GHz wireless link
mainly in an indoor environment. Thanks to the support of
different physical (PHY) layer specifications, multiple-input
multiple-output (MIMO) schemes, and advanced techniques
to achieve wider channel bandwidths (channel bonding and
aggregation) [5], theoretically, it is possible to achieve a data
rate around 40Gbps (a link-rate per stream) and a transmis-
sion distance of ≈ 300m. Thereby, the 802.11ay system will
be suitable for transmitting or streaming data hungry multi-
media content (e.g. videos in Ultra High Definition (UHD)
[6]) in an indoor environment for short distances.

Three PHY specifications [7], also called PHYmodes, are
defined in the IEEE 802.11ay standard: control (C-PHY),
Single Carrier (SC-PHY) and Orthogonal Frequency Divi-
sionMultiplexing (OFDM-PHY). These PHY-modes, except
for C-PHY, support a wide range of modulation coding
schemes (MCSs) to provide different application-specific
functions of 802.11ay [8,9]. Therefore, the IEEE 802.11ay

2 In this work, shorter expression ”802.11ay” is also used.
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system excels with high configuration flexibility allowing to
employ it in different use cases (e.g., wireless transmission
of an uncompressed UHD video, high speed data transfer
or wireless connection of devices with different peripherals)
[7]. This paper is focused on the SC-PHY layer of the IEEE
802.11ay standard.

1.1 Related work

In previous years, mainly the predecessor of 802.11ay sys-
tem, namely 802.11ad, was in the spotlight of research.
Different simulation and measurement-based works [10–15]
have dealt on the performance and features of 802.11ad.
Their outputs revealed that the requirements on signal-to-
noise ratio (SNR) to achieve the target bit error ratio (BER)
in SC and OFDM-PHY schemes [10–12] are different. Next,
it was observed that the performance of 802.11ad-based
mm-Wave links highly depends on the used antenna config-
uration, non- and line-of-sight (NLOS and LOS) conditions
and indoor environment characteristics (e.g. sensitivity to
blockage caused by device and human motions) [13–15].

In recent years, only a few of works have focused on the
performance study of the 802.11ay-based wireless link. In
2018, da Silva et al. [16] presented a pioneering simulation-
based analysis of the 802.11ay SC-PHY system in terms of
peak-to-average-power ratio (PAPR) and frame error ratio
(FER). It was stated that the 802.11ay system has sev-
eral technical advancements on the PHY level, e.g. new
frame format or enhanced beamforming training. In [17],
the BER performance of selected MCSs of 802.11ay signal
under Additive White Gaussian Noise (AWGN) and Quasi-
Deterministic (Q-D) channel conditions is evaluated in terms
of different effective SNRmetric schemes. It was shown that
the considered metrics differ in implementation complexity
and their performance is also depending on the used PHY
mode.

Lei and at al. [18] build an ns-3 based simulation platform
on a system level for analysing an 802.11ay-based commu-
nication link employing channel bonding. The performance
analysis of the 802.11ay-based wireless link, created in a
conference room, showed high data throughputwhen a single
channel bonding technique is used. Similar study focusing on
themaximumachievable throughput for the 802.11ay system
has been presented in [19]. Simulations were provided in a
channel model with strong nature of LOS communication.
The obtained results confirmed theoretical assumptions, i.e.
the higher is the number of bounded channels, the higher is
the achievable data throughput.

The 60GHz channel characteristics and their influence on
a short-range 802.11ay signal, generated for selected MCSs,
were studied in [20–23]. Results showed that the 802.11ay
signal usingM-QAMmodulation with lowM-order has sim-
ilar resistance against noise in channels with LOS and NLOS

conditions. Authors of the work [21] emphasized that new
use cases for IEEE 802.11ay will lead to new channel model
creations.

Nowadays, research activities around IEEE 802.11ay, as
it was mentioned in [18], are focused on two main fields.
First, there is an effort to analyse and improve the media
access control (MAC) layer protocol and related algorithms
[5,7]. Second, attention is devoted to the PHY layer including
the performance study of the 802.11ay PHY specifications
for different transmission scenarios, the improvement of the
signal processing chain [7] and the design and development
of functional blocks for TX/RX [24].

From the above presented brief overviewwe can conclude
the following:

1. Performance study of 802.11ay SC-PHY focusing on the
connection between different system configuration and
transmission modes over measured 60GHz indoor chan-
nels is not reported so far and,

2. Publicly available measurement-based 60GHz indoor
channel models for simulation-based 802.11ay perfor-
mance study are not widely available.

1.2 Contribution

The main contributions of our paper are summarized as fol-
lows:

1. We provide performance study of 802.1ay SC-PHY over
60GHz indoor channel models in terms of BER and data
throughput. Our study also includes exploring of the influ-
ence of RF impairments, caused by phase noise (PN), on
the 802.11ay SC-PHY based signal operating in the mm-
Wave band.

2. We introduce aMATLAB-based IEEE 802.11ay SC-PHY
baseband simulator with a set of settable system parame-
ters and with a support of different transmission modes.
It allows to provide 802.11ay SC-PHY performance stud-
ies in terms of BER, FER and throughput and excels
with stable reproducibility. Next, a PN behavioral model
to emulate RF impairments is also implemented in the
simulator. For future research purposes, the simulator is
publicly available under the MIT License for download
from GitHub.3

3. We present 60GHz indoor channel models for perfor-
mance studies of the 802.11ay system in our simulator.
There is available channel model for SISO scheme [12]
as well as for receive diversity (SIMO – 1 × 2) and spa-
tial multiplexing (MIMO – 2 × 2) schemes. All channel
models are based on the dataset obtained from measure-
ments in an indoor office. The 60GHz indoor channel

3 https://github.com/jirimilos/802.11ay-phy-sim.
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measurement campaigns are described in detail. To pro-
mote reproducibility of our research, themeasured dataset
is also publicly available.

1.3 Organization

This paper is organized as follows. After the Introduction,
in Sect. 2, the created IEEE 802.11ay SC-PHY MATLAB
simulator is introduced. The used measurement testbed and
the 60 GHz indoor measurement campaigns conducted to
obtain 60GHz channel models are described in Sect. 3.
Simulation-based performance studies of 802.11ay SC-PHY
are evaluated in Sect. 4. Finally, Sect. 5 concludes this paper.

2 The IEEE 802.11ay SC-PHY baseband
MATLAB simulator

This section introduces the basic structure of the created
IEEE 802.11ay SC-PHY MATLAB simulator. Some basic
functional blocks (e.g., scrambler) of this simulator were
created in our previously introduced simulators [12,25,26].
These functional blocks were re-used in this simulator and
modified to meet requirements for the 802.11ay SC-PHY
signal processing chain. Control System, Signal Process-

ing, DSP System and Communications System toolboxes are
required to run the simulator.

2.1 wifi_sim_batch

The overall structure (scripts and functions) of the
IEEE 802.11ay SC-PHY MATLAB simulator and the base-
band signal processing chain in TX are shown in Fig. 1.
The simulator is launched via batch file wifi_sim_batch.m
only. The batch file contains a set of parameters to con-
trol the whole simulation including the load of the 802.11ay
SC-PHY system parameters (load_wifi_params.m). It is pos-
sible to simulate data transmission for a single user (SU) on
the level of either individual MCSs or for a complete set
of MCSs in a loop. In terms of the configuration of MCSs
in IEEE 802.11ay, the SC-PHY scheme, compared to C-
PHY and OFDM-PHY, enables to achieve the best trade-off
between implementation complexity and spectral efficiency.
This PHYspecification for 802.11ay, including identification
of control mode, allows to select among 21 different MCSs
[9].

Parameters like the range of SNR values, the number
of frames per SNR and the number of user data octets
(LENGTH) can also be defined in the batch file. The optional
systemparameters are listed inTable 1.After starting the sim-
ulation, the settings are checked (mcs_definition.m) and the

Fig. 1 Scripts and functions of the IEEE 802.11ay SC-PHY MATLAB simulator; [right] baseband signal processing chain in the IEEE 802.11ay
SC-PHY transmitter (TX)
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Table 1 Overview of optional system parameters in the file ”wifi_sim_batch.m” of the IEEE 802.11ay SC-PHY simulator

System parameter Possible values Description

antMode ‘SISO’, ‘RxD’ or ‘MIMO’ Antenna mode

TxRxAnt 11, 12 or 22 Number of transmitting and receiving antennas

useNUC true or false Non-uniform constellations (only for MCS 17 to MCS 21)*

use8PSK true or false π/2-8PSK constellation in MCS 12 and MCS 13

GuardInterval ‘short’, ‘normal’ or ‘long’ The length of guard interval

LDPCMatrix ‘normal’ or ‘lifted’ LDPC matrix with normal or extended (lifted) size

*Available only for AWGN and 60GHz SISO channel models

simulation parameters are stored in the file wifi_params.m.
Parameters and data which should be saved after the sim-
ulation for further analysis can be defined in the file
result_allocation(). The main simulation takes place in
sim_file.m. This file contains a loop for sweeping SNR values
and the number of 802.11ay frames used in simulations. It
also informs the user about the current simulation being run.

2.2 WIFI_TX_ay()

The function WIFI_TX_ay() contains the whole TX model
of the 802.11ay SC-PHY system. The input of this func-
tion is the m-function load_wifi_params used for load Wi-Fi
parameters for simulation. The PHY layer service data unit
(PSDU) and PSDU padding are generated randomly accord-
ing to MCS and LENGTH. The number of PSDU padding
bits is calculated as follows:

NDATA_PAD =
(
NCWLCW

R

ρ

)
− LENGTH · 8, (1)

where NCW is the total number of low-density parity-check
(LDPC) codewords for a single user, LCW is the LDPC code-
word length in bits, which is usually equal to 672 (normal
LDPCmatrix) or 1344 (liftedLDPCmatrix) [27,28], Rmarks
the code rate (CR) and ρ is the repetition factor (see Sect. 4).
The value of NCW is given as:

NCW =
⌈
LENGTH · 8

LCW
R
ρ

⌉
. (2)

The generation of input data is followed by the process of
scrambling to break up long sequences of zeros and ones. For
this purpose, a linear feedback shift register with a generator
polynomial is used [9]. The scrambling of the padded PSDU
bits is provided by function txScrambling().

In the next step, the forward error correction (FEC) of the
data is ensured on the level of LDPC encoding. LDPC encod-
ing is performed in the script ayLDPCEncoding(), partly
employing built-in MATLAB functions.

In terms of CR, the FEC process can have five levels:
CR = {1/2, 5/8, 3/4, 13/16, 7/8}. It is important to note
two things. Firstly, the information bits are repeated (not the
parity bits) only for one MCS (see Sect. 4). Secondly, CR of
2/3 and 5/6 can also be used for 8-PSK modulation.

According to the defined MCSs for the IEEE 802.11ay
SC-PHY, the π/2-{BPSK, QPSK, 16-QAM and 64-QAM}
uniform constellation schemes can be used to modulate the
FEC encoded data. Additionally,π/2-8-PSKmodulation and
non-uniform constellation of π/2-64-QAM,marked as NUC
[16], are also supported. The encoded bits are led into the
function ayModulator() that provides mapping to complex-
valued symbols according to the selected MCSs and system
parameters use8PSK and useNUC (see Table 1). It uses a
built-inMATLAB function for rectangular modulations with
a custom-built π/2 rotation. The rectangular constellations
are normalized to unit of power. The NUC for MCSs 17-21
are shown in Fig. 2. In the next step, the constellation symbols
are divided into SC symbol blocks [16]. For constellations
with 64 points (π/2-64-QAM and NUC of π/2-64-QAM),
a block-based interleaver is applied to perform interleaving
inside the single carrier symbol block [29].

In the case of another transmission scheme than SISO,
signal processing continues by the block space-time block
code (STBC) employed for mapping of the NSS constella-
tion symbols into NSTS space-time streams. For NSTS > 1,
direct mapping is used. According to [29], the 802.11ay SC-
PHY mode uses a single STBC scheme with NSTS = 2.
Al-Dhahir’s STBC [30] is implemented and employed in
our simulator, because it provides diversity gain, minimum
block delay and full code-rate to broadband systems based

Fig. 2 The NUC constellations for MCSs 17-21
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on a single carrier scheme combined with frequency domain
equalization (SC-FDE). It also allows to extend original nar-
rowband Alamouti’s STBC into broadband SC-FDE systems
with two transmit paths.

In the next stage, namely in the function
ayBlockingAndGI(), the SC symbol blocks are split into
blocks with a length of 448. Between these blocks other
symbols, so called Golay guard sequences, are inserted and
modulated with π/2-BPSK. They serve as pilots and can
also be used for equalization (at the RX side) in the fre-
quency domain [7,9,31,32]. The guard interval (GI) consists
of a Golay complementary function, labeled as Ga32, Ga64 or
Ga128. Symbols Ga32, Ga64 and Ga128 mark GI with a short,
normal and long length (see Table 1), respectively. The GI
is pre-pended to each block of SC symbols. The function
ayBlockingAndGI() also generates a preamble for legacy-
short training and legacy-channel estimation fields (L-STF
and L-CTF) [16]. After that, the 802.11ay SC-PHY base-
band signal is created.

The 802.11ay SC-PHY baseband signal is the input of
function channel(). This function allows the user to provide
a performance study of 802.11ay SC-PHY data transmission
under different channel models and impairments. The cre-
ated IEEE 802.11ay SC-PHY simulator offers three basic
types of channel models to emulate different transmission
conditions: Additive White Gaussian Noise (AWGN), user
defined and real-world 60GHz indoor channel models. The
AWGN channel model, employing the awgn in-built MAT-
LAB function, is recommended to be used for the 802.11ay
SC-PHY performance study on reference level. The channel
model labeled as “user defined” allows the user to define the
basic parameters of a custom fading channelmodel (the num-
ber of taps, delay and power level) [33]. Finally, real-world
60GHz indoor channel models can be used in the simula-
tions. A dataset for real-world channel models was obtained
from an indoor office measurement campaign conducted at
BUT,Department of Radio Electronics (DREL). The data are
stored in mat files and can be easily employed in MATLAB.
It serves as a database-oriented channel model from which
individual channel realizations are loaded. Channel impulse
responses (CIRs) and channel transfer functions (CTFs) of
a time invariant indoor channel with a 10GHz bandwidth
spanning the frequencies from 55 to 65GHz are provided.

Our 802.11ay SC-PHY simulator also allows to study
the influence of RF channel impairments. For this purpose,
according to [34], a PN behavioral model is utilized. In
general, the influence of PN on the 60GHz-based wireless
communication link is not negligible, especially on the level
of its BER performance and synchronization problems. In
the simulator, the phase-locked loop (PLL) output phase

noise is modeled as a one-pole and one-zero model. It can be
described as [35]:

PSD( f ) = PSD(0)

⎡
⎢⎣1 +

(
f
fz

)2

1 +
(

f
fp

)2
⎤
⎥⎦ , (3)

where PSD(0) denotes the low frequency phase noise below
the loop-filter bandwidth of thePLL [36], fz and fp mark zero
and pole frequency, respectively. In the considered PNmodel
(on the level of time-domain), PSD(0) = −90 dBc/Hz, fp =
1 MHz and fz = 100 MHz are considered. The PSD at
infinite frequency has a value of −130 dBc/Hz.

2.3 WIFI_RX_ay()

The IEEE 802.11ay frame, influenced by the channel model,
leads to function WIFI_RX_ay(). Firstly, the preamble and
user data samples are separated (parseFrame()). The pream-
ble samples are used for synchronization and channel
estimation. The user data samples are processed within
the function ayRXDataField(). This function contains addi-
tional sub-functions like deblocking, demodulation, LDPC
decoding and descrambling, which in comparison with TX
provide inverse signal processing. The extracted PSDU,
determined by function extract_PSDU(), is compared with
known PSDU (TX) and the numbers of erroneous bits and
frames are calculated for each repetition given by the number
of transmitted frames per SNR value. It is done in func-
tion result_calculation(). Finally, the obtained results are
stored. Function load_filename() enables the user to load the
saved results and use them for further purposes (e.g., visual
representation).

2.4 Notes: equalization

Channel estimation in a wideband communication system is
vital. Predefined sequences, already known to the RX, are
transmitted over the channel. In the RX, these sequences
are evaluated and used to estimate the channel. In 802.11ay
SC-PHY, complementary Golay sequences are used for this
purpose [31]. In the created simulator, the Channel Estima-
tion Field (CEF) [9], available in each packet, consists of
the Golay sequences with a length of 128 samples (Ga128,
Gb128) creating a field of 1152 samples. The complete CEF
field is modulated with π/2-BPSK. At the RX side, it is pro-
cessed with the corresponding Ga128 or Gb128 sequence in
a correlator. The output of the correlator is averaged and the
estimated CIR, labeled as h(t), with a length of 128 samples
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is obtained. More details about Golay sequences including
determination of CIR can be found in [31].

3 Measurement setup and campaign
for 60GHz channel measurement

As far as LOSMIMO communications is concerned, it turns
out that the system performance is primarily determined by
the installation of TX and RX antennas and the surrounding
environment. In order to have real-world channel realizations
instead of often simplified channel models, a channel sound-
ing campaign in the 55–65GHz band was performed in an
indoor environment at the Brno University of Technology.
The classroom, where the measurements were conducted, is
made from concrete, walls are lined with plasterboard and
the ceiling material is mineral wool with paint finish. The
classroom with dimensions 10×7m contains several tables
surrounded by chairs, a desk, several wardrobes and eight
operable windows (see Fig. 3). A set of tables are positioned
in the middle of room while three tables are close to the
windows. For next measurements a similar classroom with
dimensions 15m× 6m× 2.8mwas used. Themeasurement
captures two typical use cases of indoor Wi-Fi application,
which we denote as measurement Scenario I and Scenario II.
The difference between the stated scenarios is namely in the
geometry of the measurement location (medium-size labora-
tory vs. small-size laboratory) and the fact that in Scenario I
majority of the reflective surfaces are covered by absorbers,
thus exhibiting significantly lower delay spread then in the
case non-covered scenario (see Fig. 4). This way, we emulate

Fig. 3 Floor plan of the classroom

Fig. 4 The measurement site. The linear movement with the xy-tables
formed a virtual linear array (VLA) both at TX and RX sides.We depict
both scenarios, one padded with absorbers having lower delay spreads,
the second scenarios exhibits higher delay spread thanks to metallic
objects in the scene

two different classes of channels, i.e. with high and low time
dispersion.

3.1 55–65GHz channel sounder

The utilized frequency domain channel sounder is composed
of a vector network analyzer (VNA) and a pair of TX and
RX antennas. The virtual MIMO channel is measured by
changing the positions of the TX and RX antennas utilizing
the xy-tables (more details can be found in [37]). The chan-
nel sounder operates on the frequency domain measurement
principle as demonstrated in [38] (as opposed to the time-
domain principle presented for the mm-Wave band in [39]).
In this method, a narrow-band sounding signal is swept from
55 to 65GHz with a step size of 10MHz.

The R&SZVA67 four-port VNA is utilized tomeasure the
transmission coefficient between TX and RX antennas. The
dynamic range is extended with power amplifier (QuinStar
QPW-50662330), which has a measured gain of 35dB in the
band of interest. We use two WR15 open-ended waveguides
as TX and RX antennas with the radiation pattern as depicted
in Fig. 5 [40]. Phase-stable coaxial cables are used to avoid

Fig. 5 Measured gain pattern of the open-ended waveguide antennas
in the E- and H-planes
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the degradation of the measured phase due to mutual move-
ments of the TX and RX antennas. A VNA output power of
5dBm and IF bandwidth of 100Hz are used. The system’s
dynamic range is approximately 50dB. Before the channel
sounding, a full 4-port calibration process was performed.

3.2 Data acquisition and post processing

Due to the fact that the measurement environment does not
contain any moving objects, the measured channel is time
invariant and the measured frequency domain CTF is given
by:

h̃ j i ( f ) = s21j i ( f ), (4)

where f denotes the measurement frequencies, i, j are the
spatial indices of the elements of the virtual TX, RX uniform
linear array (ULA), and s21 is the scattering parameter, which
represents the transmission from the feedof theTXantenna to
the output of the RX antenna. By Inverse Fourier Transform
(IFT), we convert the CTF into the CIR as [37]:

h ji (n) =
N−1∑
g=0

h̃ j i ( f ) exp

(
j
2π f n

N

)
, (5)

where h ji (n) is the discrete version of the j i-th element of
the multipath channel H and N is the number of measured
frequency points. A sample of characteristics of the trans-
mission channel in frequency and time domain is plotted in
Figs. 6 and 7, respectively.

Fig. 6 Measured CTF

Fig. 7 CIR converted from CTF by IFT

3.3 Measurement scenarios

3.3.1 Scenario I

Scenario I accounts for a medium-size laboratory that is
shown in Fig. 4 [right]. The absorbers are used to suppress
reflections from the floor (ground reflection) and metallic
table legs. The purpose of using absorbers is to highlight the
differences with Scenario II, where no absorbers are used.
The TX–RX distance is 3 m and the height of antennas above
the ground is 1.2 m.

Both the TX andRX antennas are placed on xy-tables [37]
with a sub-millimeter shifting step.As depicted inFig. 4,with
proper alignment of the TX andRX xy-tables, virtual TX and
RX ULA can be emulated using a single pair of antennas. In
this scenario, four sets of data were measured corresponding
to a 4 × 4 and 6 × 6 MIMO system.

3.3.2 Scenario II

Scenario II represents a smaller-size laboratory environment
(see Fig. 4 [left]). In this scenario, the TX–RX distance is
reduced to 2.5 m. The TX–RX link is close to a wall on the
left side and no absorbers are used to shield the ground and
metallic table legs, thus effectively creating a scenario with
significantly richer scattering.

The parameters such as the antenna height, tilt angles and
measurement procedure itself are identical as those of Sce-
nario I. Three sets of data were measured corresponding to a
4 × 4 MIMO system.

Despite the use of absorbers, Scenario I can be consid-
ered to be a representative example of the channel conditions
that are typically encountered in the STA-AP sub-scenario
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of IEEE 802.11 WLAN [41], where the access point (AP) is
installed on the ceiling and the STA (station, or communica-
tion device) is placed on a table in the same room.

In this regard, Scenario II can be viewed as an emulation
of the STA-STA (device-to-device) sub-scenario of WLAN.
In total, we obtained seven virtual MIMO realizations and
132 CIR for the two scenarios.

4 Performance of the IEEE 802.11ay SC-PHY
system

In this section, with the aim to demonstrate the functionality
and capabilities of our simulator, we present the outputs of
simulations for some selected use cases and briefly discuss
the obtained results. The BER and throughput curves for
MCSs were obtained for the following system parameters:
the user data octet has a length of 300, ‘lifted’ LDPCmatrix is
used, the length of GI is ‘normal’ and Log-Likelihood Ratio
(LLR) decision is used in the LDPC decoder. The MCSs,
used in the simulations, are listed in Table 2.

Table 2 Overview of MCSs for the 802.11ay SC-PHY mode

MCS Modulace NCBPSa Repetition CRb

1c π/2-DBPSK 1 1 1/2

2 π/2-BPSK 1 2 1/2

3 π/2-BPSK 1 1 1/2

4 π/2-BPSK 1 1 5/8

5 π/2-BPSK 1 1 3/4

6 π/2-BPSK 1 1 13/16

7 π/2-BPSK 1 1 7/8

8 π/2-QPSK 2 1 1/2

9 π/2-QPSK 2 1 5/8

10 π/2-QPSK 2 1 3/4

11 π/2-QPSK 2 1 13/16

12 π/2-QPSK 2 1 7/8

13 π/2-16QAM 4 1 1/2

14 π/2-16QAM 4 1 5/8

15 π/2-16QAM 4 1 3/4

16 π/2-16QAM 4 1 13/16

17 π/2-16QAM 4 1 7/8

18 π/2-64QAM 6 1 5/8

19 π/2-64QAM 6 1 3/4

20 π/2-64QAM 6 1 13/16

21 π/2-64QAM 6 1 7/8

aNumber of coded bits per symbol
bCode Rate
cThis MCS is used to identify the control mode

4.1 AWGN channel

In this subsection, attention is devoted to the BER and data
throughput curves, obtained for the AWGN channel (refer-
ence transmission scenario).Weprovided simulations for two
transmission modes. Dependence of BER and data through-
put on the values of SNR for the transmission scheme SISO
is shown in Fig. 8. Curves for all MCSs are plotted (the leg-
end, as in the remaining parts of the article, is valid for both
graphs). In terms of SNR, the operating range is between
−10dB and 20dB. The lowest data rate, around 0.4Gbps, is
obtained for MCS = 1 used to identify the control mode—C-
PHY) at SNR = − 4.5dB. It is important to mention that the
SNR is defined as the post-FFT ratio at the receiving antenna
[26,42]. For MCSs from 1 to 7, BER = 10−3 can be achieved
at SNR < 5dB while for MCS = 21 (CR = 7/8, modulation
π/2-64QAM), the SNR is below 20dB.

The BER and data throughput performance for MIMO
with scheme2× 2 using spatialmultiplexing (SM) are shown
in Fig. 9. Compared to the SISO case, the positive effect of
spatial multiplexing on the data throughput can be observed.
For MCS = 21, the data rate [43] can be higher than 11Gbps.
The obtained BER curves confirm that MIMO used by a
way of SM is not appropriate to ensure more robust data
transmission. Such results meet with the theory. At the using
of SM scheme, different data streams are transmitted from
each antenna and are multiplexed in space. Consequently,
the data rate is increased without any change in bandwidth
or transmission power. Compared to a conventional MIMO
system, its advantage is evident.

4.2 Real-world 60GHz indoor channel

In this subsection, the performance of the 802.11ay SC-PHY
system employing different transmission schemes in real-
world 60GHz indoor channel is in the spotlight. As was
previously emphasized, IEEE 802.11ay was developed to
create a wireless communication link in mm-Wave bands.
Hence, investigation of its performance influenced by char-
acteristics of a 60GHz indoor channel model is vital. In this
work, channel model obtained from measurement Scenario
I (see Sect. 3.3) is used for this purpose.

Figure 10 shows the BER and data throughput perfor-
mance of the 802.11ay SISO signal for different SNR values
in a measured 60GHz indoor multipath channel. Accord-
ing to theoretical assumptions, the 60GHz indoor channel
causes higher requirements on the 802.11ay-based wireless
link resulting in higher values of SNR. However, it must
be noted that lower order MCSs (up to 11), in comparison
with the AWGN channel (see Fig. 8), show only a minimal
increase in the values of SNR. To achieve BER = 10−3 at
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Fig. 8 BER and throughput curves of the 802.11ay SISO signal depending on SNR in the AWGN channel

Fig. 9 BER and throughput curves of the 802.11ay MIMO (scheme 2 × 2 - spatial multiplexing) signal depending on SNR in the AWGN channel

MCS 18-21 (using π/2-64QAM modulation), the value of
SNR must be higher than 30dB. For MCS = 21, the data rate
is around 7Gbps.

The same performance study was provided for SIMO
(scheme 1 × 2) and MIMO (scheme 2 × 2 - SM) con-
figurations and the results are plotted in Figs. 11 and 12,
respectively. The obtained BER and throughput curves show
advantages of receive diversity for the 60GHz indoor mul-
tipath channel. It is visible that the usage of SIMO scheme
allows for the receiver to effectively combat the fading that

often occurs in an environment with a nature of multipath
propagation. The noticeable performance degradation for the
802.11ay SC-PHYusingMIMOSM,mainly for higher order
MCSs, is probably caused by severe multipath effects (see
Figs. 9 and 12). These results confirm that, in general,MIMO
employing SM is not intended to make the data transmission
robust. SM is appropriate in a case when good transmis-
sion conditions exist [44,45]. Hence, MIMO using SM for
60GHz indoor channel with poor transmission conditions is
not appropriate.
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Fig. 10 BER and throughput curves of the 802.11ay SISO signal depending on SNR in the measured 60GHz indoor multipath channel

Fig. 11 BER and throughput curves of the 802.11ay SIMO (scheme 1 × 2) signal depending on SNR in the measured 60GHz indoor multipath
channel

4.3 RF impairments

Wireless systems operating in the 60GHz bands are sensi-
tive to RF impairments caused by phase noises (PNs) [36].
The last part of this section is focused on the immunity of
the 802.11ay SC-PHY system against PNs. Attention is also
devoted to NUCs and its employment in such scenarios. It

must be noted that only NUCs with 64 signal points (in the
simulations MCS 18-21) are considered. In all cases, SISO
configuration and AWGN and 60GHz channel models are
utilized.

Figures 13, 14 and 15 capture the outputs of simulations
provided for the 802.11ay SC-PHY SISO signal in AWGN
(reference) channel and 60GHz measured channel under the
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Fig. 12 BER and throughput curves of the 802.11ay MIMO (scheme 2 × 2 - spatial multiplexing) signal depending on SNR in the measured
60GHz indoor multipath channel

Fig. 13 BER and throughput curves of the 802.11ay SISO signal depending on SNR in the AWGN channel and at presence of PN

influence of PN.As is visible fromFig. 13, PNonly hasminor
influence on the 802.11ay signal in the AWGN channel (see
also Fig. 8).

The performance of uniform constellations (UCs) and
NUCs in the 60GHz SISO channel in the presence of PN is
shown in Figs. 14 and 15. As is briefly mentioned in [46], the
NUCs, by optimizing the signal geometrical shaping, should

improve the immunity of the signal against RF impairments
(e.g., PN) or fading for a specific channel model. The simula-
tion results showminimal performance gain for NUCs (up to
≈1dB), compared to scenarios in which ideal transmission
conditions (AWGN) are assumed [47]. Such a lower NUC
gain is probably caused by the features of the 60GHz indoor
environment.
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Fig. 14 BER and throughput curves of the 802.11ay SISO signal depending on SNR in the measured 60GHz indoor multipath channel and at
presence of PN. UCs are used for all MCS

Fig. 15 BER and throughput curves of the 802.11ay SISO signal depending on SNR in the measured 60GHz indoor multipath channel and at
presence of PN. NUCs are used for MCS 18-21
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5 Conclusion

This paper presented a simulation-basedBERand throughput
performance study of the IEEE 802.11ay SC-PHY system
over measured 60GHz indoor channels. For this purpose,
a MATLAB-based baseband simulator with stable repro-
ducibility was created and used. To support reproducible
research, the introduced simulator as well as 60GHz dataset
are available under the MIT License for the research com-
munity at the project GitHub repository.4

As the simulation-based analyses shown, the MIMO
scheme employing spatial multiplexing has positive influ-
ence on the data throughput dominantly in a transmission
environment with strong AWGN features. On the other hand,
utilizing of the SIMO transmission mode can offer stable
BER and data throughput performance under 60GHz indoor
channel conditions. Next, it was shown that the 802.11ay
SISO signal has good resistance against PN-basedRF impair-
ments. Finally, simulation results revealed only marginal
improvement in the performance of the 802.11aySISO signal
when NUCs are utilized.

In the future, the study in this paper can be extended by the
performance analysis of 802-11ay using OFDM-PHY layer.
Next, the measured 60GHz indoor channels dataset can be
extended by other ones considering additional natures and
conditions of an indoor environment (e.g., moving objects or
interference caused by other system).
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