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Abstract
Video streaming currently dominates global Internet traffic. Live streaming broadcasts events in real-time, with very different
characteristics compared to video-on-demand (VoD), being more sensitive to variations in delay, jitter, and packet loss.
The use of adaptive streaming techniques over HTTP is massively deployed on the Internet, adapting the video quality to
instantaneous condition of the network. Dynamic Adaptive Streaming over HTTP (DASH) is the most popular adaptive
streaming technology. In DASH, the client probes the network quality and adjusts the quality of requested video segment
according to the bandwidth fluctuations. Therefore, DASH is an over-the-top application using unmanaged networks to
distribute content in the best possible quality. In order to maintain a seamless playback, VoD applications commonly use
a large reception buffer. However, in live streaming, the use of large buffers is not allowed because of the induced delay.
Active Queue Management (AQM) arises as an alternative to control the congestion in router’s queue, pressing the traffic
sources to reduce their transmission rate when it detects incipient congestion. In this article, we evaluate the performance of
recent AQM strategies for real-time adaptive video streaming. Furthermore, we propose a new AQM algorithm to improve the
user-perceived video quality. The results show that the proposed method achieves better performance than competing AQM
algorithms and improves the video quality in terms of average peak signal-to-noise ratio while keeping the fairness among
concurrent flows.
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1 Introduction

Over the past few decades, the increased demand for video
transmission has put pressure on the evolution of the network
infrastructure. While the core of the Internet has evolved
to accommodate demand, most of the observed congestion
occurs in access networks, especially in the last mile [5,13].

Dynamic Adaptive Streaming over HTTP (DASH) has
become a de facto standard for video-on-demand (VoD)
and is also widely used for live streams [7]. In DASH,
videos are divided in segments and encoded with different
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bitrates/quality usingH.264 advanced video coding. The seg-
ments are stored on the server, and the client chooses which
segment is most appropriate for transfer, depending on the
estimated instantaneous network capacity [25].

As an alternative to reduce packet discard, especially in
the last mile, where there are network bottlenecks [20,21],
Internet service providers (ISPs) are looking to increase the
router’s buffer length in an attempt to better accommodate
traffic. This trend was driven by cheaper memory prices [15].
The excessive buffering of packetsmay dramatically increase
end-to-end latency and jitter, severely impairing the per-
ceived quality of live video transmission. The phenomenon
is called bufferbloat [14].

Active queue management (AQM) is a proactive conges-
tion control scheme by which the network sends information
to the traffic sources if incipient congestion is detected [1,2].
In response, the traffic sources reduce their transmission
rates, which prevents the collapse of the buffers and avoids
the network congestion [17,26]. The use of AQM methods
also leads to a better fairness in resource distribution. Stud-
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ies have demonstrated that the use of AQM can improve the
perceived quality of video streaming application, mainly in
congested networks [18].

Active Queue Management algorithms have become
important regulators of congestion and provide fairness
between flows. TCP (Transport Control Protocol) adapts its
transmission rate to match the available network capacity
[7]. The first AQM algorithms were originally designed to
explore TCP rate adaptation capability to prevent network
congestion. Several AQM methods are reported in the lit-
erature to address this issue. Despite decades of research,
few of them explore how adaptive video traffic interacts with
the AQMs [20]. Most AQMs randomly discard packets dur-
ing congestion periods, regardless of the nature of the traffic
pattern. The self-similar behavior of video traffic and the
problem of bufferbloat may lead to a large increase in packet
delay. This in turn impairs the quality of live streams, as the
packets have strict delay limits. Live video streaming traf-
fic has predictable features, which can be used to implement
a new class of AQM algorithms. Considering DASH live
streaming, AQM could assist lower layers to prevent con-
gestion, performing early discards and forcing the client to
request lower-quality segments leading to a smoother adap-
tation procedure, resulting in better average video quality.

The growing importance of live video streaming, as a
result of behavioral changes due to the COVID-19 pan-
demic, motivates the deployment of new AQM techniques
specially designed for DASH applications. There is currently
no AQM designed for live DASH applications. In this arti-
cle we proposed a new AQM for live DASH and compare
it with the main available methods. We also evaluate the
performance of recent AQM methods for real-time DASH.
The proposed method uses the packet queue time to per-
form a random early discard. This random early discard is
designed to induce the DASH quality adaptation to antici-
pate congestion, therefore improving the average quality as
perceived by users and the fairness between video streams.
Performance evaluation was done streaming real videos in
a simulated network implemented with Network Simulator
version 3 (NS-3) [32]. The quality of the received video
was estimated with the peak signal-to-noise ratio (PSNR).
We present performance comparisons with state-of-the-art
AQM algorithms for real-time DASH. Random early detec-
tion (RED), adaptive RED (ARED), controlled queue delay
(CoDel), proportional integral controller enhanced (PIE),
and the proposed method were evaluated. To the best of
our knowledge, there are no previous studies on evaluat-
ing the impact of AQMs in user-perceived video quality for
live dynamic adaptive video streaming. Results show that the
average PSNRvaries greatly, depending on theAQMmethod
implemented in the routers, and as the network congestion
increases. The proposed method outperforms the competing
AQMs, especially in situations of high network utilization.

The rest of this article is organized as follows: Sect. 2 gives
an overview ofMPEG-DASH technology. Section 3 presents
the main AQM methods available for use in access net-
works to support DASH. The proposed method is described
in Sects. 4 and 5 presents the performance evaluation. The
conclusions are presented in Sect. 6.

2 Adaptive video transmission with DASH

Modern video distribution platforms across the Internet have
adopted DASH as the primary video delivery technique [21].
In order to propose a standard for video streamingoverHTTP,
MPEG (Moving Picture Expert Group) created a solution
called MPEG-DASH [36]. MPEG-DASH specifies that the
video is encoded in different bitrates/qualities, divided into
segments, and stored in a server. The client dynamically looks
for the segment that best adapt to network congestion con-
ditions, based on metrics such as throughput, delay, jitter,
and playback buffer status. Upon initiating a session, the
client sends a request to the server requesting the manifest
file known as MPD (Media Presentation Description). MPD
contains the information related to available segments, video
resolution, bit rates, and timing. The client dynamically looks
for the segments that best match current network condition.
Figure 1 shows the basic operating scheme of DASH tech-
nology.

In VoD systems, the receive buffer must have room to
store 20 to 30 seconds of video [7] to ensure a continuous
playback experience. However, in real-time video stream-
ing, such long delays are not possible [27]; average packet
delay of a few seconds is not suitable for this type of appli-
cations. Thus, decreasing the size of the buffer to less than
2 seconds of video requires the player to respond quickly
to changes in the network congestion state [7]. This could
impair the user-perceived image quality. DASH systems use
adaptation mechanisms that mainly involve the application
layer, an unexplored feature by the available AQMmethods.
Therefore, AQMcan be used as important congestion regula-
tors in order to cooperate with the estimation and adaptation
algorithm of DASH applications.

3 AQMmethods

RED [12] was one of the first AQMmethods. RED tracks the
average queue size through an exponential weighted mov-
ing average. The method uses two main thresholds, minth

and maxth . If the average value of the queue size is below
minth , no packet is discarded. If this value is greater than
minth , but lower than maxth , packets can be discarded
with probability given by pa = pb/(1 − count .pb), with
pb = max p(avg − minth)/(maxth − minth), where max p
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Fig. 1 DASH operation scheme

is the maximum discard probability. If average queue size
exceeds maxth , all received packets are discarded. The algo-
rithm is presented in Algorithm 1. RED can also be used
in conjunction with the ECN extension of the IP protocol
enabling notification to traffic sources in case of network
congestion.

Algorithm 1: Random Early Detection [12]

For each packet arrival;
calculate the average queue size avg;
if minth < avg < maxth then

calculate probability pa ;
with probability pa : mark the arriving packet;

end
else if maxth ≤ avg then

mark the arriving packet;
end

A well-known weakness of RED is that the through-
put depends on the traffic load and the RED parameters
[11]. RED does not perform well when the average queue
size becomes larger than maxth , reducing throughput and
increasing packet dropping. Adaptive RED [9] is an alterna-
tive to improve RED, through dynamic adjustment of max p

according to instantaneous network conditions, improving
the robustness of the original algorithm.

In ARED, max p is adapted using the queue length,
improving throughput and reducing packet loss by keeping
the average queue length away from maxth , as presented
by Algorithm 2. Adaptive RED slowly adapts max p over
time scales greater than a typical round-trip time, keeping the
average queue length within a target range half-way between
minth and maxth . As a result, ARED is able to maintain a
steady average queue length.An alternative formax p adapta-

tion was later proposed by Floyd et al. [11]. Authors indicate
that the algorithm is not an optimal solution, but seems to
work well in a wide range of scenarios.

Algorithm 2: Adaptive RED [9]

Every Qavg update ;
if minth < Qavg < maxth then

status ← between;
end
if Qavg < minth && status! = Below then

status ← Below;
max p = max p/α;

end
if Qavg > maxth && status! = Above then

status ← Above;
max p = max p ∗ β;

end

Adapting max p to maintain the average queue size within
a target range is one issue of RED addressed by ARED.
For high congested links, RED and ARED schemes induce
a higher delay, increase the number of discarded pack-
ets and are not efficient to keep a good throughput. In
order to solve those problems, Patel and Karmeshu [31]
suggested a new method to evaluate the discard proba-
bility: if the average queue size is between minth and
maxth , packets are discarded with probability given by
p2 = 1 − {p1[−log(p1)]/(count + 1)}, with p1 = pb. The
results show that the AQM scheme prevents the queue length
from exceeding maxth , increasing the throughput. Also, the
scheme maintains the average queue length in lower lev-
els because a better selection of packet discard probability,
decreasing end-to-end delay in situations of network conges-
tion.

It is know that RED parameters need to be tuned to work
well in a diversify of scenarios. The work presented by Sha-
labh et al. [6] introduces an optimization technique based on
stochastic approximation to tune RED’s parameters in order
to achieve high throughput and low loss-rate. The results
presented by the authors show that the AQM achieves better
throughput and lower loss-rate than RED, ARED, MRED
and, TRED in several situations of network congestion.

Bufferbloat is the undesirable latency caused by the exces-
sively large and frequently full buffers in network routers.
Large buffers have been inserted all over the Internet without
sufficient thought or testing [14]. This phenomenon causes
high latency and jitter, with negative effects on the appli-
cations. CoDel (Controlled Queue Delay) [28] is an AQM
designed to provide a solution for the bufferbloat problem.
Its operation is based on the control of the delay in the queue
by creating a timestamp of packet arrival time. CoDel uses
two key variables: target and interval. In conformity with
RFC 8289 [29], ideal values of target is 5–10% of the con-
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nection RTT (Round Trip Time). As most unbloated RTTs
in open terrestrial-based Internet have a ceiling of 100 ms
[8], default values of interval and target are set as 100 and
5 ms, respectively. Each interval CoDel computes the delay
of all packets dequeued for forwarding. If minimum queue
delay is lower than target, or the buffer contains fewer than
MTU worth of bytes, packets are not dropped. If minimum
delay is greater than target, CoDel enters in drop mode, and
a single packet is discarded. Then the next interval is set in
accordance with the inverse square root of the number of
successive intervals in which CoDel is in drop mode. Thus,
default sequence of the interval in drop mode is given by
100, 100/

√
2, 100/

√
3, . . .. Once the minimum delay of all

packets in interval goes below target, CoDel exits the drop
mode, no packets are discarded, and interval returns to its
default value.

PIE [30] is a method that combines the benefits of RED
and CoDel. PIE is a lightweight-design controller with the
aim to control the average queueing latency to a reference
value. The design does not require per-packet extra process-
ing and is simple to implement. Like CoDel, the parameters
are self-tuning. PIE randomly drops a packet at the onset of
the congestion similar to RED; however, congestion detec-
tion is based on the queueing latency like CoDel instead of
the queue length like conventional AQM schemes. PIE dis-
cards packets randomly according to a probability. The drop
probability is computed using the current estimation of the
queueing delay and the delay trend, that is, whether the delay
is getting longer or shorter. The PIE algorithm updates the
drop probability periodically using Little’s law (queue delay
is given by the ratio between queue size and arrival rate) and
the delay threshold. In addition, the scheme uses a maxi-
mum allowed value for packet bursts to be allocated in the
buffer.Auto-tuning of parameters is used not only tomaintain
stability but also to respond fast to sudden changes. Pan et
al. [30] argue that PIE design is stable for an arbitrary number
of flows with heterogeneous RTTs and achieves low latency
and high link utilization under various congestion situations.

EmergingAQMschemes such as PIE andCoDel are being
progressively deployed either at the ISP-end or home gate-
way to prevent bufferbloat. Kua and Armitage [19] propose
the joint use of AQM strategies (as PIE or CoDel) and intra-
chunk parallel connections to improve the user-perceived
quality of DASH. Their method, uses N concurrent TCP
connections to retrieve different parts of video segments.
Thus, DASH connections achieve better share of bandwidth
in the presence of competing traffic. The results show that the
use of a fair-queue strategy with CoDel (FQ-CoDel) enables
DASH chunklets to attain the best throughput multiplication
effect, resulting in a better user experience in the presence of
competing elastic flows. Besides, the results show that chun-
klets are advantageous when competing with multiple flows.
However, the number of chunklets need to be increased as

the number of competing flows increase. The main prob-
lem of chunklets are the consumption of server resources
and the unnecessary starvation of concurrent flows. Kua et
al. [22] propose the use of adaptive chunklets to dynamically
adjust themethod to achieve the best possible user experience
without starve other flows unnecessarily. In other paper, Kua
et al. [23] proposed a client-side application for detecting
the bottleneck AQM scheme. Through an intra-chunk adap-
tive rate measurements, the application is able to distinguish
AQM scheme from conventional FIFO and FlowQueue-like
AQMs. And finally, Kua et al. [20] experimentally charac-
terize and evaluate the impact of bottlenecks using PIE and
FQ-CoDel AQM schemes on DASH streams. The results
show that PIE’s higher burst tolerance provides better stream-
ing quality for single DASH stream over moderate to high
RTT paths.

Abbas et al. [1] presents an AQM scheme to improve fair-
ness between flows, identifying and penalizing unresponsive
flows, since they keep on sending packets despite the conges-
tion indications. Called CHOKeH, the algorithm reduces the
drop rate of responsive flows without the need to maintain
any per-flow state. The basic idea of CHOKeH is similar to
RED, using the average queue size to measure the network
congestion and two thresholds, minth and maxth . For each
packet arrival, if the average queue size is between minth

and maxth , CHOKeH splits the current queue size in two
regions of equal length, the rear and front regions. CHOKeH
randomly choose the drop-candidates of each region with
differently probabilities. This procedure ensures that high
bandwidth unresponsive flows with many recent arrivals are
penalized. The results show that the CHOKeH achieves bet-
ter throughput and a stable behavior of average queue size
than competing AQMs.

4 Proposedmethod

We propose a random packet discard strategy based on the
expected packet queue time. The expected time in queue for
the i-th packet is given by ti = ∑i

j=1 b j/C , where b is
the packet size, and C is the link rate; ti is evaluated for
every packet received. If ti is lower than Tmin , the packet is
enqueued. If ti exceeds Tmin , but is smaller than the upper
threshold Tmax , the algorithm performs a random drop. The
drop probability is given by p = ti/Tmax. If ti exceeds Tmax ,
the packet is discarded. The queuing policy is first-in, first-out
(FIFO). The proposed algorithm is presented in Algorithm 3.

In response to an early packet discard, the DASH client
reduces the quality of the next segment to be requested. RED
uses the same principle to induce the decrease of TCP con-
gestion window. However, RED cannot be applied directly
because the thresholds are setted considering the queue size
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Algorithm 3: Proposed algorithm

receivePacket(&Pi );

ti ← ∑i
j=1 b j /C ;

if ti < Tmin then
enqueue(Pi );

end
if Tmin ≤ ti ≤ Tmax then

p← ti /Tmax;
if random() < p then

drop(Pi );
else

enqueue(Pi );
end

end
if ti > Tmax then

drop(Pi );
end

Fig. 2 Transition between quality of segments along of a typical DASH
transmission

rather than the packet queue time. We expect to improve the
average video quality perceived by users, as well as a better
justice among concurrent DASH flows. Figure 2 illustrates
the segment quality in a DASHflow through a congested link
(85% of occupation) using FIFO and an infinite queue size.
In Fig. 2, the reader can note the sudden quality transitions.

This is due to the deadline to reproduce real-timevideo and
the competition ofmultiple video streams.With the proposed
method we intend to smooth the transitions between segment
qualities. As result, we expect an improvement of average
PSNR and segment quality transitions less noticeable to the
user.

Fig. 3 Scenario used in simulations

5 Performance evaluation

The performance evaluation was done by integrating real
DASH server and client into a NS-3 simulation. DASH
server and client were implemented using virtualization. The
proposed method was implemented in the NS-3. Network
Simulator version 3 is an open-source network simulator,
available primarily for research, enabling the development
of realistic network models.

The simulation uses a dumbbell topology with two main
routers, connected by a 10 Mbps link. The remaining links
were set to 1 Gbps. Thus, the connection between the two
routers simulates a bottleneck in the access network.

The DASH server and client were implemented using
the GPAC Multimedia Open Source Project [24], installed
in virtual machines and attached to the simulated scenario.
This enabled us to assesses the impact of network congestion
in real live video streaming. Figure 3 presents the scenario
implemented for the simulations.

We use six full-HD (high definition, 1920 × 1080) raw
video sequences in the tests: Big Buck Bunny (BB), Sun-
flower (SF), Rush Hour (RH), Pedestrian Area (PA), and
Riverbed (RB), all publicly available [34].

Table 1 summarizes the characteristics of the videos
sequences used, such as total length, number of frames,
genre, temporal perceptual information (TI), spatial per-
ceptual information (SI), and format of raw video source.
TI indicates the amount of temporal chances of a video
sequence, with higher values for more spatially complex
scenes [37]. SI indicates the amount of spatial detail of a
picture, with higher values for high motion scenes [37]. The
video sequences were selected to cover a range of different
genres, TI, and SI, improving diversity in the performance
evaluation.

BB is the longest video sequence used in the tests, with
1440 frames, displaying the highest TI and SI. SF sequence
uses a fixed camera to capture a bee in the foreground and a
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Table 1 Characteristics of
videos used in performance
evaluation

Video Length (s) Frames Genre TI SI Raw format

BB 60 1440 Animation 67.02 73.86 YUV420

SF 20 500 Nature 26.19 39.38 YUV420

RH 20 500 Scene 18.86 26.72 YUV420

PA 15 375 Scene 21.08 37.08 YUV420

RB 10 250 Nature 29.66 39.45 YUV420

TP 19 570 Sports 27.13 57.94 YUV422

Fig. 4 Intermediate frame of SF, TP, BB, PA, RB, and RH videos [34]

flower in the background. RB sequence uses a fixed camera
to capture water movement, showing the third highest SI. RH
sequence shows vehicle traffic and heat waves during rush
hour in the city of Munich. PA shows people passing by very
close to the camera. RH and PA present the lowest TI and
SI among the videos. TP illustrates fast-moving players on a
soccer field and presents the second highest SI.

Figure 4 illustrates an intermediate frame of each video
used. The encoding of the videos was done offline using the
FFmpeg [10] tool. Live segment generation was performed
following the profile Live-H.264 according to the MPEG-
DASH standard [35]. The video server provides the manifest
file and several representations of video segments using an
Apacheweb server. Live video segmentswere generatedwith
length of 1 second [25]. The Group of Picture (GOP) was set
to six frames, with two B-frames between I- and P-frames.
Because each video was encoded at a rate of 24 fps, each
single 1-second DASH segment contains four GOPs [35].
Segments were encoded using the following representations:
2.1, 2.5, 3.1, 3.5, 3.8 and 4.2 Mbps, compatible with other
studies [21,25], with HD resolution.

Background traffic sources generate packets of 1500 bytes
using TCP, according to the Poisson Pareto Burst Process
(PPBP) model [4]. PPBP is based on the overlapping of
multiple bursts whose length follows a Pareto distribution.
Pareto probability density function is given by P(X = x) =
(αβα)/x (α+1). PPBP can be used to simulate video traffic
with self-similar characteristics with Hurst parameter given
by H = (3− α)/2 for 1 < α < 2 [3]. The parameters α and
β were set to produce self-similar background traffic with
Hurst parameter of 0.7.

Table 2 Maximum PSNR for
videos

Video Average PSNR

BB 37.0

SF 38.8

RH 40.4

TP 40.3

PA 39.6

RB 30.7

Several simulations were performed by varying (i) the
AQM method used in queue and (ii) number of background
traffic sources. For each video and traffic intensity, in addi-
tion to the proposed method and Droptail, the following
AQMswere tested: RED,ARED,CoDel, and PIE. The buffer
size was set to maximum capacity of 500 packets for RED,
ARED, CoDel, and PIE. Droptail uses an infinite-capacity
buffer, which could lead to the bufferbloat problem.

The received video quality was estimated using the aver-
age PSNR. PSNR is a metric that assesses the similarity
between two images, computing the mean square error
(MSE) of each pixel between the original and the received
images. The PSNR is evaluated frame by frame using the
MSE given by

MSE = 1

rc

r∑

i=1

c∑

j=1

[Xo(i, j) − Xr (i, j)]2 (1)

where r and c represent, respectively, the number of rows and
columns of the image, and Xo(i, j) and Xr (i, j) represent
the luminance of pixel (i, j) of the original and received
frames, respectively. The PSNR can be obtained using

PSNR = 20 log10

(
MAXI√
MSE

)

(2)

where MAXI represents the maximum value of pixel inten-
sity. For the videos in consideration, MAXI = 255. Images
with more similarity result in higher PSNR values [33]. If
PSNR is greater than 37 dB, the perceived video quality is
excellent, and if PSNR is lower than 20 dB, the quality is
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Fig. 5 Average PSNR for video
a BB, b RH, c SF, d TP, e PA,
and f RB

(a) (b)

(c) (d)

(e) (f)

very poor [38]. As a reference, Table 2 presents maximum
possible PSNR for all videos after encoding using MPEG4.

Figure 5 presents the simulation results, with average
PSNR (dB) in vertical axis and bottleneck link utilization in
horizontal axis. Figure 5a indicates that the proposed method
greatly outperformed the competingAQMs.CoDel presented
the second best performance, butwith average PSNRof 4 to 7
dB lower than the proposedmethod. Figure 5b–d presents the

simulation results for RH, SF, andTP, respectively. It is possi-
ble to see that the proposed method presents a slightly worse
PSNR for bottleneck utilization of 95%, but better average
PSNR above this level. Figure 5e, f shows the simulation
results for PA and RB. It is possible to notice that the pro-
posedmethod presents better average PSNR, mainly for high
link utilization. In general, theCoDel andPIE algorithms per-
formed better thanREDandARED, but the proposedmethod
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Table 3 Jain justice index for
average throughput

60% 70% 80% 90% 95% 99% Average

Droptail 0.900 0.882 0.906 0.933 0.804 0.802 0.871

RED 0.965 0.949 0.945 0.948 0.956 0.925 0.948

ARED 0.947 0.955 0.974 0.964 0.954 0.943 0.956

CoDel 0.988 0.931 0.907 0.923 0.960 0.968 0.946

PIE 0.965 0.948 0.948 0.957 0.920 0.927 0.944

Proposed method 0.951 0.961 0.963 0.960 0.967 0.939 0.957

Table 4 Jain justice index for
average delay

60% 70% 80% 90% 95% 99% Average

Droptail 0.771 0.903 0.653 0.616 0.680 0.550 0.695

RED 0.887 0.691 0.674 0.837 0.597 0.853 0.757

ARED 0.945 0.966 0.720 0.768 0.699 0.895 0.832

CoDel 0.918 0.956 0.891 0.958 0.973 0.936 0.939

PIE 0.941 0.886 0.836 0.921 0.962 0.908 0.909

Proposed method 0.974 0.902 0.911 0.886 0.942 0.974 0.932

achieved better results. After 70%of link utilization,Droptail
shows the worst performance for all videos. This is due the
bufferbloat phenomenon that increases packet latency, which
could cause segment expiration and often freezes video play-
back.

We also evaluate the fairness of delay and throughput
between competing video streams. The fairness was esti-
mated using Jain’s fairness index [16], given by

j (x1, x2, x3, . . . , xn) = (
∑n

i=1 xi )
2

n · ∑n
i=1 x2i

(3)

where x is the metric under study, and n is the sample size.
j (x1, x2, x3, . . . , xn) is a real number between 0 and 1,where
1 indicates the best possible fairness level.

Tables 3 and 4 present the results of Jain’s justice for
average throughput and average delay between competing
streams for BB. The utilization of bottleneck link varied
from 60 to 99% by increasing the background traffic sources.
Considering the throughput, the proposed method achieved
a better fairness, followed by ARED, RED, CoDel, PIE, and
Droptail. In this case, CoDel and PIE were outperformed
by RED and ARED. Considering the delay, CoDel presents
a better fairness, followed by the proposed method, PIE,
ARED, RED, and Droptail. Codel and PIE were designed
to limit the queue delay, and this result could be expected.
The proposed method achieved a justice index very close
to CoDel. These results could also explain the better aver-
age PSNR achieved by the proposed method and the good
performance of Codel and PIE in real-time video streaming.
Droptail achieves the worst results in all cases. Results also
indicate that the use of RED for real-time video streaming,
although better than Droptail, should be avoided.

6 Conclusions

The current generation of DASH client player requires large
buffers in order to store a significant number of segments to
avoid video freezing. Considering real-time video streams,
the use of large buffers is not allowed, as large buffers also
mean higher delay. The choice of the segment to be received
influences the quality as perceived by the user. Choosing
video segmentswith better quality increases network conges-
tion, which paradoxically could worsen the user-perceived
quality due the increase of delay and unfair sharing of
resources.

In this article, we study the performance of several
AQM algorithms to support real-time video streaming. The
performance evaluation was done by combining computer
simulation and real video streaming. We also proposed a
new AQM for real-time video streaming using the packet
expected queue time as a criterion for early discard.

Results indicate that the proposed method achieved a bet-
ter average PSNR for real-time video streaming, followed by
CoDel and PIE. The use of the proposed method allows the
client to adapt before congestion, lowering quality in advance
of network congestion, resulting in higher average PSNR,
and good fairness of delay and throughput between compet-
ing flows. Based on results, the use of RED or ARED is not
recommended for real-time video streaming, and the use of
Droptail should also be avoided.
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