
Vol.:(0123456789)1 3

Telecommunication Systems (2021) 77:377–388
https://doi.org/10.1007/s11235-021-00768-z

An integrated multi‑controller management framework for highly
reliable software defined networking

Yao‑ying Tzeng1 · Chung‑An Shen1

Accepted: 13 February 2021 / Published online: 3 March 2021
© The Author(s), under exclusive licence to Springer Science+Business Media, LLC part of Springer Nature 2021

Abstract
Software-defined networking (SDN) has become the technology of choice for designing the next-generation network infra-
structure that is featured with high-volume traffics, rapidly increased scale, and dynamic nature. Furthermore, to deploy
multiple controllers in the control plane of SDN is widely considered with the aim of improving the stability and reliability
of the network. This paper presents an integrated framework for a comprehensive multi-controller management in SDN.
The proposed framework is comprised of a network planning phase and a runtime maintenance phase. Novel algorithms
are proposed in the network planning phase to estimate the required number of controllers in the network, to determine the
nodes for placing the controllers, and to assign the switch to its managing controller. Moreover, these algorithms are designed
by mitigating the problems of device isolation and controller overload such that the reliability and stability of the control
plane can be enhanced. In addition, a mechanism based on the State Behavior Tree is proposed in the runtime maintenance
phase of the framework. This mechanism dynamically manages the loading of the controller during the execution time so
that the occurrence of the controller overload is minimized. The experimental results show that, compared to the prior arts,
the proposed framework reduces the isolation probability by up to 89% and increases the device connectivity by up to 34%.
The occurrence of the controller overload during runtime is also significantly decreased.

Keywords Software-defined networking (SDN) · Multi-controller · Controller placement · Recovery · Reliability · Behavior
tree

1 Introduction

Software-defined networking (SDN) has become the tech-
nology of choice for designing the next-generation network
infrastructure that is featured with high-volume traffics and
dynamic nature [1]. The basic idea of SDN is that the net-
work management, commonly known as the control plane,
is decoupled from the forwarding functions, known as the
data plane [1]. Furthermore, the control plane is usually
centralized to a SDN controller for managing the entire net-
work [1, 2]. This concept of data/control decoupling and the

utilization of the centralized controller enable a program-
mable management of the network where the underlying
infrastructure is abstracted from high-level applications.
However, with the rapidly increased network scale and data
traffic, to manage the entire network by relying only on one
SDN controller could jeopardize the reliability, stability, and
scalability of the network. For example, the centralized SDN
controller could face a Single Point of Failure (SPOF) prob-
lem [2] resulting in the disconnections between the control
plane and the data plane. In addition, a malfunction of the
controller machine could lead to a device isolation prob-
lem, whereas the limited capacity of the controller machine
including computing power and storage resources could
lead to a controller overload problem [1, 2]. These problems
would cause disastrous consequences to the network.

In order to improve the reliability and stability of the
network, to architect the control plane with distributed
multiple controllers has been investigated [1–3]. Several
challenges need to be addressed considering the multi-con-
troller deployment in SDN [4–13]. To be specific, during

 * Chung-An Shen
 cashen@mail.ntust.edu.tw

 Yao-ying Tzeng
 M10502123@mail.ntust.edu.tw

1 Department of Electronic and Computer Engineering,
National Taiwan University of Science and Technology, No.
43, Keelung Rd., Sec. 4, Da’an District, Taipei City 10607,
Taiwan, People’s Republic of China

http://orcid.org/0000-0002-0628-5129
http://crossmark.crossref.org/dialog/?doi=10.1007/s11235-021-00768-z&domain=pdf

378 Y. Tzeng, C.-A. Shen

1 3

the network planning, we need to decide on the number of
controllers to be deployed in the network and the location
that the controllers reside [7, 8]. Furthermore, we also need
to determine which forwarding devices (SDN switches) are
managed by which controller. These decisions are made
based on the factors such as the capacity of the controller
(i.e. how many devices that can be handled by a control-
ler), the reliability of the connection between the controller
and the forwarding devices, and the transmission latency
between the devices to the controller. Moreover, after the
network planning, a management mechanism is required to
maintain the reliability of the control plane during execution
time [14–18]. In particular, this mechanism monitors the
status of the controller and address the scenario of controller
failure either due to the disconnection between the controller
and the forwarding devices or the controller overload. For
example, the approaches reported in [14, 15] are based on
the backup controller list where the switch that cannot con-
nect to the controller is directed to other controllers based on
the pre-installed list. On the other hand, methods based on
the migration algorithms are employed in [16–18] where the
switch that cannot connect to the controller is dynamically
migrated to another operating controllers. It is mentioned in
[26] that the switch migration is required to move from one
controller to another when the controller fails. This is an
important issue for applications such as Internet of Things
(IoT) [4]. The OpenFlow switch specifications [19] also state
that the functionality of switch migration is added in the
switch so that the new controller can be identified when is
necessary.

With the aim of enhancing the reliability and stability of
the network, this paper presents an integrated framework for
a comprehensive multi-controller management in Software
defined networking (SDN). To be specific, the proposed
framework is comprised of two phases including the Net-
work Planning phase and the Runtime Maintenance phase.
The Network Planning phase contains three stages, Control-
ler Quantity Estimation, Controller Placement, and Switch
Assignment. The Controller Quantity Estimation stage esti-
mates the required number of controllers by considering the
capacity of the controller and the maximal throughput of the
network. Furthermore, the estimated number of controller
is used to determine the placement of the controller in the
Controller Placement stage by using the proposed Maximal
Neighbors Controller Placement (MNCP) algorithm. This
algorithm intends to identify the node containing the most
one-hop neighbors as the controller node so that the problem
of device isolation for the controller is minimized. Finally, in
the Switch Assignment stage, a Loading-based Hop Count
Switch Assignment (LHCA) algorithm is proposed to assign
each switch to its managing controller. In addition, the Runt-
ime Maintenance phase aims to maintain the reliability and
stability of the control plane during the execution time. In

particular, a mechanism based on the State Behavior Tree
(SBT) is proposed in this phase to manage the loading of the
controller and to handle the scenario of the controller over-
load. This SBT-based mechanism migrates the switches that
are managed by the controller with 90% loading to another
controller.

In summary, the main contributions of this paper can be
considered as follows.

• A comprehensive and integrated framework of the multi-
controller management scheme is presented in this paper.
This framework includes a Network Planning phase for
the controller deployment and a Runtime Maintenance
phase to maintain the reliability of control plane during
the execution time.

• The MNCP algorithm and the LHCA algorithm are pro-
posed in the Network Planning phase for the controller
placement and switch assignment. These two algorithms
are designed with the aiming of mitigating the device
isolation problem and to increase the device connectiv-
ity between the controller to its managed switches. The
experimental results show that, compared to the prior
arts, the proposed algorithms reduce the isolation prob-
ability up to 89% and increase the device connectivity by
up to 34%.

• A mechanism based on the State Behavior Tree (SBT) is
proposed in the Runtime Maintenance phase approach
based on the is proposed in this paper. This mechanism
dynamically manages the loading of the controller by
migrating the switches that are managed by the controller
with 90% loading to another controller. The experimental
results show that, compared to the prior arts, the pro-
posed mechanism significantly decreases the occurrence
of the controller overload.

The rest of this paper is organized as follows. Section 2
discusses the background and the related work. Section 3
describes the overview of proposed framework. Sections 4
and 5 introduce the detail concept and algorithm of the Net-
work Planning and Runtime Maintain stage. The simulation
is evaluated in Sect. 6 and the conclusion is in Section 7.

2 Background and related work

The centralized controller in Software-defined networking
(SDN) could lead to a Single Point of Failure (SPOF) prob-
lem [1, 2] due to the controller overload or device isolation.
The SPOF problem is illustrated in Fig. 1 where the control-
ler overload is shown in Fig. 1a and the device isolation is
shown in Fig. 1b. The controller could be crashed by the
excessive amounts of requests from forwarding devices, e.g.
SDN switches. The controller could also be disconnected

379An integrated multi‑controller management framework for highly reliable software defined…

1 3

from the switches due to the malfunction of the controller
or disconnection of the network. The SPOF problem of the
controller heavily degrades the stability and reliability of
the network. Such problem becomes especially important
for the network environment like factory, smart city, smart
grid, and IoT [1–4]. For example, the disconnections with
the controller could result in the loss of critical information
in the IoT environment or lead to disruption of production in
the factory. In order to enhance the reliability and stability of
the network, it is proposed to architect the control plane by
deploying multiple controllers in SDN [1–3]. In this regard,
a multi-controller management scheme is required to make
design decisions such as the number of controllers that are
required to be deployed and the placement of the controller
in the network [4, 5]. Furthermore, how to assign the man-
aging controller for each forwarding device in the network
is decided [6–8].

Approaches have been proposed in literature aiming to
design the multi-controller management scheme for a highly
reliable and stable SDN. In particular, the approach pro-
posed in [2] determines the required number and the place-
ment of the controller by considering the path diversity.
However, the approach proposed in [2] could increase the
loading of the controller. The work presented in [5] consid-
ers the link failure of the network and the methodology pro-
posed in [6] estimates the required number of the controller
by considering the latency of the network. Furthermore, an
evolutionary algorithm is presented in [7] to maximize the
connections between the control plane and the data plane
and to balance the loading of each controller. Moreover, a
well-known K-Means algorithm is shown in [8] to decom-
pose the network into clusters containing the lowest distance
from the switches to their managing controllers. In addition,
the work in [10] conducts the controller placement by mini-
mizing the connectivity loss, the work in [12] considers the
latency of the network and the capacity of the controller,
and the work in [13] places the controller by minimizing the
worst-case latency from the switch to controller. However,
these approaches do not mention how to efficiently identify
backup controller when the failure occurs.

On the other hand, the work in [2] and [14–16] proposes
to pre-compute and pre-install a backup controller list in
each switch. Once the connection between the switch and its
managing controller is lost, another controller in the backup
controller list is assigned as the substitute controller. Fur-
thermore, a failover mechanism to migrate the switches from
the failed controller to the backup controller is presented
in [14] and [15], whereas a model has been presented in
[16] for collecting the information about the network and for
migrating the switches of the overloading controller to the
backup controller. Furthermore, the work presented in [17]
is about the flow-based dynamic management scheme so that
the loading of the controller is monitored in real-time and
the migration of the switches are conducted for balancing
the loading of the controller.

However, to the best of our knowledge, a comprehensive
multi-controller management scheme including network
planning and runtime maintenance has not been reported
yet in the literature. This paper presents an integrated
framework for a comprehensive multi-controller manage-
ment scheme in Software defined networking (SDN). The
proposed framework is comprised of a Network Planning
phase and a Runtime Maintenance phase. In the Network
Planning phase, we propose approaches to estimate the
required number of controllers in the network, to identify
the locations for accommodating the controllers. We also
propose an approach for dynamic allocation of switches to
those controllers. Furthermore, the proposed approaches are
designed so that the occurrence of the controller overload
and the device isolation can be minimized. Moreover, in the
Runtime Maintenance phase, a State Behavior Tree (SBT)
based algorithm is proposed to manage the load balancing of
the controllers. In particular, once the loading of a controller
exceeds 90% of its capacity, the switches that is handled by
that controller is migrated to be handled by other control-
lers. As a result, the problem of controller overload is greatly
mitigated.

3 The proposed framework
for multi‑controller

3.1 The overview of the proposed framework

Figure 2 presents the proposed integrated framework
for the comprehensive multi-controller management in
SDN. It can be seen in Fig. 2 that this framework is com-
prised of two phases namely Network Planning and Runt-
ime Maintenance. To be specific, the Network Planning
phase considers the deployment of multiple controllers
and contains three functional blocks of Controller Quan-
tity Estimation, Controller Placement, and the Switch
Assignment. These functional blocks are performed to

Fig. 1 The illustration of Single Point of Failure (SPOF) problem
where (a) is the controller overload and (b) is the device isolation

380 Y. Tzeng, C.-A. Shen

1 3

estimate the number of required controllers in the net-
work, to determine the node for placing controllers in
the network, and to assign each switch to its managing
controller. Furthermore, the primary goal of the Network
Planning phase is to enhance the reliability and stability
of the control plane by minimizing the occurrence of the
device isolation and controller overload.

Moreover, in order to maintain the reliability and
stability of the control plane after the multi-controller
deployment, the Runtime Maintenance phase is proposed
to manage the control plane of the network during the
execution time. An algorithm based on the State Behav-
ior Tree (SBT) is proposed in the Runtime Maintenance
phase to operate the corresponding reactions according
to the situation of the controllers. In particular, once the
loading of a controller exceeds 90% of its capacity, the
switches that is handled by that controller is migrated to
be handled by other controllers. As a result, the problem
of controller overload is greatly mitigated. In the follow-
ing, the approaches employed in the proposed framework
are discussed in details.

3.2 The network planning phase

It can be observed from Fig. 2 that three tasks need to be per-
formed during the Network Planning phase of the proposed
framework, including the estimation of the required number
of the controller in the network (i.e. the Controller Quantity
Estimation shown in Fig. 2), the determination of the node to
accommodate the controller (i.e. the Controller Placement),
and assignment of the switches to the managing control-
ler (i.e. the Switch assignment). Moreover, in the proposed
framework, these functions are performed with the aim of
enhancing the reliability and stability of the control plane. In
particular, the Controller Quantity Estimation estimates the
required number of controllers in the network by consider-
ing the capacity of the controller as well as the throughput
from the switches. Furthermore, the Controller Placement
determines the location of the controller by maximizing the
connections between the controllers and switches, whereas
the Switch Assignment assigns the switches to the managing
controllers by jointly considering the loading of the control-
ler and the connections.

3.2.1 Controller quantity estimation

In the proposed framework, the functional block of Control-
ler Quantity Estimation is employed to estimate the number
of controllers to be deployed in the network. Furthermore,
in order to minimize the occurrence of the controller over-
load and device isolation for the control plane, the Control-
ler Quantity Estimation takes multiple network constraints
and information into consideration such as the capacity of
the controller, the overall throughput of the network, the
requests from the switches to the controllers, the inter-con-
troller synchronize cost [16], and the possible packet-in mes-
sages of each switch. Specifically, the number of deployed
controllers in the network is determined by satisfying the
constraint expressed in Eq. (1)

(1)
n
∑

i=1

Throughput
(

swi

)

≤

Q
∑

k=1

Capacity
(

ck
)

Controller
Quantity

Estimation

estimated number of
controllers

placement of the
controllers

assignments of the
switches

Controller capacity
Switches throughput

More controller added

Controller
Placement

Switch
Assignment

State Behavior
Tree

Network Planning

Runtime Maintenance

Fig. 2 The overview of the proposed integrated framework of multi-
controller management scheme

Table 1 Parameters used in the Controller Quantity Estimation

Q The estimated number of controllers
Capacity(c) Responses of packet-in message per millisecond

[20]
Throughput(sw) Maximum packet-in message per second [21]
Tsym The synchronization cost of controller [16]
di The size of synchronize data of controller i
tij The transmission time to send data from controller

i to controller j

381An integrated multi‑controller management framework for highly reliable software defined…

1 3

where the parameters for the estimation is summarized in
Table 1. It is noted that in this constraint we assume a worst
scenario situation where the switches generate the packet-in
message of each new packet.

The fundamental concept expressed in Eq. (1) is that
the accumulated loading of switches in the entire network
should be less than or equal to the overall capacity of all con-
trollers in the network. However, in practice, the increased
number of controllers in the network incur severe overhead
of synchronization cost between the controllers. As a result,
the proposed estimation approach further takes the synchro-
nization cost into the consideration. It is expressed in Eq. (2)
that the estimated Q minimizes the summation of maximal
inter-controller synchronization cost noted as Tsym.

Furthermore, the parameter di presents data d of control-
ler i that synchronizes with other controllers, and the tij is
the required maximal round trip time for data transmission
from controller i to controller j.

3.2.2 Controller placement

After the number of controllers to be deployed Q is esti-
mated, the placement of the controllers is determined by the
Controller Placement functional block. In order to mitigate
the SPOF problem by minimizing the device isolation, a
Maximal Neighbors Controller Placement (MNCP) algo-
rithm is proposed in our framework. In particular, with the
aim of increasing the potential connections between the
control plane and data plane, the MNCP algorithm intends
to select the nodes to accommodate the controller such that
the connections between the switches and the controllers
are maximized. The flowchart of the proposed MNCP algo-
rithm is presented in Fig. 3 and the parameters used in this
algorithm is summarized in Table 2. It is shown in Fig. 3
that this algorithm is comprised of two inputs including the
number of controller Q estimated from the Controller Quan-
tity Estimation and the undirected graph of the network G.
Furthermore, the graph is represented as G = (V, E) where
V denotes the node in the network and E is the edge in the
network. The first step of MNCP is to calculate the number
of neighbors of each node that is represented by nb (vi) given
the node vi from the graph G. In the following, the maximal
number of those neighbors, noted as Maxnb, is used as the
selection criteria to identify the candidate controller nodes
Cs through the execution of the allv function.

In the final stage of MNCP, it is checked that if the sum of
the number of nodes in the controller set C and the candidate
set Cs is equal to the required number of controller Q. If the
selected controller node is smaller than Q, this algorithm will

(2)minTsym =
∑

i,j∈Q,i≠j

di ⋅ tij

put the nodes in Cs into C and set a lower neighbor number
to identify a new Cs until the check is satisfied. On the other
hand, if the number of selected controller node is larger than
Q, the Q nodes containing the largest hops from the nodes in
C set is selected by performing the mhc function. The set of
Cs is added into the set of C, and if the number of the nodes
in C is equal to Q, C will be the result of the Controller Place-
ment. In other words, the resulted set of C for the Controller
Placement always limited by the constraint expressed Eq. (3)
where the xij represents the connection from controller i to
switch j and if there is a direct connection from i to j, xij = 1 ,
otherwise xij = 0.

(3)max
∑

i∈C,j∈S,C,S∈G

xij, wherexij = {0, 1}

Fig. 3 The flowchart for the proposed Maximal Neighbors Controller
Placement (MNCP) algorithm

Table 2 Parameters used in the proposed MNCP algorithm

Q The required controller quantity
nb(vi) The number of neighbor node of vertex vi. ∀ vi ∈ V

Cs The candidate node of controller
C The set of controller nodes
allv(x) The vertexes which has neighbor value x
mhc(Cs, m) Find the required number of nodes m which has

the max hop with known controllers

382 Y. Tzeng, C.-A. Shen

1 3

3.2.3 Switch assignment

The proposed MNCP algorithm delivers the results of con-
troller placement by mitigating the problem of device iso-
lation. At the final stage of the Network Planning phase, a
Loading-based Hop Count Assignment (LHCA) algorithm is
proposed to assign each switch in the network to its manag-
ing controller. In order to mitigate the problem of controller
overload, the LHCA algorithm intends to assign the switch
to its managing controller with a constraint that the load-
ing of the controller cannot exceed its capacity. Figure 4
presents the flowchart of the proposed LHCA algorithm
where the parameters used in this algorithm are summa-
rized in Table 3. It is shown in Fig. 4 that the undirected
graph of the network G and the set of the controller C are
from the MNCP algorithm and are the inputs to the LHCA
algorithm. In the LHCA algorithm, the number of least hops
from every switch to each controller is calculated by the

mhsc(G,C) function and is noted as Sclist. In the following,
this algorithm identifies the unassigned switch which has the
minimum hops with the closest controller and assigns this
switch to the nearest controller. If the number of the nearest
controllers is more than one, the switch will be stored into a
waitlist and is assigned only after the Sclist is empty.

Moreover, when a switch is assigned to a controller, the
LHCA algorithm checks if the controller is overloaded. If
the controller is overloaded, the controller is removed from
the Sclist and the second nearest controller is assigned to the
switch instead. Finally, all the switches are assigned and the
assignment set is given as Cluster. In particular, the resulted
Cluster set of switch assignment is limited by the constraint
shown in Eq. (4) where the load(ci) represents the summa-
tion of the maximal switch throughput which is managed
by controller ci. The constraint expressed in Eq. (4) also
represents that the loading ofci , load(ci), must not exceed
the controller capacity of ci in C set.

 where load(ci) =
n
∑

j=1

Sj , ∀j∈ Clusteri.

It is noted that the switch with less hop counts and the
loading of the controller are both taken into the considera-
tion. In other words, if there are two or more switches with
the same hop count, the one that is detected first will be
taken for evaluating the loading of the controller.

3.2.4 The runtime maintenance phase

After the deployment of control plane is determined through
the Network Planning phase of the proposed framework,
the Runtime Maintenance phase is executed to manage the
reliability and stability of the control plane based on the
multi-controller scheme. According to the requirements of
the network, a typical runtime management considers the
failure precaution, the reaction of the control plane if the
controller failure occurs, the load balance of the control
plane, and the latency between the control plane and the data
plane. To be specific, the Runtime Maintenance mechanism
proposed in this framework focuses on the load balance of
the control plane and the restoration scheme for the scenario
of controller failure.

(4)Capacity
(

ci
)

> max load
(

ci
)

, ci ∈ C

Fig. 4 The flowchart of the proposed Loading-based Hop Count
Assignment (LHCA) algorithm for the switch assignment

Table 3 Parameters used in the proposed LHCA algorithm

mhsc(G, C) The minimum hop count from all the control-
ler to every switches

min(sclist[ni]) The minimum hop count from ni to controller
len(x) The length of list x
loadck The current load of ck.

383An integrated multi‑controller management framework for highly reliable software defined…

1 3

An approach based on the State Behavior Tree (SBT) is
proposed in the framework to manage the restoration mecha-
nism after the controller failure. The structure of the pro-
posed State Behavior Tree (SBT) is shown in Fig. 5 includes
four main blocks namely Priority Setting, Reserved, Other
controller failure, and Restore. Each of these four blocks is
corresponding to a scenario that is taken care of during the
Runtime Maintenance phase. Each controller in the network
will be given a priority and the scenario regarding to each
controller will be monitored by the SBT. The decision cor-
responding to each controller like migration or switch re-
assignment will be determined. It is noted that the proposed
mechanism assumes that there are keep-alive messages
between the controllers communicating the loading and the
synchronize data of the controllers.

The Priority setting block shown in Fig. 5 sets the priority
for each controller according to the loading of the local con-
troller. The priority setting serves as the basis to determine
whether the controller has margin of capacity to receive
additional switches from other controllers. This block uses
a priority flag to reflect the status of loading for any given
controller. Specifically, the priority flag for any local control-
ler is set to 1 when the loading of that controller is less than
50% of its overall capacity. On the other hand, the priority
flag is set to 0 when the loading of the controller is large
than or equal to 50% of its overall capacity. Furthermore,
the Reserved block shown in Fig. 5 manages the scenario of
controller overload. Specifically, when the loading of a local
controller exceeds 90 percent of its overall capacity, it will
attempts to identify another target controller and starts to

migrate the switches to that newly identified target controller
until the loading of the local controller is below 90 percent.
If no controllers can be identified, the local controller goes
to the neighboring controller with the minimal loading as
the target controller and migrates the switch only if the load-
ing for the target controller is less than the local controller.
If the loading for all the neighboring controllers are larger
than the local controller, the local controller simply exits the
Reserved block.

Moreover, the Other controller failure block shown in
Fig. 5 aims to detect the failure of other controllers, i.e.,
the controllers other than the local controller, through the
examination of the synchronization messages. In particular,
if the synchronization message from a certain controller is
not detected, another controller which contains the lowest
loading starts to identifies the switches of that controller and
reassigns them by following a reassign procedure shown in
Fig. 6. It is sown in Fig. 6 that the controller failing to send
out synchronization message Fc, the set of all the controllers
C, and the list containing the hop count from each controller
to every switch cslist are the inputs to the re-assign proce-
dure. The alive controller sorts the controllers in the set C
and identifies the target controller ra0 containing the mini-
mal loading. The switch which has the minimal hop count
in cslist [Fc][ra0] is assigned and the migration message is
sent to the target controller. Afterwards, the controllers are
sorted again according to the loading after the re-assign-
ment of the switch. These steps are repeated until all the
switches of the failing controller are reassigned. In addition,
the Restored block shown in Fig. 5 handles the scenario

Fig. 5 The structure of the proposed State Behavior Tree (SBT) based approach for the Runtime Maintenance phase

384 Y. Tzeng, C.-A. Shen

1 3

where the previously failed local controller is restored from
the failure condition. In this case, the restored controller
starts to synchronize again with other alive controllers. In
order to release the loading of other controllers, the restored
controller performs a restored-migrate procedure shown in
Fig. 7 to migrate the switches from other controllers to the
restored controller. It is shown in Fig. 7 that the restored
controller Rc, the set of all the controllers C, and the cslist
are the inputs to the procedure. The restored controller sorts
the controllers in C and identifies the controller with the
maximal loading ra0. The switch that is managed by ra0 and
contains the minimal hop count to the restored controller in
cslist [Rc][ra0] is migrated to the restored controller. The
restore-migrate procedure stops if the loading of the restored
controller exceeds 50% of the capacity.

4 Evaluation of the proposed framework

Extensive experiments have been conducted to evaluate
the performance of the proposed framework including the
Network Planning phase and the Runtime Maintenance
phase. The evaluation results are also compared with previ-
ously reported approaches. Specifically, the proposed Net-
work Planning approach is compared with the evolutionary

algorithm [7] and the K-Means algorithm [8] and the Runt-
ime Maintenance method is compared with the Survivor
approach [2] which gives a backup controller list for manag-
ing the failure of the control plane. The topologies used for
evaluations and comparisons are from the topology zoo [22]
and the Internet 2 OS3E topology in the Internet 2 network
[23]. All the algorithms are implemented with the python
compiler in Ubuntu 14.04 on Virtualbox and executed on
the compuer equipped with Intel core i5-4460 processor.

4.1 The evaluation of networking planning

The approaches in the Network Planning phase of the pro-
posed framework are simulated based on five different
topologies including the Claranet (15 nodes), the Agis (25
nodes), the Internet 2 OS3E (34 nodes), the Bellcanada (48
nodes) and the Iris (51 nodes). Furthermore, the capacity of
the controller is set to be 1800 kilo-requests per second and
the maximal throughput of the switch is set to be 200 kilo-
requests per second [2]. Moreover, the metrics of isolation
probability defined in [24] and device connectivity defined
in [25] are used to evaluate the performance of the proposed
algorithm and to compare the results with the previously
reported approaches. The isolation probability represents
the probability that the connections between the controller

Input = C, Fc, cslist

Sort C with
controller load.

Send the migrate
message to target.

Find min-value
in csist[Fc][ra0]

All sw of Fc
reassigned?

Done

y

n

Select lowest load
controller ra0.

Fig. 6 The flowchart of the reassign procedure used in the proposed
framework

Input = C, Rc, cslist

Sort C with
controller load.

Send the migrate
message to target.

Find max value
in csist[Rc][ra0]

Rc load >=50

Done

y

n

Select highest load
controller ra0.

Fig. 7 The flowchart of the restored-migrate procedure used in the
proposed framework

385An integrated multi‑controller management framework for highly reliable software defined…

1 3

and its managed switches are all lost [24] where each link is
assumed to have the same probability of failure. The detailed
definition of the isolation probability is referred to [24]. In
addition, the device connectivity [25] represents the overall
connectivity from the switches to the so that not only the
probability of controller isolation but the average connec-
tivity is considered. The detailed definition of the device
connectivity is referred to [25].

The evaluation results for the isolation probability and
device connectivity based on the five experimented topolo-
gies are illustrated in Figs. 8 and 9 respectively. Further-
more, the comparisons between the proposed Network Plan-
ning approaches with the evolutionary algorithm proposed
in [7] and K-Means algorithm proposed in [8] are also pre-
sented in Figs. 8 and 9. These two algorithms are simulated
by using the same number of controllers estimated by the
Controller Quantity Estimation of the proposed framework.
It is shown in Fig. 8 that the average isolation probability
of the proposed approach is less than 10% over all the five
tested topologies. Compared to the evolutionary algorithm
proposed in [7], the isolation probability of the proposed
approach is reduced by approximately 67% to 89%. Simi-
larly, compared to the K-Means algorithm proposed in
[8], the isolation probability of the proposed approach is
reduced by approximately 69% to 89%. In addition, it can be
observed from Fig. 9 that the proposed approach increases
the device connectivity by 13% to 45% comparing with the
evolutionary algorithm [7] and by 13% to 34% comparing
with the K-Means algorithm [8]. Therefore, it can be veri-
fied from the experimental results that the proposed Net-
work Planning scheme leads to the deployment of multiple
controllers with very lower probability of being isolated.
Furthermore, more diverse links between the control plane
and data plane are resulted. As a result, the reliability and
stability of the network are greatly enhanced.

4.2 The evaluation of runtime maintenance

The proposed SBT-based Runtime Maintenance is simu-
lated based on the topology of Internet 2 OS3E (34 nodes)

[23] and is compared with the approach proposed in [2] that
uses residual capacity-based heuristic backup controller
list for handling the controllers failure. The approach in [2]
migrates the switches to another controller containing suf-
ficient capacity in the backup list. Furthermore, both of the
proposed algorithm and the algorithm in [2] are on the basis
of the results of Network Planning including the control-
ler placement and the switch assignment. Two experiments
are conducted to analyzing the loading of the controllers
and examining the number of times that the controller is
overloaded.

In order to analyze the loading of the controllers, the ini-
tial throughput of the switch is set to be 150 kilo-requests
per second and the throughput of the switch that is managed
by the tested controller increases by 1 kilo-request per sec-
ond once at a time until one of the examined controllers is
failed. The experiment results for the loading of controllers
versus the added throughput to the switch are summarized
in Figs. 10, 11, 12, 13 where each figure is comprised of
four sub-plots showing the loading of the controller that is
place on node 3, node 24, node 28, and node 32 respectively.

Fig. 8 The evaluation results and comparison with prior arts for the
isolation probability

Fig. 9 The evaluation results and comparison with prior arts for the
device connectivity

(a) Controller 3 (b) Controller 24

(c) Controller 28 (d) Controller 32

Fig. 10 The loading of each controller (a–d) for the proposed
approach and the approach in [2] when the throughput of switches
managed by controller 3 increases

386 Y. Tzeng, C.-A. Shen

1 3

Furthermore, each figure illustrates a case that the through-
put of the switches belongs to a controller increases. For
example, the case where the throughput of the switches
belongs to controller 3 is shown in Fig. 10, the case for the
controller 28 is shown in Fig. 11, the case for the controller
24 is shown in Fig. 12, and the case for the controller 32 is
shown in Fig. 13. Moreover, the simulation results based
on the proposed SBT as well as the algorithm of [2] are
illustrated.

It is shown in Fig. 10a that the loading of the controllers
for the proposed approach and [2] are closely overlapped
until the loading of controller 3 reaches 90%. At the point
where the loading of controller 3 reaches 90% the first time,

the proposed approach keeps reducing the loading of con-
troller 3 by migrating the switches of controller 3 to other
controllers. While other controllers also reach the loading
of 90%, the Reserved block in the proposed SBT structure is
conducted to reduce the loading. On the other hand, for the
approach of [2], the loading of controller 3 keeps increasing
after reaching 90%. The controller overload occurs when the
throughput of selected switches is 200 kilo-requests per sec-
ond. Thus, it can be observed from Fig. 10 that through the
proposed SBT algorithm, the loading for all four examined
controllers are maintained below 90% mostly and the occur-
rence of the controller overload is significantly delayed. The
trend similar to Fig. 10 can also be observed in Figs. 11,
12, and 13. The controller that contains the throughput-
increased switches actively migrates its managed switches
to other controllers for reducing the loading. As a result,
compared to the approach used in [2], the occurrence of the
controller overload is greatly delayed for the proposed SBT
approach.

In addition, in the second experiment the throughput of
switches which belong to the selected controller is set from
150 kilo-requests per second and added 1 kilo-requests per
second once a time until the summation of the throughput
in the network is equal to the summation of the capacity
of the deployed controllers. The controller is always set to
restore after the failure occurs. Figure 14 shows the maximal
failure controllers at the same time of four different cases
as the throughput-increased switches belong to controller
3, 24, 28 and 32 initially. It can be observed from Fig. 14
that the maximal failure controllers at the same time for the
proposed algorithm is smaller than the approach in [2] for all
four cases. Therefore, based on the illustrated experimental
results, it can be verified that the proposed multi-controller

(a) Controller 3 (b) Controller 24

(c) Controller 28 (d) Controller 32

Fig. 11 The loading of each controller (a–d) for the proposed
approach and the approach in [2] when the throughput of switches
managed by controller 28 increases

(a) Controller 3 (b) Controller 24

(c) Controller 28 (d) Controller 32

Fig. 12 The loading of each controller (a–d) for the proposed
approach and the approach in [2] when the throughput of switches
managed by controller 24 increases

(a) Controller 3 (b) Controller 24

(c) Controller 28 (d) Controller 32

Fig. 13 The loading of each controller (a–d) for the proposed
approach and the approach in [2] when the throughput of switches
managed by controller 32 increases

387An integrated multi‑controller management framework for highly reliable software defined…

1 3

management framework greatly enhances the reliability and
stability of the network.

5 Conclusion

An integrated framework for a comprehensive multi-con-
troller management in SDN is presented in this paper. The
proposed framework is comprised of a network planning
phase and a runtime maintenance phase. The algorithms pro-
posed in the network planning phase estimates the require
number of the controllers in the network, determines the
node for placing the controller, and assigns the switch to its
managing controller. The problems of device isolation and
controller overload are mitigated such that the reliability and
stability of the control plane can be enhanced. Moreover, a
mechanism based on the State Behavior Tree is proposed
during the runtime maintenance phase of the framework.
This mechanism manages the loading of the controller dur-
ing the execution time so that the occurrence of the control-
ler overload is minimized. The experimental results have
shown that the proposed framework reduces the isolation
probability by up to 89% and increases the device connectiv-
ity by up to 34%. Moreover, the occurrence of the controller
overload during runtime can be significantly decreased.

Funding This work is supported by Ministry of Science and Technol-
ogy, Taiwan.

References

 1. Ahmad, S., & Mir, A. H. (2021). Scalability, consistency, reli-
ability and security in sdn controllers: A survey of diverse SDN
controllers. Journal of Network and Systems Management, 29(1),
1–59.

 2. Müller, L. F., Oliveira, R. R., Luizelli, M. C., Gaspary, L. P., &
Barcellos, M. P. (2014) Survivor: An enhanced controller place-
ment strategy for improving SDN survivability. In 2014 IEEE
Global Communications Conference (pp. 1909–1915).

 3. Hassas Yeganeh, S., & Ganjali, Y. (2012). Kandoo: a framework
for efficient and scalable offloading of control applications. In
Proc. SIGCOMM HotSDN workshop (pp. 19–24). ACM, 2012.

 4. Bekri, W., Jmal, R., & Chaari Fourati, L. (2020). Internet of things
management based on software defined networking: A survey.
Springer Journal of Wireless Information Networks, 27, 385–410.

 5. Zhong, Q., Wang, Y., Li, W., & Qiu, X. (2016). A min-cover based
controller placement approach to build reliable control network in
SDN. In NOMS 2016—2016 IEEE/IFIP Network Operations and
Management Symposium, Istanbul, 2016 (pp. 481–487).

 6. Jiménez, Y., Cervelló-Pastor, C., & García, A. J. (2014) On the
controller placement for designing a distributed SDN control
layer. In: 2014 IFIP Networking Conference, Trondheim, 2014
(pp. 1–9)

 7. Sanner, J. M., Hadjadj-Aoul, Y., Ouzzif, M. & Rubino, G. (2017).
An evolutionary controllers’ placement algorithm for reliable
SDN networks. In 2017 13th International Conference on Net-
work and Service Management (CNSM), Tokyo, 2017 (pp. 1–6).

 8. Wang, G., Zhao, Y., Huang, J., Duan, Q., & Li, J. (2016). A
K-means-based network partition algorithm for controller place-
ment in software defined network. In 2016 IEEE International
Conference on Communications (ICC), Kuala Lumpur, 2016 (pp.
1–6).

 9. Mendiola, A., et al. (2019). Enhancing network resources utiliza-
tion and resiliency in multi-domain bandwidth on demand service
provisioning using SDN. Springer Journal of Telecommunication
Systems, 29(1), 505–515.

 10. Zhang, Y., Beheshti, N., & Tatipamula, M. (2011) On resilience
of split-architecture networks. In 2011 IEEE Global Communica-
tions Conference—GLOBECOM 2011, 2011 (pp. 1–6).

 11. Mohammadi, R., Javidan, R., Keshtgari, M., & Akbari, R. (2018).
A novel multicast traffic engineering technique in SDN using
TLBO algorithm. Telecommunication Systems, 68(3), 583–592.

 12. Tanha, M., Sajjadi, D., Ruby, R., & Pan, J. (2018). Capacity-aware
and delay-guaranteed resilient controller placement for software-
defined WANs. IEEE Transactions on Network and Service Man-
agement, 15(3), 991–1005.

 13. Killi, B. P. R., & Rao, S. V. (2018) Link failure aware capacitated
controller placement in software defined networks. In 2018 Inter-
national Conference on Information Networking (ICOIN), Chiang
Mai, 2018 (pp. 292–297).

 14. Li, J., Wang, Y., Li, W., & Qiu, X. (2017). Sharing data store
and backup controllers for resilient control plane in multi-domain
SDN. In 2017 IFIP/IEEE Symposium on Integrated Network and
Service Management (IM), Lisbon (pp. 476-482)

 15. Zhang, L., Wang, Y., Li, W., Qiu, X., & Zhong, Q. (2017). A
survivability-based backup approach for controllers in multi-con-
troller SDN against failures. In 2017 19th Asia-Pacific Network
Operations and Management Symposium (APNOMS), Seoul (pp.
100–105)

 16. Zhang, J., Hu, T., Zhao, W., & Qiao, D. (2017) DDS: Distributed
decision strategy based on switch migration towards SDN control
plane. In 2017 International Conference on Cyber-Enabled Dis-
tributed Computing and Knowledge Discovery (CyberC), Nanjing,
2017 (pp. 486–493).

 17. Yao, L., Hong, P., Zhang, W., Li, J. & Ni, D. (2015) Controller
placement and flow based dynamic management problem towards
SDN. In 2015 IEEE International Conference on Communication
Workshop (ICCW), London (pp. 363–368)

 18. Hegde, S., Ajayghosh, R., Koolagudi, S. G. & Bhattacharya,
S. (2017) Dynamic controller placement in edge-core software
defined networks. In TENCON 2017—2017 IEEE Region 10 Con-
ference, Penang (pp. 3153–3158).

 19. ONF. (2015). Openflow switch specification 1.5.1. Available at
https ://www.openn etwor king.org/wp-conte nt/uploa ds/2014/10/
openfl ow-switc h-v1.5.1.pdf, 2015.

Fig. 14 The maximum failure controller at the same time in the net-
work

https://www.opennetworking.org/wp-content/uploads/2014/10/openflow-switch-v1.5.1.pdf
https://www.opennetworking.org/wp-content/uploads/2014/10/openflow-switch-v1.5.1.pdf

388 Y. Tzeng, C.-A. Shen

1 3

 20. Yao, L., Hong, P. & Zhou, W. (2014). Evaluating the controller
capacity in software defined networking. In 2014 23rd Interna-
tional Conference on Computer Communication and Networks
(ICCCN), Shanghai (pp. 1–6).

 21. Rahimi, R. et al. (2016) A high-performance OpenFlow software
switch. In 2016 IEEE 17th International Conference on High Per-
formance Switching and Routing (HPSR), Yokohama (pp. 93–99).

 22. Knight, S., Nguyen, H. X., Falkner, N., Bowden, R., & Roughan,
M. (2011). The internet topology zoo. IEEE Journal on Selected
Areas in Communications, 29(9), 1765–1775.

 23. Internet2 Open science, scholarship and services exchange.
[Online]. Available: http://www.inter net2.edu/netwo rk/ose/

 24. Papoulis, A. (1964). The meaning of probability. IEEE Transac-
tions on Education, E-7(2–3), 45–51.

 25. Beineke, L. W., Oellermann, O. R., & Pippert, R. E. (2002). The
average connectivity of a graph. Discrete Mathematics, 252(1),
31–45.

 26. Al-Tam, F., & Correia, N. (2019). On load balancing via switch
migration in software-defined networking. IEEE Access, 7,
95998–96010.

http://www.internet2.edu/network/ose/

	An integrated multi-controller management framework for highly reliable software defined networking
	Abstract
	1 Introduction
	2 Background and related work
	3 The proposed framework for multi-controller
	3.1 The overview of the proposed framework
	3.2 The network planning phase
	3.2.1 Controller quantity estimation
	3.2.2 Controller placement
	3.2.3 Switch assignment
	3.2.4 The runtime maintenance phase

	4 Evaluation of the proposed framework
	4.1 The evaluation of networking planning
	4.2 The evaluation of runtime maintenance

	5 Conclusion
	References

