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Abstract
Software-defined networking (SDN) has become the technology of choice for designing the next-generation network infra-
structure that is featured with high-volume traffics, rapidly increased scale, and dynamic nature. Furthermore, to deploy 
multiple controllers in the control plane of SDN is widely considered with the aim of improving the stability and reliability 
of the network. This paper presents an integrated framework for a comprehensive multi-controller management in SDN. 
The proposed framework is comprised of a network planning phase and a runtime maintenance phase. Novel algorithms 
are proposed in the network planning phase to estimate the required number of controllers in the network, to determine the 
nodes for placing the controllers, and to assign the switch to its managing controller. Moreover, these algorithms are designed 
by mitigating the problems of device isolation and controller overload such that the reliability and stability of the control 
plane can be enhanced. In addition, a mechanism based on the State Behavior Tree is proposed in the runtime maintenance 
phase of the framework. This mechanism dynamically manages the loading of the controller during the execution time so 
that the occurrence of the controller overload is minimized. The experimental results show that, compared to the prior arts, 
the proposed framework reduces the isolation probability by up to 89% and increases the device connectivity by up to 34%. 
The occurrence of the controller overload during runtime is also significantly decreased.

Keywords Software-defined networking (SDN) · Multi-controller · Controller placement · Recovery · Reliability · Behavior 
tree

1 Introduction

Software-defined networking (SDN) has become the tech-
nology of choice for designing the next-generation network 
infrastructure that is featured with high-volume traffics and 
dynamic nature [1]. The basic idea of SDN is that the net-
work management, commonly known as the control plane, 
is decoupled from the forwarding functions, known as the 
data plane [1]. Furthermore, the control plane is usually 
centralized to a SDN controller for managing the entire net-
work [1, 2]. This concept of data/control decoupling and the 

utilization of the centralized controller enable a program-
mable management of the network where the underlying 
infrastructure is abstracted from high-level applications. 
However, with the rapidly increased network scale and data 
traffic, to manage the entire network by relying only on one 
SDN controller could jeopardize the reliability, stability, and 
scalability of the network. For example, the centralized SDN 
controller could face a Single Point of Failure (SPOF) prob-
lem [2] resulting in the disconnections between the control 
plane and the data plane. In addition, a malfunction of the 
controller machine could lead to a device isolation prob-
lem, whereas the limited capacity of the controller machine 
including computing power and storage resources could 
lead to a controller overload problem [1, 2]. These problems 
would cause disastrous consequences to the network.

In order to improve the reliability and stability of the 
network, to architect the control plane with distributed 
multiple controllers has been investigated [1–3]. Several 
challenges need to be addressed considering the multi-con-
troller deployment in SDN [4–13]. To be specific, during 
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the network planning, we need to decide on the number of 
controllers to be deployed in the network and the location 
that the controllers reside [7, 8]. Furthermore, we also need 
to determine which forwarding devices (SDN switches) are 
managed by which controller. These decisions are made 
based on the factors such as the capacity of the controller 
(i.e. how many devices that can be handled by a control-
ler), the reliability of the connection between the controller 
and the forwarding devices, and the transmission latency 
between the devices to the controller. Moreover, after the 
network planning, a management mechanism is required to 
maintain the reliability of the control plane during execution 
time [14–18]. In particular, this mechanism monitors the 
status of the controller and address the scenario of controller 
failure either due to the disconnection between the controller 
and the forwarding devices or the controller overload. For 
example, the approaches reported in [14, 15] are based on 
the backup controller list where the switch that cannot con-
nect to the controller is directed to other controllers based on 
the pre-installed list. On the other hand, methods based on 
the migration algorithms are employed in [16–18] where the 
switch that cannot connect to the controller is dynamically 
migrated to another operating controllers. It is mentioned in 
[26] that the switch migration is required to move from one 
controller to another when the controller fails. This is an 
important issue for applications such as Internet of Things 
(IoT) [4]. The OpenFlow switch specifications [19] also state 
that the functionality of switch migration is added in the 
switch so that the new controller can be identified when is 
necessary.

With the aim of enhancing the reliability and stability of 
the network, this paper presents an integrated framework for 
a comprehensive multi-controller management in Software 
defined networking (SDN). To be specific, the proposed 
framework is comprised of two phases including the Net-
work Planning phase and the Runtime Maintenance phase. 
The Network Planning phase contains three stages, Control-
ler Quantity Estimation, Controller Placement, and Switch 
Assignment. The Controller Quantity Estimation stage esti-
mates the required number of controllers by considering the 
capacity of the controller and the maximal throughput of the 
network. Furthermore, the estimated number of controller 
is used to determine the placement of the controller in the 
Controller Placement stage by using the proposed Maximal 
Neighbors Controller Placement (MNCP) algorithm. This 
algorithm intends to identify the node containing the most 
one-hop neighbors as the controller node so that the problem 
of device isolation for the controller is minimized. Finally, in 
the Switch Assignment stage, a Loading-based Hop Count 
Switch Assignment (LHCA) algorithm is proposed to assign 
each switch to its managing controller. In addition, the Runt-
ime Maintenance phase aims to maintain the reliability and 
stability of the control plane during the execution time. In 

particular, a mechanism based on the State Behavior Tree 
(SBT) is proposed in this phase to manage the loading of the 
controller and to handle the scenario of the controller over-
load. This SBT-based mechanism migrates the switches that 
are managed by the controller with 90% loading to another 
controller.

In summary, the main contributions of this paper can be 
considered as follows.

• A comprehensive and integrated framework of the multi-
controller management scheme is presented in this paper. 
This framework includes a Network Planning phase for 
the controller deployment and a Runtime Maintenance 
phase to maintain the reliability of control plane during 
the execution time.

• The MNCP algorithm and the LHCA algorithm are pro-
posed in the Network Planning phase for the controller 
placement and switch assignment. These two algorithms 
are designed with the aiming of mitigating the device 
isolation problem and to increase the device connectiv-
ity between the controller to its managed switches. The 
experimental results show that, compared to the prior 
arts, the proposed algorithms reduce the isolation prob-
ability up to 89% and increase the device connectivity by 
up to 34%.

• A mechanism based on the State Behavior Tree (SBT) is 
proposed in the Runtime Maintenance phase approach 
based on the is proposed in this paper. This mechanism 
dynamically manages the loading of the controller by 
migrating the switches that are managed by the controller 
with 90% loading to another controller. The experimental 
results show that, compared to the prior arts, the pro-
posed mechanism significantly decreases the occurrence 
of the controller overload.

The rest of this paper is organized as follows. Section 2 
discusses the background and the related work. Section 3 
describes the overview of proposed framework. Sections 4 
and 5 introduce the detail concept and algorithm of the Net-
work Planning and Runtime Maintain stage. The simulation 
is evaluated in Sect. 6 and the conclusion is in Section 7.

2  Background and related work

The centralized controller in Software-defined networking 
(SDN) could lead to a Single Point of Failure (SPOF) prob-
lem [1, 2] due to the controller overload or device isolation. 
The SPOF problem is illustrated in Fig. 1 where the control-
ler overload is shown in Fig. 1a and the device isolation is 
shown in Fig. 1b. The controller could be crashed by the 
excessive amounts of requests from forwarding devices, e.g. 
SDN switches. The controller could also be disconnected 
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from the switches due to the malfunction of the controller 
or disconnection of the network. The SPOF problem of the 
controller heavily degrades the stability and reliability of 
the network. Such problem becomes especially important 
for the network environment like factory, smart city, smart 
grid, and IoT [1–4]. For example, the disconnections with 
the controller could result in the loss of critical information 
in the IoT environment or lead to disruption of production in 
the factory. In order to enhance the reliability and stability of 
the network, it is proposed to architect the control plane by 
deploying multiple controllers in SDN [1–3]. In this regard, 
a multi-controller management scheme is required to make 
design decisions such as the number of controllers that are 
required to be deployed and the placement of the controller 
in the network [4, 5]. Furthermore, how to assign the man-
aging controller for each forwarding device in the network 
is decided [6–8].

Approaches have been proposed in literature aiming to 
design the multi-controller management scheme for a highly 
reliable and stable SDN. In particular, the approach pro-
posed in [2] determines the required number and the place-
ment of the controller by considering the path diversity. 
However, the approach proposed in [2] could increase the 
loading of the controller. The work presented in [5] consid-
ers the link failure of the network and the methodology pro-
posed in [6] estimates the required number of the controller 
by considering the latency of the network. Furthermore, an 
evolutionary algorithm is presented in [7] to maximize the 
connections between the control plane and the data plane 
and to balance the loading of each controller. Moreover, a 
well-known K-Means algorithm is shown in [8] to decom-
pose the network into clusters containing the lowest distance 
from the switches to their managing controllers. In addition, 
the work in [10] conducts the controller placement by mini-
mizing the connectivity loss, the work in [12] considers the 
latency of the network and the capacity of the controller, 
and the work in [13] places the controller by minimizing the 
worst-case latency from the switch to controller. However, 
these approaches do not mention how to efficiently identify 
backup controller when the failure occurs.

On the other hand, the work in [2] and [14–16] proposes 
to pre-compute and pre-install a backup controller list in 
each switch. Once the connection between the switch and its 
managing controller is lost, another controller in the backup 
controller list is assigned as the substitute controller. Fur-
thermore, a failover mechanism to migrate the switches from 
the failed controller to the backup controller is presented 
in [14] and [15], whereas a model has been presented in 
[16] for collecting the information about the network and for 
migrating the switches of the overloading controller to the 
backup controller. Furthermore, the work presented in [17] 
is about the flow-based dynamic management scheme so that 
the loading of the controller is monitored in real-time and 
the migration of the switches are conducted for balancing 
the loading of the controller.

However, to the best of our knowledge, a comprehensive 
multi-controller management scheme including network 
planning and runtime maintenance has not been reported 
yet in the literature. This paper presents an integrated 
framework for a comprehensive multi-controller manage-
ment scheme in Software defined networking (SDN). The 
proposed framework is comprised of a Network Planning 
phase and a Runtime Maintenance phase. In the Network 
Planning phase, we propose approaches to estimate the 
required number of controllers in the network, to identify 
the locations for accommodating the controllers. We also 
propose an approach for dynamic allocation of switches to 
those controllers. Furthermore, the proposed approaches are 
designed so that the occurrence of the controller overload 
and the device isolation can be minimized. Moreover, in the 
Runtime Maintenance phase, a State Behavior Tree (SBT) 
based algorithm is proposed to manage the load balancing of 
the controllers. In particular, once the loading of a controller 
exceeds 90% of its capacity, the switches that is handled by 
that controller is migrated to be handled by other control-
lers. As a result, the problem of controller overload is greatly 
mitigated.

3  The proposed framework 
for multi‑controller

3.1  The overview of the proposed framework

Figure  2 presents the proposed integrated framework 
for the comprehensive multi-controller management in 
SDN. It can be seen in Fig. 2 that this framework is com-
prised of two phases namely Network Planning and Runt-
ime Maintenance. To be specific, the Network Planning 
phase considers the deployment of multiple controllers 
and contains three functional blocks of Controller Quan-
tity Estimation, Controller Placement, and the Switch 
Assignment. These functional blocks are performed to 

Fig. 1  The illustration of Single Point of Failure (SPOF) problem 
where (a) is the controller overload and (b) is the device isolation
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estimate the number of required controllers in the net-
work, to determine the node for placing controllers in 
the network, and to assign each switch to its managing 
controller. Furthermore, the primary goal of the Network 
Planning phase is to enhance the reliability and stability 
of the control plane by minimizing the occurrence of the 
device isolation and controller overload.

Moreover, in order to maintain the reliability and 
stability of the control plane after the multi-controller 
deployment, the Runtime Maintenance phase is proposed 
to manage the control plane of the network during the 
execution time. An algorithm based on the State Behav-
ior Tree (SBT) is proposed in the Runtime Maintenance 
phase to operate the corresponding reactions according 
to the situation of the controllers. In particular, once the 
loading of a controller exceeds 90% of its capacity, the 
switches that is handled by that controller is migrated to 
be handled by other controllers. As a result, the problem 
of controller overload is greatly mitigated. In the follow-
ing, the approaches employed in the proposed framework 
are discussed in details.

3.2  The network planning phase

It can be observed from Fig. 2 that three tasks need to be per-
formed during the Network Planning phase of the proposed 
framework, including the estimation of the required number 
of the controller in the network (i.e. the Controller Quantity 
Estimation shown in Fig. 2), the determination of the node to 
accommodate the controller (i.e. the Controller Placement), 
and assignment of the switches to the managing control-
ler (i.e. the Switch assignment). Moreover, in the proposed 
framework, these functions are performed with the aim of 
enhancing the reliability and stability of the control plane. In 
particular, the Controller Quantity Estimation estimates the 
required number of controllers in the network by consider-
ing the capacity of the controller as well as the throughput 
from the switches. Furthermore, the Controller Placement 
determines the location of the controller by maximizing the 
connections between the controllers and switches, whereas 
the Switch Assignment assigns the switches to the managing 
controllers by jointly considering the loading of the control-
ler and the connections.

3.2.1  Controller quantity estimation

In the proposed framework, the functional block of Control-
ler Quantity Estimation is employed to estimate the number 
of controllers to be deployed in the network. Furthermore, 
in order to minimize the occurrence of the controller over-
load and device isolation for the control plane, the Control-
ler Quantity Estimation takes multiple network constraints 
and information into consideration such as the capacity of 
the controller, the overall throughput of the network, the 
requests from the switches to the controllers, the inter-con-
troller synchronize cost [16], and the possible packet-in mes-
sages of each switch. Specifically, the number of deployed 
controllers in the network is determined by satisfying the 
constraint expressed in Eq. (1)

(1)
n
∑

i=1

Throughput
(

swi

)

≤

Q
∑

k=1

Capacity
(

ck
)

Controller 
Quantity 

Estimation

estimated number of 
controllers

placement of the 
controllers

assignments of the 
switches

Controller capacity
Switches throughput

More controller added

Controller 
Placement

Switch
Assignment

State Behavior 
Tree

Network Planning

Runtime Maintenance

Fig. 2  The overview of the proposed integrated framework of multi-
controller management scheme

Table 1  Parameters used in the Controller Quantity Estimation

Q The estimated number of controllers
Capacity(c) Responses of packet-in message per millisecond 

[20]
Throughput(sw) Maximum packet-in message per second [21]
Tsym The synchronization cost of controller [16]
di The size of synchronize data of controller i
tij The transmission time to send data from controller 

i to controller j
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where the parameters for the estimation is summarized in 
Table 1. It is noted that in this constraint we assume a worst 
scenario situation where the switches generate the packet-in 
message of each new packet.

The fundamental concept expressed in Eq. (1) is that 
the accumulated loading of switches in the entire network 
should be less than or equal to the overall capacity of all con-
trollers in the network. However, in practice, the increased 
number of controllers in the network incur severe overhead 
of synchronization cost between the controllers. As a result, 
the proposed estimation approach further takes the synchro-
nization cost into the consideration. It is expressed in Eq. (2) 
that the estimated Q minimizes the summation of maximal 
inter-controller synchronization cost noted as Tsym.

Furthermore, the parameter di presents data d of control-
ler i that synchronizes with other controllers, and the tij is 
the required maximal round trip time for data transmission 
from controller i to controller j.

3.2.2  Controller placement

After the number of controllers to be deployed Q is esti-
mated, the placement of the controllers is determined by the 
Controller Placement functional block. In order to mitigate 
the SPOF problem by minimizing the device isolation, a 
Maximal Neighbors Controller Placement (MNCP) algo-
rithm is proposed in our framework. In particular, with the 
aim of increasing the potential connections between the 
control plane and data plane, the MNCP algorithm intends 
to select the nodes to accommodate the controller such that 
the connections between the switches and the controllers 
are maximized. The flowchart of the proposed MNCP algo-
rithm is presented in Fig. 3 and the parameters used in this 
algorithm is summarized in Table 2. It is shown in Fig. 3 
that this algorithm is comprised of two inputs including the 
number of controller Q estimated from the Controller Quan-
tity Estimation and the undirected graph of the network G. 
Furthermore, the graph is represented as G = (V, E) where 
V denotes the node in the network and E is the edge in the 
network. The first step of MNCP is to calculate the number 
of neighbors of each node that is represented by nb ( vi ) given 
the node vi from the graph G. In the following, the maximal 
number of those neighbors, noted as Maxnb, is used as the 
selection criteria to identify the candidate controller nodes 
Cs through the execution of the allv function.

In the final stage of MNCP, it is checked that if the sum of 
the number of nodes in the controller set C and the candidate 
set Cs is equal to the required number of controller Q. If the 
selected controller node is smaller than Q, this algorithm will 

(2)minTsym =
∑

i,j∈Q,i≠j

di ⋅ tij

put the nodes in Cs into C and set a lower neighbor number 
to identify a new Cs until the check is satisfied. On the other 
hand, if the number of selected controller node is larger than 
Q, the Q nodes containing the largest hops from the nodes in 
C set is selected by performing the mhc function. The set of 
Cs is added into the set of C, and if the number of the nodes 
in C is equal to Q, C will be the result of the Controller Place-
ment. In other words, the resulted set of C for the Controller 
Placement always limited by the constraint expressed Eq. (3) 
where the xij represents the connection from controller i to 
switch j and if there is a direct connection from i to j, xij = 1 , 
otherwise xij = 0.

(3)max
∑

i∈C,j∈S,C,S∈G

xij, wherexij = {0, 1}

Fig. 3  The flowchart for the proposed Maximal Neighbors Controller 
Placement (MNCP) algorithm

Table 2  Parameters used in the proposed MNCP algorithm

Q The required controller quantity
nb(vi) The number of neighbor node of vertex  vi. ∀  vi ∈ V

Cs The candidate node of controller
C The set of controller nodes
allv(x) The vertexes which has neighbor value x
mhc(Cs, m) Find the required number of nodes m which has 

the max hop with known controllers
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3.2.3  Switch assignment

The proposed MNCP algorithm delivers the results of con-
troller placement by mitigating the problem of device iso-
lation. At the final stage of the Network Planning phase, a 
Loading-based Hop Count Assignment (LHCA) algorithm is 
proposed to assign each switch in the network to its manag-
ing controller. In order to mitigate the problem of controller 
overload, the LHCA algorithm intends to assign the switch 
to its managing controller with a constraint that the load-
ing of the controller cannot exceed its capacity. Figure 4 
presents the flowchart of the proposed LHCA algorithm 
where the parameters used in this algorithm are summa-
rized in Table 3. It is shown in Fig. 4 that the undirected 
graph of the network G and the set of the controller C are 
from the MNCP algorithm and are the inputs to the LHCA 
algorithm. In the LHCA algorithm, the number of least hops 
from every switch to each controller is calculated by the 

mhsc(G,C) function and is noted as Sclist. In the following, 
this algorithm identifies the unassigned switch which has the 
minimum hops with the closest controller and assigns this 
switch to the nearest controller. If the number of the nearest 
controllers is more than one, the switch will be stored into a 
waitlist and is assigned only after the Sclist is empty.

Moreover, when a switch is assigned to a controller, the 
LHCA algorithm checks if the controller is overloaded. If 
the controller is overloaded, the controller is removed from 
the Sclist and the second nearest controller is assigned to the 
switch instead. Finally, all the switches are assigned and the 
assignment set is given as Cluster. In particular, the resulted 
Cluster set of switch assignment is limited by the constraint 
shown in Eq. (4) where the load(ci) represents the summa-
tion of the maximal switch throughput which is managed 
by controller ci. The constraint expressed in Eq. (4) also 
represents that the loading ofci , load(ci), must not exceed 
the controller capacity of ci in C set.

 where load(ci) = 
n
∑

j=1

Sj , ∀j∈ Clusteri.

It is noted that the switch with less hop counts and the 
loading of the controller are both taken into the considera-
tion. In other words, if there are two or more switches with 
the same hop count, the one that is detected first will be 
taken for evaluating the loading of the controller.

3.2.4  The runtime maintenance phase

After the deployment of control plane is determined through 
the Network Planning phase of the proposed framework, 
the Runtime Maintenance phase is executed to manage the 
reliability and stability of the control plane based on the 
multi-controller scheme. According to the requirements of 
the network, a typical runtime management considers the 
failure precaution, the reaction of the control plane if the 
controller failure occurs, the load balance of the control 
plane, and the latency between the control plane and the data 
plane. To be specific, the Runtime Maintenance mechanism 
proposed in this framework focuses on the load balance of 
the control plane and the restoration scheme for the scenario 
of controller failure.

(4)Capacity
(

ci
)

> max load
(

ci
)

, ci ∈ C

Fig. 4  The flowchart of the proposed Loading-based Hop Count 
Assignment (LHCA) algorithm for the switch assignment

Table 3  Parameters used in the proposed LHCA algorithm

mhsc(G, C) The minimum hop count from all the control-
ler to every switches

min(sclist[ni]) The minimum hop count from ni to controller
len(x) The length of list x
loadck The current load of ck.
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An approach based on the State Behavior Tree (SBT) is 
proposed in the framework to manage the restoration mecha-
nism after the controller failure. The structure of the pro-
posed State Behavior Tree (SBT) is shown in Fig. 5 includes 
four main blocks namely Priority Setting, Reserved, Other 
controller failure, and Restore. Each of these four blocks is 
corresponding to a scenario that is taken care of during the 
Runtime Maintenance phase. Each controller in the network 
will be given a priority and the scenario regarding to each 
controller will be monitored by the SBT. The decision cor-
responding to each controller like migration or switch re-
assignment will be determined. It is noted that the proposed 
mechanism assumes that there are keep-alive messages 
between the controllers communicating the loading and the 
synchronize data of the controllers.

The Priority setting block shown in Fig. 5 sets the priority 
for each controller according to the loading of the local con-
troller. The priority setting serves as the basis to determine 
whether the controller has margin of capacity to receive 
additional switches from other controllers. This block uses 
a priority flag to reflect the status of loading for any given 
controller. Specifically, the priority flag for any local control-
ler is set to 1 when the loading of that controller is less than 
50% of its overall capacity. On the other hand, the priority 
flag is set to 0 when the loading of the controller is large 
than or equal to 50% of its overall capacity. Furthermore, 
the Reserved block shown in Fig. 5 manages the scenario of 
controller overload. Specifically, when the loading of a local 
controller exceeds 90 percent of its overall capacity, it will 
attempts to identify another target controller and starts to 

migrate the switches to that newly identified target controller 
until the loading of the local controller is below 90 percent. 
If no controllers can be identified, the local controller goes 
to the neighboring controller with the minimal loading as 
the target controller and migrates the switch only if the load-
ing for the target controller is less than the local controller. 
If the loading for all the neighboring controllers are larger 
than the local controller, the local controller simply exits the 
Reserved block.

Moreover, the Other controller failure block shown in 
Fig. 5 aims to detect the failure of other controllers, i.e., 
the controllers other than the local controller, through the 
examination of the synchronization messages. In particular, 
if the synchronization message from a certain controller is 
not detected, another controller which contains the lowest 
loading starts to identifies the switches of that controller and 
reassigns them by following a reassign procedure shown in 
Fig. 6. It is sown in Fig. 6 that the controller failing to send 
out synchronization message Fc, the set of all the controllers 
C, and the list containing the hop count from each controller 
to every switch cslist are the inputs to the re-assign proce-
dure. The alive controller sorts the controllers in the set C 
and identifies the target controller  ra0 containing the mini-
mal loading. The switch which has the minimal hop count 
in cslist  [Fc][ra0] is assigned and the migration message is 
sent to the target controller. Afterwards, the controllers are 
sorted again according to the loading after the re-assign-
ment of the switch. These steps are repeated until all the 
switches of the failing controller are reassigned. In addition, 
the Restored block shown in Fig. 5 handles the scenario 

Fig. 5  The structure of the proposed State Behavior Tree (SBT) based approach for the Runtime Maintenance phase
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where the previously failed local controller is restored from 
the failure condition. In this case, the restored controller 
starts to synchronize again with other alive controllers. In 
order to release the loading of other controllers, the restored 
controller performs a restored-migrate procedure shown in 
Fig. 7 to migrate the switches from other controllers to the 
restored controller. It is shown in Fig. 7 that the restored 
controller Rc, the set of all the controllers C, and the cslist 
are the inputs to the procedure. The restored controller sorts 
the controllers in C and identifies the controller with the 
maximal loading  ra0. The switch that is managed by  ra0 and 
contains the minimal hop count to the restored controller in 
cslist  [Rc][ra0] is migrated to the restored controller. The 
restore-migrate procedure stops if the loading of the restored 
controller exceeds 50% of the capacity.

4  Evaluation of the proposed framework

Extensive experiments have been conducted to evaluate 
the performance of the proposed framework including the 
Network Planning phase and the Runtime Maintenance 
phase. The evaluation results are also compared with previ-
ously reported approaches. Specifically, the proposed Net-
work Planning approach is compared with the evolutionary 

algorithm [7] and the K-Means algorithm [8] and the Runt-
ime Maintenance method is compared with the Survivor 
approach [2] which gives a backup controller list for manag-
ing the failure of the control plane. The topologies used for 
evaluations and comparisons are from the topology zoo [22] 
and the Internet 2 OS3E topology in the Internet 2 network 
[23]. All the algorithms are implemented with the python 
compiler in Ubuntu 14.04 on Virtualbox and executed on 
the compuer equipped with Intel core i5-4460 processor.

4.1  The evaluation of networking planning

The approaches in the Network Planning phase of the pro-
posed framework are simulated based on five different 
topologies including the Claranet (15 nodes), the Agis (25 
nodes), the Internet 2 OS3E (34 nodes), the Bellcanada (48 
nodes) and the Iris (51 nodes). Furthermore, the capacity of 
the controller is set to be 1800 kilo-requests per second and 
the maximal throughput of the switch is set to be 200 kilo-
requests per second [2]. Moreover, the metrics of isolation 
probability defined in [24] and device connectivity defined 
in [25] are used to evaluate the performance of the proposed 
algorithm and to compare the results with the previously 
reported approaches. The isolation probability represents 
the probability that the connections between the controller 

Input = C, Fc, cslist

Sort C with 
controller load.

Send the migrate 
message to target.

Find min-value 
in csist[Fc][ra0]

All sw of Fc 
reassigned?

Done

y

n

Select lowest load 
controller ra0.

Fig. 6  The flowchart of the reassign procedure used in the proposed 
framework

Input = C, Rc, cslist

Sort C with 
controller load.

Send the migrate 
message to target.

Find max value 
in csist[Rc][ra0]

Rc load >=50

Done

y

n

Select highest load 
controller ra0.

Fig. 7  The flowchart of the restored-migrate procedure used in the 
proposed framework
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and its managed switches are all lost [24] where each link is 
assumed to have the same probability of failure. The detailed 
definition of the isolation probability is referred to [24]. In 
addition, the device connectivity [25] represents the overall 
connectivity from the switches to the so that not only the 
probability of controller isolation but the average connec-
tivity is considered. The detailed definition of the device 
connectivity is referred to [25].

The evaluation results for the isolation probability and 
device connectivity based on the five experimented topolo-
gies are illustrated in Figs. 8 and 9 respectively. Further-
more, the comparisons between the proposed Network Plan-
ning approaches with the evolutionary algorithm proposed 
in [7] and K-Means algorithm proposed in [8] are also pre-
sented in Figs. 8 and 9. These two algorithms are simulated 
by using the same number of controllers estimated by the 
Controller Quantity Estimation of the proposed framework. 
It is shown in Fig. 8 that the average isolation probability 
of the proposed approach is less than 10% over all the five 
tested topologies. Compared to the evolutionary algorithm 
proposed in [7], the isolation probability of the proposed 
approach is reduced by approximately 67% to 89%. Simi-
larly, compared to the K-Means algorithm proposed in 
[8], the isolation probability of the proposed approach is 
reduced by approximately 69% to 89%. In addition, it can be 
observed from Fig. 9 that the proposed approach increases 
the device connectivity by 13% to 45% comparing with the 
evolutionary algorithm [7] and by 13% to 34% comparing 
with the K-Means algorithm [8]. Therefore, it can be veri-
fied from the experimental results that the proposed Net-
work Planning scheme leads to the deployment of multiple 
controllers with very lower probability of being isolated. 
Furthermore, more diverse links between the control plane 
and data plane are resulted. As a result, the reliability and 
stability of the network are greatly enhanced.

4.2  The evaluation of runtime maintenance

The proposed SBT-based Runtime Maintenance is simu-
lated based on the topology of Internet 2 OS3E (34 nodes) 

[23] and is compared with the approach proposed in [2] that 
uses residual capacity-based heuristic backup controller 
list for handling the controllers failure. The approach in [2] 
migrates the switches to another controller containing suf-
ficient capacity in the backup list. Furthermore, both of the 
proposed algorithm and the algorithm in [2] are on the basis 
of the results of Network Planning including the control-
ler placement and the switch assignment. Two experiments 
are conducted to analyzing the loading of the controllers 
and examining the number of times that the controller is 
overloaded.

In order to analyze the loading of the controllers, the ini-
tial throughput of the switch is set to be 150 kilo-requests 
per second and the throughput of the switch that is managed 
by the tested controller increases by 1 kilo-request per sec-
ond once at a time until one of the examined controllers is 
failed. The experiment results for the loading of controllers 
versus the added throughput to the switch are summarized 
in Figs. 10, 11, 12, 13 where each figure is comprised of 
four sub-plots showing the loading of the controller that is 
place on node 3, node 24, node 28, and node 32 respectively. 

Fig. 8  The evaluation results and comparison with prior arts for the 
isolation probability

Fig. 9  The evaluation results and comparison with prior arts for the 
device connectivity

(a) Controller 3 (b) Controller 24

(c) Controller 28 (d) Controller 32

Fig. 10  The loading of each controller (a–d) for the proposed 
approach and the approach in [2] when the throughput of switches 
managed by controller 3 increases
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Furthermore, each figure illustrates a case that the through-
put of the switches belongs to a controller increases. For 
example, the case where the throughput of the switches 
belongs to controller 3 is shown in Fig. 10, the case for the 
controller 28 is shown in Fig. 11, the case for the controller 
24 is shown in Fig. 12, and the case for the controller 32 is 
shown in Fig. 13. Moreover, the simulation results based 
on the proposed SBT as well as the algorithm of [2] are 
illustrated.

It is shown in Fig. 10a that the loading of the controllers 
for the proposed approach and [2] are closely overlapped 
until the loading of controller 3 reaches 90%. At the point 
where the loading of controller 3 reaches 90% the first time, 

the proposed approach keeps reducing the loading of con-
troller 3 by migrating the switches of controller 3 to other 
controllers. While other controllers also reach the loading 
of 90%, the Reserved block in the proposed SBT structure is 
conducted to reduce the loading. On the other hand, for the 
approach of [2], the loading of controller 3 keeps increasing 
after reaching 90%. The controller overload occurs when the 
throughput of selected switches is 200 kilo-requests per sec-
ond. Thus, it can be observed from Fig. 10 that through the 
proposed SBT algorithm, the loading for all four examined 
controllers are maintained below 90% mostly and the occur-
rence of the controller overload is significantly delayed. The 
trend similar to Fig. 10 can also be observed in Figs. 11, 
12, and 13. The controller that contains the throughput-
increased switches actively migrates its managed switches 
to other controllers for reducing the loading. As a result, 
compared to the approach used in [2], the occurrence of the 
controller overload is greatly delayed for the proposed SBT 
approach.

In addition, in the second experiment the throughput of 
switches which belong to the selected controller is set from 
150 kilo-requests per second and added 1 kilo-requests per 
second once a time until the summation of the throughput 
in the network is equal to the summation of the capacity 
of the deployed controllers. The controller is always set to 
restore after the failure occurs. Figure 14 shows the maximal 
failure controllers at the same time of four different cases 
as the throughput-increased switches belong to controller 
3, 24, 28 and 32 initially. It can be observed from Fig. 14 
that the maximal failure controllers at the same time for the 
proposed algorithm is smaller than the approach in [2] for all 
four cases. Therefore, based on the illustrated experimental 
results, it can be verified that the proposed multi-controller 

(a) Controller 3 (b) Controller 24

(c) Controller 28 (d) Controller 32

Fig. 11  The loading of each controller (a–d) for the proposed 
approach and the approach in [2] when the throughput of switches 
managed by controller 28 increases

(a) Controller 3 (b) Controller 24

(c) Controller 28 (d) Controller 32

Fig. 12  The loading of each controller (a–d) for the proposed 
approach and the approach in [2] when the throughput of switches 
managed by controller 24 increases

(a) Controller 3 (b) Controller 24

(c) Controller 28 (d) Controller 32

Fig. 13  The loading of each controller (a–d) for the proposed 
approach and the approach in [2] when the throughput of switches 
managed by controller 32 increases
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management framework greatly enhances the reliability and 
stability of the network.

5  Conclusion

An integrated framework for a comprehensive multi-con-
troller management in SDN is presented in this paper. The 
proposed framework is comprised of a network planning 
phase and a runtime maintenance phase. The algorithms pro-
posed in the network planning phase estimates the require 
number of the controllers in the network, determines the 
node for placing the controller, and assigns the switch to its 
managing controller. The problems of device isolation and 
controller overload are mitigated such that the reliability and 
stability of the control plane can be enhanced. Moreover, a 
mechanism based on the State Behavior Tree is proposed 
during the runtime maintenance phase of the framework. 
This mechanism manages the loading of the controller dur-
ing the execution time so that the occurrence of the control-
ler overload is minimized. The experimental results have 
shown that the proposed framework reduces the isolation 
probability by up to 89% and increases the device connectiv-
ity by up to 34%. Moreover, the occurrence of the controller 
overload during runtime can be significantly decreased.

Funding This work is supported by Ministry of Science and Technol-
ogy, Taiwan.

References

 1. Ahmad, S., & Mir, A. H. (2021). Scalability, consistency, reli-
ability and security in sdn controllers: A survey of diverse SDN 
controllers. Journal of Network and Systems Management, 29(1), 
1–59.

 2. Müller, L. F., Oliveira, R. R., Luizelli, M. C., Gaspary, L. P., & 
Barcellos, M. P. (2014) Survivor: An enhanced controller place-
ment strategy for improving SDN survivability. In 2014 IEEE 
Global Communications Conference (pp. 1909–1915).

 3. Hassas Yeganeh, S., & Ganjali, Y. (2012). Kandoo: a framework 
for efficient and scalable offloading of control applications. In 
Proc. SIGCOMM HotSDN workshop (pp. 19–24). ACM, 2012.

 4. Bekri, W., Jmal, R., & Chaari Fourati, L. (2020). Internet of things 
management based on software defined networking: A survey. 
Springer Journal of Wireless Information Networks, 27, 385–410.

 5. Zhong, Q., Wang, Y., Li, W., & Qiu, X. (2016). A min-cover based 
controller placement approach to build reliable control network in 
SDN. In NOMS 2016—2016 IEEE/IFIP Network Operations and 
Management Symposium, Istanbul, 2016 (pp. 481–487).

 6. Jiménez, Y., Cervelló-Pastor, C., & García, A. J. (2014) On the 
controller placement for designing a distributed SDN control 
layer. In: 2014 IFIP Networking Conference, Trondheim, 2014 
(pp. 1–9)

 7. Sanner, J. M., Hadjadj-Aoul, Y., Ouzzif, M. & Rubino, G. (2017). 
An evolutionary controllers’ placement algorithm for reliable 
SDN networks. In 2017 13th International Conference on Net-
work and Service Management (CNSM), Tokyo, 2017 (pp. 1–6).

 8. Wang, G., Zhao, Y., Huang, J., Duan, Q., & Li, J. (2016). A 
K-means-based network partition algorithm for controller place-
ment in software defined network. In 2016 IEEE International 
Conference on Communications (ICC), Kuala Lumpur, 2016 (pp. 
1–6).

 9. Mendiola, A., et al. (2019). Enhancing network resources utiliza-
tion and resiliency in multi-domain bandwidth on demand service 
provisioning using SDN. Springer Journal of Telecommunication 
Systems, 29(1), 505–515.

 10. Zhang, Y., Beheshti, N., & Tatipamula, M. (2011) On resilience 
of split-architecture networks. In 2011 IEEE Global Communica-
tions Conference—GLOBECOM 2011, 2011 (pp. 1–6).

 11. Mohammadi, R., Javidan, R., Keshtgari, M., & Akbari, R. (2018). 
A novel multicast traffic engineering technique in SDN using 
TLBO algorithm. Telecommunication Systems, 68(3), 583–592.

 12. Tanha, M., Sajjadi, D., Ruby, R., & Pan, J. (2018). Capacity-aware 
and delay-guaranteed resilient controller placement for software-
defined WANs. IEEE Transactions on Network and Service Man-
agement, 15(3), 991–1005.

 13. Killi, B. P. R., & Rao, S. V. (2018) Link failure aware capacitated 
controller placement in software defined networks. In 2018 Inter-
national Conference on Information Networking (ICOIN), Chiang 
Mai, 2018 (pp. 292–297).

 14. Li, J., Wang, Y., Li, W., & Qiu, X. (2017). Sharing data store 
and backup controllers for resilient control plane in multi-domain 
SDN. In 2017 IFIP/IEEE Symposium on Integrated Network and 
Service Management (IM), Lisbon (pp. 476-482)

 15. Zhang, L., Wang, Y., Li, W., Qiu, X., & Zhong, Q. (2017). A 
survivability-based backup approach for controllers in multi-con-
troller SDN against failures. In 2017 19th Asia-Pacific Network 
Operations and Management Symposium (APNOMS), Seoul (pp. 
100–105)

 16. Zhang, J., Hu, T., Zhao, W., & Qiao, D. (2017) DDS: Distributed 
decision strategy based on switch migration towards SDN control 
plane. In 2017 International Conference on Cyber-Enabled Dis-
tributed Computing and Knowledge Discovery (CyberC), Nanjing, 
2017 (pp. 486–493).

 17. Yao, L., Hong, P., Zhang, W., Li, J. & Ni, D. (2015) Controller 
placement and flow based dynamic management problem towards 
SDN. In 2015 IEEE International Conference on Communication 
Workshop (ICCW), London (pp. 363–368)

 18. Hegde, S., Ajayghosh, R., Koolagudi, S. G. & Bhattacharya, 
S. (2017) Dynamic controller placement in edge-core software 
defined networks. In TENCON 2017—2017 IEEE Region 10 Con-
ference, Penang (pp. 3153–3158).

 19. ONF. (2015). Openflow switch specification 1.5.1. Available at 
https ://www.openn etwor king.org/wp-conte nt/uploa ds/2014/10/
openfl ow-switc h-v1.5.1.pdf, 2015.

Fig. 14  The maximum failure controller at the same time in the net-
work

https://www.opennetworking.org/wp-content/uploads/2014/10/openflow-switch-v1.5.1.pdf
https://www.opennetworking.org/wp-content/uploads/2014/10/openflow-switch-v1.5.1.pdf


388 Y. Tzeng, C.-A. Shen 

1 3

 20. Yao, L., Hong, P. & Zhou, W. (2014). Evaluating the controller 
capacity in software defined networking. In 2014 23rd Interna-
tional Conference on Computer Communication and Networks 
(ICCCN), Shanghai (pp. 1–6).

 21. Rahimi, R. et al. (2016) A high-performance OpenFlow software 
switch. In 2016 IEEE 17th International Conference on High Per-
formance Switching and Routing (HPSR), Yokohama (pp. 93–99).

 22. Knight, S., Nguyen, H. X., Falkner, N., Bowden, R., & Roughan, 
M. (2011). The internet topology zoo. IEEE Journal on Selected 
Areas in Communications, 29(9), 1765–1775.

 23. Internet2 Open science, scholarship and services exchange. 
[Online]. Available: http://www.inter net2.edu/netwo rk/ose/

 24. Papoulis, A. (1964). The meaning of probability. IEEE Transac-
tions on Education, E-7(2–3), 45–51.

 25. Beineke, L. W., Oellermann, O. R., & Pippert, R. E. (2002). The 
average connectivity of a graph. Discrete Mathematics, 252(1), 
31–45.

 26. Al-Tam, F., & Correia, N. (2019). On load balancing via switch 
migration in software-defined networking. IEEE Access, 7, 
95998–96010.

http://www.internet2.edu/network/ose/

	An integrated multi-controller management framework for highly reliable software defined networking
	Abstract
	1 Introduction
	2 Background and related work
	3 The proposed framework for multi-controller
	3.1 The overview of the proposed framework
	3.2 The network planning phase
	3.2.1 Controller quantity estimation
	3.2.2 Controller placement
	3.2.3 Switch assignment
	3.2.4 The runtime maintenance phase


	4 Evaluation of the proposed framework
	4.1 The evaluation of networking planning
	4.2 The evaluation of runtime maintenance

	5 Conclusion
	References




