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Abstract
In this paper, we analyze the impact of delaying delay-tolerant calls under certain conditions in cellular networks. We propose
to queue the call if the user agrees when the terminal has bad radio conditions and the system is loaded. The call is served as
soon as radio conditions become good or the current load goes below a given threshold. We model the system as a continuous-
time Markov chain, which allows us to compute the blocking probability, the mean waiting time and the mean service time.
Numerical results show that when the proportion of users with delay tolerance is 20%, the system can bear 16% more calls
with the same blocking probability, and 113% more calls if 80% of users are delay tolerant.

Keywords Smart phone · Delay tolerant users · Cellular networks

1 Introduction

With the explosive growth of smart phones and tablets,
mobile data traffic has been approximately doubling each
year in the early 2010s. According to the last Ericsson report
[1], themobile data traffic grew around 54% between the first
quarter of 2017 and the first quarter of 2018. Such a traffic
growth raises big challenges to cellular networks. In dense
areas, it is quite necessary to deploy heterogeneous networks
[2–4] or to combine cellular and WiFi technologies [7,8] to
cope with traffic growth.

A lot of applications can tolerate a delay (e.g., non-urgent
file download, pull services). The delay tolerance feature has
already been exploited in [5–10]. In [5], the trade-off between
delaying a service and minimizing the energy consumption
is studied. In [6], the authors propose to combine the use of
neighbor terminals (crowd computing approach) and mobil-
ity prediction to limit the delay before getting the service.
In [7], a model is proposed to predict WiFi connectivity and
offload cellular networks by steering delay-tolerant data onto
WiFi. In [8], the authors propose an integrated architecture to
migrate data traffic from cellular networks to WiFi networks
and quantify the number ofWiFi access points (APs) required
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for a city-wideWiFi offloading. The performance of offload-
ing in [7,8] is clearly closely related to the WiFi availability,
which is better in urban than in rural environments. In [9], the
authors study how to select a number of key locations in cel-
lular networks to upgrade capacity, and shift delay-tolerant
traffic to them. In [10], the authors investigate solutions for
network-controlledWiFi offloading in Long Term Evolution
(LTE) cellular networks when performance needs exceed the
capacity of the LTE.

Both the capital and the operational expenses that are
required for the deployment of WiFi or LTE small cells are
significant. In rural environments, such additional expenses
can be prohibitive, especially in developing countries where
the monthly subscription fee should be kept as low as possi-
ble. Also in some cases, deploying micro-cells is technically
difficult because of the lack of energy sources.

Data traffic generally exhibits some degrees of hetero-
geneity in both the time and space domains. It is well known
that the dimensioning of network resource is done to cope
with the traffic conditions for peak hours in the day or even
for peak periods in one given day of the week. The average
usage of network resource is thus generally very low.

Our objective is to analyze the capacity increase of cellular
networks by exploiting user delay tolerance without deploy-
ing new base stations or access points andwithout adding any
resource. The capacity is defined in this paper as the max-
imum traffic arrival rate for which the blocking probability
of the system is below a target [11]. In [12], we proposed
an architecture based on a specific server in the network
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and a mobile application that queues non-urgent download
requests and determines the best time to trigger a download
that is queued. We also presented a proof of concept. In [13],
we analyze the impact of user delay tolerance on cellular
networks but from the energy efficiency perspective. In this
paper, we focus on the capacity increase that is possible by
delaying the service of some users in the network.

In [14], the authors consider different priority schemes
and the model they propose could be used for delay-tolerant
systems. However, they assume the service rate is the same
for all users in a cell. In contrast, our model considers two
zones (inner and outer) with different rates, through a simple
but appropriate model to take into account the effect of the
radio conditions. In [15], the authors propose a call admission
scheme that uses mobility prediction. The proposal shows
good performance but it applies to voice calls as it consid-
ers a given number of channels and a loss system (a call is
rejected if all channels are busy). Here, we consider data traf-
fic with different scheduling policies and a queuing system.
We propose an analytical model, that is of course a simplified
view of reality, but is based on the widely accepted assump-
tion of a regular hexagonal network, for which we build a
Markov chain. Unlike simulation models, the way to com-
pute all variables is explained, which ensures reproducibility.

We consider that the load of cells is mainly due to the data
traffic, and focus on interactive services (for example, web
browsing). Each user alternatively downloads some content
and reads this content. We refer to the download request as
a packet call. We assume that a call admission control is
activated by the operator to guarantee a minimum bit rate.
Hence, a packet call can be blocked in case of overload. Of
course, enough frequency bandwidth should be allocated to
the cell to ensure a low blocking probability (typically 0.1%
in normal conditions).

In this paper, we refer to a user with delay-tolerant data
traffic as a Delay Tolerant User (DTU). Users whose calls
cannot tolerate delays are referred to as non-DTUs. Note
that a user can be a DTU for a service and a non-DTU for
another service. We propose to queue the call of a DTU,
upon its arrival, if the user has bad radio conditions and the
current load of the system is above a given threshold. The
call gets served when either the radio conditions improve or
the load goes below the threshold. We analyze the impact
of DTUs on the capacity of cellular networks. Of course,
delaying the service is not possible in all environments and
all circumstances. However, due to its simplicity, it is worth
studying such a solution in constrained networks (e.g., cost
constraints, lack of energy, etc.).

The remainder of the paper is organized as follows. Sec-
tion 2 presents the system model considered in this paper,
including the mobility model, the traffic model, the schedul-
ing strategies and the admission control policy. In Sect. 3,
a Markov chain is defined for that system, and the block-

Fig. 1 Inner and outer zones of a cell

ing probability, mean service time and mean waiting time
of DTUs are derived. Numerical results are given in Sect. 4.
Finally, Sect. 5 concludes the paper.

2 Systemmodel

We consider a regular hexagonal cellular network with the
Okumura–Hata propagation model [16]: the received power
at the terminal is proportional to 1/xη where x is the dis-
tance to the base station and η is an environment-dependent
parameter (typically η = 3.3). The same frequency carrier
is assumed to be used in all cells (the reuse cluster size is
1). The SINR (Signal-to-Interference-and-Noise Ratio) thus
depends only on x (see Sect. 2.2.1).

Each cell is divided into two zones: the inner zone inwhich
users have a SINRhigher than a threshold and can have a high
transmission rate, the outer zone in which the SINR is low
and hence the rate is reduced. In a simple hexagonal cellular
network (see Fig. 1), the inner zone is a disk of radius rg (we
use subscript g for “good” instead of i for inner to avoid any
confusion with index i , which will be used in the Markov
chain) and the outer zone is the complementary of the disk
in the hexagon of radius r . In order to have a system simple
enough to make the analysis, we consider that each mobile
in the inner (resp. outer) zone gets the same rate as the one
at distance rg (resp. r ).

The inner zone is a disk whose area is

Sg = πr2g . (1)

The outer zone is defined by the part of the hexagonal cell
that is not in the inner zone. Let So be the area of the outer
zone. Thus,

So = 3
√
3

2
r2 − πr2g . (2)
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Fig. 2 Continuous-time Markov chain for the user mobility model

2.1 Mobility model

We assume the residence time of a user in any type of zone
(inner or outer) is exponentially distributed and that mobility
is a memory-less process [17]. When a user is in the outer
zone, he/she can go either in the inner zone or in a neighbor
cell. In the latter case, he/she is necessarily in the outer zone
of the neighbour cell. The user can go an unlimited number
of times in the inner zone and then go back to the outer zone.
The network is assumed to be regular and we thus consider
only two cells; the current cell and a neighbor cell (which
becomes the current cell as soon as the user enters it, from
the user point of view). The transition rate from the outer zone
to the inner zone (resp. to the neighbor cell) is denoted by α

(resp. δ). The transition rate from the inner zone to the outer
zone is denoted by β. The mobility of each user is modeled
by a continuous-time Markov chain as shown in Fig. 2.

Let qg and qo be the steady state probability to be in the
inner and the outer zone, respectively. We have

{
qg = α

α+β

qo = β
α+β

(3)

We consider an underlying random walk mobility model,
where the distribution of the speed is uniform in all the
directions. In that case [19,20], it is possible to compute the
average number of terminals dN

dT that cross (outwards) the
perimeter L of an area S per time unit:

dN

dT
= vρT L

π
(4)

where ρT is the density of terminals and v is the average
speed. But with a Markovian model, that average number of
outgoing crossings should equal the individual outgoing rate
ω of the area multiplied by the number ρT S of terminals in
the area: dN

dT = ωρT S. Combining with (4) and denoting by

T the average dwelling time in the area, we get:

ω = 1

T
= vL

π S
. (5)

Note that (5) is very general and can be applied to any type of
shape. In Sect. 2.1.1, we use it both for the inner zone (circle)
and the global cell (hexagon).

Finally, since all users have the same mobility pattern,
qg is also the proportion of users in the inner zone. If the
repartition of users over space is uniform, the steady state
probability is clearly proportional to the area of each zone.
This implies that

α

β
= Sg

So
. (6)

2.1.1 Computation of the transition rates of the mobility
Markov chain

The inner zone is a circle and thus, L = 2πrg . By using (5)
for S = Sg and β = ω, we get:

β = 2

π

v

rg
. (7)

Consider a terminal that enters a cell. It is necessarily in
the outer zone, where it stays on average 1/(α + δ) seconds.
Then it leaves the cell with probability δ/(α + δ) or goes in
the inner zone with probability α/(α+δ). In the latter case it
can go again in the inner zone then in the outer zone several
times before leaving the cell. The dwell time in the inner
zone is 1/β. Let Tc be the average cell dwell time. Using the
renewal theory we can write

Tc = 1

α + δ
+ α

α + δ

(
1

β
+ Tc

)
, (8)

yielding

Tc = 1

δ

(
α

β
+ 1

)
. (9)

The cell crossing rate is given by 1/Tc and can be com-
putedwith (5). As for an hexagon S = 3

√
3r2/2 and L = 6r ,

we have:

1

Tc
= 4

π
√
3

v

r
. (10)

Given rg , r , v, it is possible to compute α, β and δ very
simply by solving a system of equations:
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⎧⎪⎪⎪⎨
⎪⎪⎪⎩

β = 2
π

v
rg

α
β

= Sg
So

δ 1
1+ α

β
= 4

π
√
3

v
r .

(11)

After a few elementary steps, we get

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

α =
2
π

v
rg

3
√
3

2π
r2

r2g
−1

β = 2
π

v
rg

δ =
6

π2
v r
r2g

3
√
3

2π

(
r
rg

)2−1
.

(12)

2.2 Traffic model

2.2.1 Rate for each zone

In this subsection we compute the minimum SINR for each
zone and then deduce the achievable rate. We assume that
noise is negligible compared to interference; the SINR is
thus equal to the Signal to Interference Ratio (SIR). In
Kelif et al. [18] propose to compute the interference by con-
sidering a continuum of interference base stations. With this
approach, they got a closed formula of the SIR f (x) as a
function of the distance x between the terminal and the base
station in an hexagonal network. The formula can be written
as:

f (x) = 4π

√
3

3

1

η − 2

(
x√
3r

)η

(
1 − x√

3r

)η−2 (13)

where η is the propagation exponent and r is the cell radius.
The rate g(x) achievable at distance x is computed accord-

ing to the Shannon formula:

g(x) = B log2 (1 + f (x)) (14)

where B is the bandwidth used for the transmission. In the
inner zone, the SIR is equal to or higher than f (rg). We
consider that the rate in the whole zone is given by g(rg). The
maximum rate R is given when there is only one terminal in
the inner zone (and none in the outer zone). In that case, B
is the system bandwidth. We thus have:

R = g
(
rg

) = B log2

⎛
⎜⎝1 + 4π

√
3

3(η − 2)

(
rg√
3r

)η

(
1 − rg√

3r

)η−2

⎞
⎟⎠ .

(15)

Similarly, the rate for one terminal in the outer zone (and
no terminal in the inner zone) is given by g(r). Let χ be the
ratio between the rates in the outer zone and in the inner zone
(we have 0 < χ < 1):

χ = g(r)

g
(
rg

) =
log2

(
1 + 4π

√
3

3(η−2)

(
1√
3

)η

(
1− 1√

3

)η−2

)

log2

(
1 + 4π

√
3

3(η−2)

(
rg√
3r

)η

(
1− rg√

3r

)η−2

) . (16)

2.2.2 Practical considerations

In the model, the position of each mobile is known and the
rate is a decreasing function of the distance between the ter-
minal and the base station. The two bit-rate values are linked
to geographical zones. In a real network, due to propagation
phenomena (shadowing, fading), two terminals at the same
distance can have different bit rates. Hence, the criterion to
decide whether a DTU should be queued or not would no
longer be based on the distance but on an SINR threshold.
Considering these propagation phenomena is out of the scope
of the paper.

2.2.3 Source model

As explained in Sect. 1, data services are modeled with trans-
mission phases triggered by packet calls and reading periods
[21]. Call arrivals are assumed to follow a Poisson process
with rate λ. Each data transmission phase is equivalent to the
transfer of an average amount of data (i.e., a file) equal to F
bits. That file can be a video, a web page, etc. The size of the
file is modeled as an exponential random variable.

2.3 Scheduling strategies

The transmission rate needs to be shared among all users.We
adopt two schedulers as proposed in [22]: equal throughput
(ET) scheduler and round robin (RR) scheduler. In this paper,
we always use subscript i and j to denote the number of
users being served in the inner zone and in the outer zone,
respectively. We denote by Rg,i, j and Ro,i, j the average rate
of a user in the inner zone and in the outer zone, respectively,
when i users in the inner zone and j in the outer zone are
served. Note that all users in the same zone have the same
bit rate.
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2.3.1 Equal throughput scheduler (ET)

An ET scheduler allocates the same rate to all users. It can be
seen as a round robin scheduler where one bit is transmitted
to each user. The time to transmit one bit to a user in the inner
zone and in the outer zone is 1/R and 1/(χR), respectively.
The total time for a round (one bit to each user) is thus i/R+
j/(χR). The rate, which is the same for all users, is therefore:

Rg,i, j = Ro,i, j = R

i + j
χ

. (17)

Let μg,i, j and μo,i, j be the service rate of a user in the
inner zone and in the outer zone, respectively. With ET, we
have

μg,i, j = μo,i, j = R

F(i + j
χ
)
. (18)

2.3.2 Round Robin scheduler (RR)

An RR scheduler allocates the same airtime to each user (but
not the same rate). Thus,

{
Rg,i, j = R

i+ j

Ro,i, j = χR
i+ j ,

(19)

giving the service rates

{
μg,i, j = R

F(i+ j)

μo,i, j = χR
F(i+ j) .

(20)

2.3.3 Load indicator

The resourcemanagement strategy is based on the global load
of the cell. In this report, as already proposed in [11], we use
the harmonic mean Rh,i, j of the user rates as an indicator
of the load. With ET, all users have the same rate and the
harmonic mean is thus R

i+ j/χ . With RR, i terminals get R
i+ j

and j terminals get χR
i+ j . By definition of the harmonic mean,

we have:

Rh,i, j = i + j
i

Rg,i, j
+ j

Ro,i, j

(21)

By combining (19) and (21), we easily get

Rh,i, j = R

i + j
χ

. (22)

Note that the harmonic rate is givenby (22) for bothETand
RR, i.e., the load indicator does not depend on the scheduling
policy.

2.4 Admission control

Wepropose and analyze the following admission control pol-
icy:

– in low load conditions, all packet calls are accepted and
served immediately;

– in medium load conditions, packet calls made by DTUs
in the outer zone are queued (within the queue length
limit) and other packet calls are served immediately;

– in high load conditions, all calls are blocked.

More precisely, we define a maximum length KT
b of the

queue, and two thresholds RT
q and RT

b (with RT
q > RT

b )
on the harmonic rate on which the admission decision will
be based. Denoting by k the size of the queue at a given time,
we propose that

– when Rh,i, j > RT
q , all packet calls are served immedi-

ately;
– when RT

b < Rh,i, j ≤ RT
q , a call made by a DTU in the

outer zone is queued if k < KT
b and is blocked otherwise,

while other calls are served (including calls by DTUs in
the inner zone);

– when Rh,i, j ≤ RT
b , all calls are blocked.

That policy is illustrated in Fig. 3, where we use 1/Rh,i, j on
the horizontal axis to have an indicator that increases with
the load. Note that the comparison with a threshold is a linear
function of i and j . In other words, Rh,i, j > RT

q is equivalent
to i + j/χ < R/RT

q . Similar expressions can be found for
all tests.

Mobility events can happen at any time. The mobility
events consist of:

– movement between the inner zone and the outer zone,
– handover of a queued call, indicating that a user with a
call in the queue of a neighbor cell is entering the current
cell,

– handover of an active call, indicating that a user in data
transmission phase in a neighbor cell is entering the cur-
rent cell.

In order to provide a good quality of service, the data trans-
mission phase should not be interrupted. Hence, in the latter
case, the call is accepted regardless of the load. Furthermore,
a user who is served and who is switching from the inner to
the outer zone (or vice-versa) is always kept in the system. If
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Fig. 3 Illustration of the studied
admission control policy

the current load is below the threshold, a queued call from a
neighbor cell is immediately served. In other cases, it is put in
the queue of the current cell, regardless the current length of
the queue. When a queued user enters the inner zone, he/she
is immediately served.

For convenience, we summarize the main notations in
Table 1.

3 Analytical method

3.1 Markov chain

The system is modeled by a continuous-time Markov chain
with states (i, j, k), representing the respective number of
calls that are served in the inner zone, served in the outer
zone, and queued. This chain has an infinite number of
states. In order to allow numerical processing, we keep the
Markov chain with a finite number of states. We define Imax,
Jmax and Kmax as the upper bounds for i , j and k, respec-
tively. We denote by Ω the set of possible values for (i, j, k)
(Ω ⊂ [0, Imax]×[0, Jmax]×[0, Kmax]). Considering a chain
with a finite number of states slightly modifies the behav-
ior of the system. For example, according to the admission
control policy, handovers are always accepted and a data
transmission phase is never interrupted, while for our trun-
cated Markov chain, a handover can be blocked when the
system is in state (i, Jmax, k). However, Imax, Jmax and Kmax

are chosen large enough to make such blocking probabilities
negligible (typically 10−15).

Due to the complexity of theMarkov chain, it is not possi-
ble to represent it clearly in a figure. However, the transitions
from state (i, j, k) to other states are shown in Table 2. For
the sake of clarity, we consider a typical state (i, j, k), where
0 < i < Imax, 0 < j < Jmax, 0 < k < Kmax. For the
extreme states, such as i = 0 or j = 0 or k = 0, the transi-
tion rates can also be easily derived. Table 2 is valid for ET
and RR: variables μg,i, j and μo,i, j are chosen according to
the scheduler selected by using either (18) or (20).

The infinitesimal generator Q of the Markov Chain is
easily obtained from the transition rates. The stationary prob-
ability vector ` = (θi, j,k) is computed from `Q = 0 and∑

(i, j,k) θi, j,k = 1, which can be solved by a classical
method.

3.2 Arrival rates of handovers of active calls and
queued calls

Let λH be the arrival rate of handovers of active calls and λW

the arrival rate of handovers of queued calls from DTUs. In
homogeneous networks (all cells are equivalent), the depar-
ture rate of users is equal to the arrival rate. Therefore, we
have

λH =
∑

(i, j,k)∈Ω

jδθi, j,k (23)

λW =
∑

(i, j,k)∈Ω

kδθi, j,k (24)

Solving the Markov chain involves solving some fixed-
point system (the steady-state probabilities dependonλH and
λW , that depend on the steady-state probabilities). We solve
that problem numerically, using Algorithm 1, i.e., iterating
those dependencies until variations are below a threshold.We
know from simulation process that it usually requires from 4
to 9 iterations to solve the Markov chain.

Algorithm 1 Iteration algorithm for solving the Markov
chain
Initialization λ0H = λ

Tc R/F , λ0W = 0

λnewH ← λ0H , λnewW ← λ0W
repeat
Solve the Markov chain to obtain `
λoldH ← λnewH , λoldW ← λnewW
Compute λnewH by (23) and λnewW by (24)

until |λnewH − λoldH | < ε and |λnewW − λoldW | < ε
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Table 1 Main notations

Variable Meaning

B Bandwidth of the system

F Average size of files

i Number of users being served in the inner zone

Imax Maximum number of users served in the inner zone

j Number of Users being served in the outer zone

Jmax Maximum number of users served in the outer zone

k Number of Users in the queue (only DTUs can be queued)

K Mean number of users in the queue (only DTU)

KT
b Threshold length of queue to block new DTU calls in the outer zone

Kmax Maximum length of queue for handovers of queued DTUs

Nc Mean number of users being served in a cell

Pb Blocking probability of packet calls

Pb,1 Blocking probability of packet calls for inner and non-DTU outer users

Pb,2 Blocking probability of packet calls for DTU outer users

R Maximum bit rate for a user in the inner zone

Rg,i, j Inner user bit rate when i and j users are being served in the inner and outer zones, respectively

Rh,i, j Harmonic mean rate when i and j users are being served in the inner and outer zones, respectively

Ro,i, j Outer user bit rate when i and j users are being served in the inner and outer zones, respectively

RT
b Threshold rate for blocking

RT
q Threshold rate for queuing DTUs in the outer zone

r Radius of each cell

rg Radius of the inner zone

Tc Mean service time in the same cell (waiting time not included)

Ts Mean service time in the system (waiting time not included)

v Average speed of users

Wc Mean waiting time of queued DTUs in a given cell

Ws Mean waiting time of queued DTUs in the system

α Average transition rate from the outer zone to the inner zone

β Average transition rate from the inner zone to the outer zone

δ Average transition rate from the outer zone to neighbor cells

η Propagation exponent

θi, j,k Steady state probability to be in state (i, j, k)

λ Arrival rate of new calls in the cell

λH Arrival rate of handovers of active calls

λW Arrival rate of handovers of queued calls

χ The ratio between the rate in the outer zone and in the inner zone

ρ Proportion of DTUs

ω Individual outgoing rate due to mobility for any shape

In the remainder of this section, we explain how we use
the obtained steady-state distribution to derive performance
measures.

3.3 Blocking probability

Anewcall from the inner zoneor fromanon-DTUin theouter
zone is blocked if Rh,i, j ≤ RT

b , so the blocking probability
for such users is

Pb,1 =
∑

(i, j,k)∈Ω1
θi, j,k (25)

where Ω1 = {(i, j, k)|i + j/χ ≥ R/RT
b , 0 ≤ k ≤ Kmax}.

A new call from a DTU in the outer zone is blocked if
Rh,i, j ≤ RT

b or if RT
b < Rh,i, j ≤ RT

q and k ≥ KT
b . The

blocking probability is given as

Pb,2 =
∑

(i, j,k)∈Ω2
θi, j,k (26)
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Table 2 Transitions from state (i, j, k)

Event Condition Final state Transition rate Comments

A new call is made in the inner zone If i + j/χ < R/RT
b (i + 1, j, k) λα

α+β
Call served

A new call is made by a non-DTU
in the outer zone

If i + j/χ < R/RT
b (i, j + 1, k) λβ

α+β
(1 − ρ) Call served

A new call is made by a DTU in the
outer zone

If i + j/χ < R/RT
q (i, j + 1, k) λβ

α+β
ρ Call served

Else if k < KT
b (i, j, k + 1) λβ

α+β
ρ Call queued

A call is finished in the inner zone If i − 1 + j/χ < R/RT
q (i − 1, j + 1, k − 1) iμg,i, j A queued call served

Else (i − 1, j, k) iμg,i, j –

A call is finished in the outer zone If i + ( j − 1)/χ < R/RT
q (i, j, k − 1) jμo,i, j A queued call served

Else (i, j − 1, k) jμo,i, j –

A user with an active call moves
from the inner to the outer zone

If j < Jmax (i − 1, j + 1, k) iβ –

Else (i − 1, j, k) iβ Call interruption

A user with an active call moves
from the outer zone to the inner zone

If i + ( j − 1)/χ < R/RT
q (i + 1, j, k − 1) jα A queued call served

Else if i < Imax (i + 1, j − 1, k) jα –

Else (i, j − 1, k) jα Call interruptiona

A user with an active call moves
from the outer zone to a neighbor
cell

If i + ( j − 1)/χ < R/RT
q (i, j, k − 1) jδ A queued call served

Else (i, j − 1, k) jδ –

A user with a queued call moves
from the outer zone to the inner zone

If i < Imax (i + 1, j, k − 1) kα A queued call served

Else (i, j, k − 1) kα Call interruptiona

A user with a queued call moves
from the outer zone to a neighbor
cell

(i, j, k − 1) kδ –

A user with an active call is entering
the cell

If j < Jmax (i, j + 1, k) λH Call served

A user with a queued call is entering
the cell

If i + j/χ < R/RT
q (i, j + 1, k) λW Call served

Else if k < Kmax (i, j, k + 1) λW Call queued

a Imax, Jmax or Kmax are large enough to ensure that the probability of such an event is negligible for the considered loads

where Ω2 = {(i, j, k)|i + j/χ ≥ R/RT
b , 0 ≤ k ≤

Kmax or RT
q ≤ i + j/χ < R/RT

b , KT
b ≤ k ≤ Kmax}.

As users are assumed to be uniformly distributed, the over-
all blocking probability is

Pb = (1 − ρ
β

α + β
)Pb,1 + ρ

β

α + β
Pb,2. (27)

We also compute the probability Ps that a new call from
a DTU in the outer zone is served immediately (i.e., not
queued):

Ps =
∑

(i, j,k)∈Ωs
θi, j,k (28)

where Ωs = {(i, j, k)|i + j/χ < R/RT
q , 0 ≤ k ≤ Kmax}.

3.4 Mean service time of users in the system

Another performance metric we are interested in is the mean
service time of users in the system, which includes only the
transmission time when the users are served.

Let Nc be the mean number of users being served in one
cell. We have

Nc =
∑

(i, j,k)∈Ω
(i + j) θi, j,k . (29)

According to Little’s law, the mean service time Tc in a given
cell is

Tc = Nc/λec (30)

where λec = λ(1 − Pb) + λH is the arrival rate of calls1.
Several handovers can happen during the data transmis-

sion phase. The mean service time Ts in the system is thus
different from the service time Tc in a given cell. We have

Ts =
∞∑
n=0

(n + 1)pnH (1 − pH )Tc = Tc
1 − pH

(31)

1 The blocking probability of handover is not taken into account since
it is negligible.
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where pH = λH/(λ+λH ) is the handover probability during
the transmission phase.

3.5 Meanwaiting time of queued DTUs in the system

We use a similar approach to compute the mean waiting time
of queued DTUs in the system. We first compute the equiv-
alent arrival rate λeq of calls for the queue in the outer zone
as

λeq = λρ
β

α + β
(1 − Ps − Pb,2) + λW (1 − Ps) (32)

By using Little’s law, we obtain the mean waiting time of
queued DTUs in the considered cell as

Wc = K

λeq
(33)

where K denotes the mean number of users in the queue and
is given by

K =
∑

(i, j,k)∈Ω

k θi, j,k (34)

We thus deduce the mean waiting time Ws of queued DTUs
in the system:

Ws =
∞∑
n=0

{
(n + 1)[pW (1 − Ps)]n(1 − pW )Wc

+ n[pW (1 − Ps)]n−1 pW PsWc

}
= Wc

1 − pW (1 − Ps)
(35)

where pW = λW /(λW +λρ
β

α+β
) is the handover probability

of queued DTUs.

4 Numerical results

The parameter values are listed in Table 3. The cell radius is
0.5 km and the inner-zone radius is 0.3215 km. This gives a
proportion of users in the inner zone α/(α + β) = 0.5. The
propagation exponent is assumed to be 3.3 and the bandwidth
is 10 MHz. With (15) and (16), this gives a maximum speed
rate R = 16Mbit/s and a ratio between the bit rate in the outer
zone and the rate in the inner zone χ = 0.25. In addition, λ
is chosen from 0.5 to 1.6 with interval 0.1.

Table 3 Parameter values

Symbol Value Symbol Value

B 10 MHz η 3.3

v 1 m/s ρ 0.2, 0.5, 0.8

r 0.5 km Imax 30

rg 0.3215 km Jmax 20

F 4 Mbit Kmax 25

RT
q 4 Mbit/s KT

b 10, 15, 20

RT
b 0.75 Mbit/s λ 0.5–1.6 call/s

Fig. 4 Blocking probability of RR and ET schedulers under ρ =
0.2, KT

b = 10, 15, 20

4.1 Blocking probability

4.1.1 Blocking probability against packet call arrival rate

The blocking probability against the packet call arrival rate
is shown respectively in Figs. 4 and 5 for ρ = 0.2 and 0.5.
From both figures, we can see that the blocking probability
for the ET scheduler is very close to the one for the RR sched-
uler. In addition, when ρ is small, the blocking probability is
insensitive to the increase of queue length KT

b . Only when ρ

is larger, the impact of KT
b is obvious, see Fig. 6. Comparing

Figs. 4, 5 and 6, we can find that the blocking probability
is lower if KT

b is larger but having a large queue provides a
noticeable gain only if the proportion of DTUs is high and at
medium load (0.8 ≤ λ ≤ 1.4), see Fig. 6.

4.1.2 Blocking probability against velocity of users

In Sect. 4.1.1, we fix the velocity of users to be 1 m/s and
obtain the results of blocking probability against packet call
arrival rate under different ρ. In this section, we aim to obtain
the impact of users’ velocity on blocking probability and set
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Fig. 5 Blocking probability of RR and ET schedulers under ρ =
0.5, KT

b = 10, 15, 20

Fig. 6 Blocking probability of RR and ET schedulers under ρ =
0.8, KT

b = 10, 15, 20

ρ = 0.5, KT
b = 20, v = 0.1, 1, 5, 10 m/s respectively for

both RR and ET schedulers.
The blocking probability under different velocities of

users for the RR scheduler is shown in Fig. 7.We can see that
the blocking probability decreases with the increase of users’
velocity, but the gap is not very large. Similarly, the blocking
probability for theET scheduler is given in Fig. 8, fromwhich
it can be seen that the blocking probability decreases little
with the increase of users’ velocity. From both figures, we
know that increasing users’ velocity can relatively decrease
the blocking probability, but the impact of users’ velocity on
blocking probability is very small.

Fig. 7 Blocking probability of RR scheduler under different velocities
of users

Fig. 8 Blocking probability of ET scheduler under different velocities
of users

4.1.3 Capacity increase

The results of blocking probability for the RR scheduler
under KT

b = 20 and ρ = 0.2, 0.5, 0.8 are shown in Fig. 9.
We can see that when KT

b is fixed, the blocking probabil-
ity decreases with the increase of ρ, as could be expected:
having more delay-tolerant users allows more flexibility, and
less blockings thanks to our queuing policy.

From Fig. 9, we compute the maximum arrival rates
for different blocking probability targets, which represent
medium to high load conditions (0.1%, 0.5%, 1%), and the
relative capacity increase brought by having DTUs is shown
in Table 4. The capacity increase is around 16% for ρ = 0.2,
which is moderate, but the capacity can increase by 113%
when ρ = 0.8 and Pb = 0.1%.
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Fig. 9 Blocking probability of RR scheduler under ρ =
0.2, 0.5, 0.8, KT

b = 20

Table 4 Capacity increase for different blocking probability targets

Pb (%) ρ = 0.2 (%) ρ = 0.5 (%) ρ = 0.8 (%)

0.1 16.9 60.3 112.9

0.5 16.4 57.3 82.8

1 16.0 54.1 67.8

Table 5 Meanwaiting time of queuedDTUs for theRR scheduler under
peak load in seconds

Pb (%) ρ = 0.2 ρ = 0.5 ρ = 0.8

0.1 2.614 3.579 7.121

0.5 3.934 7.095 10.633

1 5.032 11.134 12.949

4.2 Mean waiting time of queued DTUs

The mean waiting time of queued DTUs under peak load for
the RR scheduler is shown in Table 5 for different blocking
probability targets. Here v = 1 m/s, KT

b = 20. In all cases,
the waiting time is less than 13 s, which is quite acceptable.

We are also interested in the impact of users’ velocity
on the mean waiting time of queued DTUs. We thus set
ρ = 0.5, KT

b = 20, and v = 0.1, 1, 5, 10 m/s to show the
results for the RR and ET schedulers as in Tables 6 and 7
respectively. From both tables, we can see that the mean
waiting time of queued DTUs decreases with the increase of
users’ velocity. This is because when the velocity of DTUs
increases, the DTUs have high probability to go from the
outer zone to the inner zone and the probability to be served
immediately also increases, leading to the decrease of mean
waiting time. In addition, comparing the third columns of
Tables 5 and 6, we can see that they are consistent.

Table 6 Mean waiting time of queued DTUs for the RR scheduler with
different users’ velocities under peak load in seconds

Pb (%) v = 0.1 v = 1 v = 5 v = 10

0.1 3.711 3.579 3.142 2.768

0.5 7.681 7.095 5.494 4.484

1 12.068 11.134 7.988 6.098

Table 7 Mean waiting time of queued DTUs for the ET scheduler with
different users’ velocities under peak load in seconds

Pb (%) v = 0.1 v = 1 v = 5 v = 10

0.1 3.261 3.151 2.774 2.446

0.5 6.275 5.820 4.578 3.762

1 9.818 8.915 6.339 4.910

Table 8 Mean service time of users for the RR scheduler under peak
load in seconds

Pb (%) ρ = 0.2 ρ = 0.5 ρ = 0.8 NO DTUs

0.1 1.017 1.048 1.023 1.011

0.5 1.234 1.272 1.081 1.224

1 1.371 1.402 1.099 1.353

Table 9 Mean service time of users for the RR scheduler with different
users’ velocities under peak load in seconds

Pb (%) v = 0.1 v = 1 v = 5 v = 10

0.1 1.048 1.048 1.050 1.051

0.5 1.269 1.272 1.271 1.271

1 1.389 1.402 1.413 1.410

4.3 Mean service time of users

The mean service time of users for the RR scheduler under
peak load is shown inTable 8.Here v = 1m/s, KT

b = 20. The
maximum mean service time under these settings is about
1.4 s and is obtained for ρ = 0.5 and Pb = 1%. As the
mean size of files is 4 Mbit, the average bit rate is 4/1.4 =
2.86 Mbit/s, which is acceptable. Though the mean waiting
time is higher for ρ = 0.8 (compared with ρ = 0.5), the
mean service time is relatively lower.This is a very interesting
benefit of introducing DTUs: by limiting the number of users
in the system who have a low rate, the average rate is higher,
which is beneficial for both the system and users.

To show the impact of users’ velocity on the mean ser-
vice time of users, we set ρ = 0.5, KT

b = 20, and v =
0.1, 1, 5, 10 m/s. The results for the RR and ET schedulers
are shown in Tables 9 and 10 respectively. From both fig-
ures, we can see that the mean service time of users under
different users’ velocities changes slightly, which means that
the impact of users’ velocity on the mean service time is very
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Table 10 Mean service time of users for the ET scheduler with different
users’ velocities under peak load in seconds

Pb (%) v = 0.1 v = 1 v = 5 v = 10

0.1 1.194 1.192 1.185 1.178

0.5 1.532 1.527 1.506 1.488

1 1.737 1.738 1.709 1.680

small. In addition, by comparing the third column of Tables 8
and 9, we can see that they are consistent.

5 Conclusion

In this paper, we have proposed amodel to analyze the benefit
of having DTUs in cellular networks. We divide a cell into
the inner zone where users have a higher SINR and the outer
zone where users have a low SINR. When a packet call is
from a DTU in the outer zone, it is queued if the current load
is above a threshold. When the DTUmoves to the inner zone
or the load is below the threshold, its call is served. We then
analyze the impact of such a policy on the system capacity.
Numerical results show that when 20% of calls are DTUs,
the capacity of cellular networks can increase about 16%,
and when there is 80%DTUs, the capacity can even increase
by 113% without affecting the blocking rate.

We have computed the mean waiting time, which is a first
QoS indicator. However, users are generally sensitive to the
occurrence of long delays. A next step of this work is thus
to compute either the distribution of the waiting time or its
standard deviation to estimate the last decile. Another exten-
sion is to consider an impatience threshold and to serve a
user as soon as the experienced delay is higher than a thresh-
old. Another possible extension of this work is to analyze
the management of DTUs in a system that combines cellular
networks and WiFi.
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