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Abstract
This paper studies the energy efficiency (EE) optimization problem in multiple-user multiple-input–multiple-output hetero-
geneous wireless powered communication network (HWPCN) in which the users in small cells can harvest energy from the
small cell base stations in downlink and use harvested energy for uplink transmission. We consider the joint design problem
of wireless energy transmission and wireless information transmission precoding matrices subject to the transmit power
constraints at each BS and each user. Since the optimization problem under consideration is highly nonlinear non-convex
fractional programming in design variables, it is mathematically challenging to obtain the optimal solutions. To tackle with
this difficulty, we employ the difference of convex programming to obtain the concave lower bound of the achievable sum
rates. Then, we apply the Dinkelbach approach to develop an efficient iterative algorithm in which the convex optimization
problems are solved. Simulation results are provided to investigate the EE of the proposed algorithm in HWPCNs.

Keywords Energy efficiency · MIMO HetNet · WPCN · Precoding design

1 Introduction

In recent years, the novel standards and technologies in the
fifth generation (5G) of wireless networks are expected to
accommodate higher data rate for the excessively increasing
demand of mobile data traffic. One of the key approaches is
the deployment of heterogeneous networks (HetNets) where
various types of base stations (BSs) are deployed to serve
user equipments (UEs) [1,23]. The HetNets can improve the
coverage and throughput of wireless networks, especially for
indoor environments [23]. However, the deployment of var-
ious types of BSs operating in the same frequency band can
increase interference in HetNets which can limit the achiev-
able spectral efficiency (SE). There have been considerable
studies on how to tackle interference issues [8,21]. In [21],
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a weighted minimum mean square error (WMMSE) method
was proposed to cope with interference. The authors in [8]
developed an interference alignment (IA) approach to han-
dle with interference in the uplink transmission of HetNets.
On the other hand, the dense deployment of BSs in the next
generation of wireless commuications can cause the energy
consumption issues.

In the last decade, the energy efficiency (EE) has become
a crucial performance metric and has attracted great interest
in wireless communication designs; see, e.g., [11,19,23] and
references therein. Reference [11] considered EE optimiza-
tion in HetNets by using the block coordinate ascent algo-
rithm. The authors in [19] studied the EE optimization prob-
lem for spectrum-sharing HetNets. The issues of EE opti-
mization for coordinated multi-point (CoMP)-simultaneous
wireless information and power transfer (SWIPT) HetNet
investigated in [23]. Towards green wireless communica-
tions, wireless energy transfer (WET) and energy harvesting
techniques utilizing radio frequency (RF) signals have been
received great attention as an important solution for prolong-
ing battery lifetime of wireless devices without replacing
their batteries. Thanks to WET technologies, the energy-
limited wireless devices can harvest energy from radio
frequency (RF) signals to supply power to their batteries
and extend their lifetime. Two main research directions on
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energy harvesting, namely SWIPT [6,9,17,18,23] and wire-
less powered communication networks (WPCN) [3,4,14,16]
have been studied in various systemconfigurations.However,
the SWIPT systems are confined to downlink transmis-
sion, while the WPCNs consider not only downlink but also
uplink transmission [16]. More specifically, the SWIPT sys-
tems accomplish both the WET and WIT operations at the
same time and frequency while the WPCNs perform each
progression separately over two sequential phases. Particu-
larly, in the first WET phase, a BS broadcasts energy RF
signals to the users over the downlink channels, and the
users harvest the energy to charge their batteries. Then, in
the consecutive uplink WIT phase, the users exploit har-
vested energy stored after the WET phase for transmitting
their information signals to the BS. Thus, the WPCNs were
called harvest-then-transmit (HTT) protocol introduced in
[10]. Over the past few years, theWPCN configurations such
as single-input–single-output (SISO) WPCNs in [10,15],
multiple-input single-output (MISO) WPCNs in [22,25] and
multiple-input–multiple-output (MIMO)WPCNs in [3,4,13,
14,16] have been investigated in the literature. In [10,15], the
authors studied the dynamic time-division multiple access
(TDMA) approach to optimize each time slot formaximizing
the uplink sum achievable throughput. Also, by applying the
dynamicTDMAmethod, the extendedwork toMISOWPCN
in [22] was studied. In [22], the work jointly optimized
the beamforming vectors and time allocation to maximize
sum-rate. Moreover, in MIMO systems, the authors in [15]
proposed an optimization algorithm that jointly optimizes the
downlink energy and uplink information precoding matri-
ces and time allocation for maximizing the uplink sum
throughput of multi-user (MU). Similarly, the authors in
[4] studied the max–min user uplink data rate optimization
problem based on zero-forcing (ZF)-based approach in MU-
MIMO WPCNs. The contributions of spectrum sharing in
WPCNs were presented in [13,15], which considered cogni-
tiveWPCNs (CWPCN).While the former studied a CWPCN
system in the case of single-antenna users, the latter con-
sidered MU MIMO CWPCNs. In addition, the throughput
optimization with imperfect channel state information (CSI)
in MIMO WPCNs was considered in [3].

In this paper, we study jointly precoding designs in which
the downlink WET precoding matrices at small BSs (SBSs),
uplink WIT precoding matrices at UE and WIT at macro
BS (MBS) are designed to maximize the EE of MU MIMO
HWPCNs. Our major contributions are to develop an effi-
cient iterative algorithm to maximize the EE MU MIMO
HWPCNs. It is important to remark that the EEmaximization
in HetNets which is similar to our approach was investigated
in [23]. However, there are several key differences between
the work in [23] and our study. First, the work in [23] stud-
ied the MISO SWIPT model while our work focuses on the
MIMOWPCNmodel. Different from the SWIPT scenario in

which there exists only downlink transmission, the WPCN
model involves both downlink and uplink transmission. Sec-
ond, the work in [23] focused on using zero-forcing to design
the beamformers for theMISO system. In contrast, our paper
focuses on designing of precoding matrices for MU MIMO
HWPCNs by developing the iterative algorithm based on the
difference of two concave functions. It is also noted that the
WPCN models were investigated in [4,16]. However, both
studies in [4,16] considered theMUMIMOsingle-cellmodel
whereas our work focuses on the multi-cell HetNet model.
Noted that as compared to the single cell scenario in which
there exists only inter-user interference, the received signals
in multi-cell HetNet models suffer the additional inter-cell
interference.

The present work will formulate the precoder design as
an optimization problem which aims at maximizing the EE
in MU MIMO HWPCNs subject to power constraints. It
is shown that the resulting EE optimization problems are
non-convex fractional programming and, thus, it is highly
complicated to obtain the optimal solutions. Inspired by the
works of [12], we derive the convave lower bound of the
achievable rate by exploiting the concave property of the
log-det function. Then, we apply the Dinkelbach method to
develop an efficient iterative algorithm. The numerical simu-
lations are provided to verify the convergence of our iterative
algorithm, to evaluate the EE performance of the proposed
EE optimization as compared to those of the SE optimiza-
tion. In addition, we numerically investigate the impact of the
energy harvesting duration on the EE and SE performance
of HWPCNs. Our main contributions can be summarized as
follows:

– We formulate the joint design of the precoders in theMU
MIMO HWPCNs as an optimization problem in which
the EE, defined as the ratio of the sum rates of the small
cell users and macro cell users to the effective power
consumption ismaximized subject to transmit power con-
straints.

– To tackle themathematical challenges in solving the non-
convex fractional optimization, we develop the iterative
algorithm by using the Dinkelbachmethod and optimiza-
tion technique of difference of convex (D.C) functions.

– We provide the numerical results illustrating the conver-
gence of the proposed algorithm and the effectiveness of
the EE maximization as compared to the SE maximiza-
tion.

The remainder of the paper is organized as follows. In
Sect. 2, we introduce the system model of MU MIMO
HWPCNs and, then, formulate the precoding design as an
optimization problem.ThenSect. 3 presents an iterative algo-
rithm to obtain the optimal precoding matrices. Section 4
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provides numerical simulation results. Finally, the conclu-
sions are presented in Sect. 5.

Notation Matrices (vectors) are respectively represented by
boldfaceupper (lower) case letters. I is an identitymatrixwith
appropriate dimension.XH , 〈X〉 and |X| represent theHermi-
tian transposition, trace and determinant of matrix X. X � 0
stands for a positive semidefinite matrix. x ∼ CN (x,Rx)

denotes a complex Gaussian random vector x with mean x
and covariance Rx.

2 Systemmodel and problem formulation

Consider a two-tier HetNet model which consists of L small
cells deployed in the same coverage with a macro cell as
depicted in Fig. 1. Each BS transmits its signals to its
associated users, i.e., there are L + 1 BSs transmitting in
the same frequency band. The MBS denoted by BS0 is
equipped with M0 antennas and serves K0 users. UE k,
for k ∈ K0 = {1, . . . , K0}, in the macro cell denoted by
UEk0 is equipped Nk0 antennas. SBS � denoted by BS�, for
� ∈ L = {1, . . . , L}, is equipped with M� antennas serving
K� users in its coverage. User k in cell � denoted by UEk�

is equipped with Nk�
antennas for k ∈ K� = {1, . . . , K�}.

Note that K0 denotes the set of all users associated with the
MBS while K� for � �= 0 represents the set of all users asso-
ciated with SBS �. The notations for channels and precoding
matrices are presented in Table 1 in which the channel coef-
ficients encompass both small-scale fading and pathloss. We
also assume that the idealCSI is available at theBSs and users
[20]. Assuming that the BSs and UEs are perfectly synchro-
nized [20], we consider two phases of downlink WET and
uplink WIT for the small-cell network while the MBS trans-
mits the information signals to its macro-cell users. Without
loss of generality, the durations ofWET andWIT are normal-
ized by τ and (1− τ), for τ ∈ [0, 1], respectively. It is worth
noting that both conditions of τ = 0 and τ = 1 are referred
to as non-transmission of small cell users, e.g., when τ = 0,
energy transmission time is zero and, thus, small cell users
have no energy for uplink transmission, and when τ = 1, the
uplink transmission duration of small cell users is zero.

2.1 DownlinkWET phase

In this phase, the SBSs convey the energy signals to recharge
the power for the small-cell users while the MBS trans-
mits the information signals to its macro-cell users. Let

sD0,k0 ∈ C
d I
0,k0

×1, sEs,is ∈ C
dE
s,is

×1 be d I
0,k0

and dE
s,is

inde-
pendent data and energy streams which are transmitted from
BS0 to UEk0 and BSs to UEis , respectively. Without loss of

generality, we assume that E

(
sD0,k0

(
sD0,k0

)H
)

= Id I
0,k0

and

Fig. 1 Model of two transmission phases in the MU MIMO HWPCN

E

(
sEs,is

(
sEs,is

)H
)

= IdE
s,is

. BS0 uses the linear precoding

matrices FD
0,k0

to beam the signals towards UEk0 while BS�

uses the precoder matrix FE
�,k�

to beam the energy signals
to UEk�

. Apart from receiving the RF signals from its asso-
ciated SBSs, each small cell user can also receive the RF
signals from the other SBSs and MBS. By ignoring negligi-
ble noise power, the harvested energy at UEk�

can be given
by
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Table 1 Notations Parameters Notations

Downlink channel from BSs to UEk�
HD

k�,s
∈ C

Nk� ×Ms

Uplink channel from UEk�
to BSs HU

s,k�
∈ C

Ms×Nk�

Channel from BSs to BS� Gl,s ∈ C
M�×Ms

Channel from UEk�
to UEs0 Gs0,k�

∈ C
Ns0×Nk�

Energy precoding matrix of BS� for UEk�
FE

�,k�
∈ C

M�×dE
�,k�

Information precoding matrix of BS0 for UEk0 FD
0,k0

∈ C
M0×d I

0,k0

Information precoding matrix of UEk�
for BS� FU

k�,�
∈ C

Nk� ×d I
k�,�

Qk�

(
FE ,FD

)
= τξk�

(
L∑

s=1

Ks∑
i=1

〈
HD

k�,sF
E
s,is

(
HD

k�,sF
E
s,is

)H
〉

+
K0∑
i=1

〈
HD

k�,0F
D
0,i0

(
HD

k�,0F
D
0,i0

)H
〉)

,

� ∈ L, k ∈ K�,

(1)

where ξk�
accounts for the loss of energy conversion and

we have denoted the set of all energy precoding matrices by

FE =
{
FE

�,k�

}
�∈L,k∈K�

for compact notation. Note that the

energy at the small cell users only comes from the energy
harvested in this WET phase and it will be utilized for uplink
transmission in the second phase.

While the SBSs broadcast the energy signals to charge
small-cell users in their coverage, the MBS transmits the
information signals to its UEk0 . The received signal atmacro-
user UEk0 is

yk0 = HD
k0,0F

D
0,k0s

D
0,k0 +

K0∑
i=1,i �=k

HD
k0,0F

D
0,i0s

D
0,i0

+
L∑

s=1

Ks∑
i=1

HD
k0,sF

E
s,is s

E
s,is + nk0 , k ∈ K0 (2)

where nk0 ∼ CN
(
0, σ 2

k0
I
)
is additive white Gaussian noise

at UEk0 . In this paper, it is assumed that interference at the
receiver is treated as noise. Then, the achievable rate of UEk0
in the first phase from (2) is given by

R(1)
k0

(
FD,FE

)
= τ log

∣∣∣∣INk0
+ HD

k0,0F
D
0,k0

(
HD

k0,0F
D
0,k0

)H
Z−1
k0

∣∣∣∣
(3)

where we have defined FD =
{
FD
0,k0

}
k∈K0

and the covari-

ance matrix of interference plus noise at UEk0

Zk0

(
FD,FE

)
=

K0∑
i=1,i �=k

HD
k0,0F

D
0,i0

(
HD

k0,0F
D
0,i0

)H

+
L∑

s=1

Ks∑
i=1

HD
k0,sF

E
s,is

(
HD

k0,sF
E
s,is

)H

+ σ 2
k0INk0

. (4)

2.2 UplinkWIT phase

In second phase, each UEk�
transmits d I

k�,�
independent

data streams denoted by the information signal vector
sUk�,�

to BS�. We also assume that the covariance matrix

E

(
sUk�,�

(
sUk�,�

)H
)

= Id I
k�,�

, meanwhile the MBS keeps

transmitting the information signals to its users.UEk�
uses the

precoding matrix FU
k�,�

to linearly process its signal before
transmitting to its SBS. The received signal at BS� can be
defined by

y� =
K�∑
k=1

HU
�,k�

FU
k�,�

sUk�,�
+

L∑
s=1,s �=�

Ks∑
k=1

HU
�,ksF

U
ks ,ss

U
ks ,s

+
K0∑
k=1

G�,0FD
0,k0s

D
0,k0 + n�, � ∈ L (5)

where n� ∼ CN (
0, σ 2

� I
)
is additive white Gaussian noise at

BS�. By treating interference as noise, the achievable rate of
BS� is given by

R�

(
FD,FU

)

= (1 − τ) log

∣∣∣∣∣∣IM�
+

K�∑
k=1

HU
�,k�

FU
k�,�

(
HU

�,k�
FU
k�,�

)H
J−1
�

∣∣∣∣∣∣
(6)

where we have defined FU =
{
FU
k�,�

}
�∈L,k∈K�

and the

covariance matrix of interference plus noise at BS� as
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J�(FD,FU ) =
L∑

s=1,s �=�

Ks∑
k=1

HU
�,ksF

U
ks ,s

(
HU

�,ksF
U
ks ,s

)H

+
K0∑
k=1

G�,0FD
0,k0

(
G�,0FD

0,k0

)H + σ 2
� IM�

. (7)

With regard tomacro-cell users, the received signals at the
macro-cell users in this phase are distorted by interference
from the uplink signals of small cell users. Thus, the received
signal at UEk0 is

yk0 = HD
k0,0F

D
0,k0s

D
0,k0 +

K0∑
i=1,i �=k

HD
k0,0F

D
0,i0s

D
0,i0

+
L∑

�=1

K�∑
i=1

Gk0,i�F
U
i�,�s

U
i�,� + nk0 , k ∈ K0. (8)

Then the achievable rate of UEk0 in this second phase is given
by

R(2)
k0

(
FD,FU

)

= (1 − τ) log

∣∣∣∣INk0
+ HD

k0,0F
D
0,k0

(
HD

k0,0F
D
0,k0

)H
R−1
k0

∣∣∣∣
(9)

where the covariance matrix of interference plus noise at
UEk0 has been defined as

Rk0

(
τ,FD,FU

)
=

K0∑
i=1,i �=k

HD
k0,0F

D
0,i0

(
HD

k0,0F
D
0,i0

)H

+
L∑

�=1

K�∑
i=1

Gk0,i�F
U
i�,�

(
Gk0,i�F

U
i�,�

)H

+ σ 2
k0INk0

. (10)

To investigate the system EE, it is relevant to compute the
power consumption of the systems. The consumption power
of BS0, BS�, UEk�

is respectively modeled as [23]

P0
(
FD

)
= ζ0

K0∑
k=1

〈
FD
0,k0

(
FD
0,k0

)H
〉
+ PC0 , (11)

P�

(
FE

)
= ζ�

K0∑
k=1

〈
FE

�,k�

(
FE

�,k�

)H
〉
+ PC�

, (12)

and

Pk�

(
FU

)
= ζk�

〈
FU
k�,�

(
FU
k�,�

)H
〉
+ PCk�

, (13)

where ζ0, ζ�, and ζk�
represents the power amplifier drain

inefficiencywhile PC0 , PC�
, PCk�

are circuit power consump-
tion which can be modeled as

PC0 = M0P
BS
ant + Pfix

0 , (14)

PC�
= M�P

BS
ant + Pfix

� , (15)

and

PCk�
= Nk�

PUE
ant + Pfix

k�
(16)

where PBS
ant and PUE

ant are respectively the transmit power of
each antenna at the BS and UE transmitters while Pfix

0 , Pfix
�

and Pfix
k�

are the fixed power consumption at the MBS, SBSs
and UEs, respectively [18,23].

2.3 Problem formulation for precoding designs

The design of interest is to find the optimal precoders to
maximize the network EE subject to the transmit power con-
straints on the BSs and small cell users. The network EE
is defined as the ratio of the achievable sum rate to overall
power consumption [24] and can be formulated as

EE
(
FE ,FD,FU

)

=
∑K0

k=1 R
(1)
k0

(
FD,FE

) + ∑K0
k=1 R

(2)
k0

(
FD,FU

) + ∑L
�=1 R�

(
FD,FU

)
P (

FE ,FD,FU
)

(17)

where P (
FE ,FD,FU

) = τ
∑L

�=1 P�

(
FE

) + P0
(
FD

) +
(1 − τ)

∑L
�=1

∑K�

k=1 Pk�

(
FU

) − ∑L
�=1

∑K�

k=1 Qk�

(
τ,FE ,

FD
)
. Accordingly, the EE optimization problem is mathe-

matically expressed as

max
{FE ,FU ,FD}

EE
(
FE ,FD,FU

)
(18a)

s.t. (1 − τ)
〈
FU
k�,�

(FU
k�,�

)H
〉
≤ Qk�

(
FE ,FD

)
,

∀� ∈ L, ∀k ∈ K�, (18b)

τ

K�∑
k=1

〈
FE

�,k�

(
FE

�,k�

)H
〉

≤ PS�
, ∀� ∈ L, (18c)

(1 − τ)

K0∑
k=1

〈
FD
0,k0

(
FD
0,k0

)H
〉

≤ PS0 , (18d)

where PS0 and PS�
are the transmit power budget at BS0, and

BS�, respectively. Thus, constraint (18b) guarantees that the
small cell users cannot use energy in the WIT phase greater
than energy harvested in the WET phase. Constraints (18c)
and (18d) restrict the transmit power at BSs less than themax-
imumpower budget. It isworth noting that the systemEEwill
highly rely on the duration τ , and, thus we will investigate
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the EE performance for different values of τ in numerical
results.

It can be observed that the objective function (18a) is
highly nonlinear and nonconvex fractional functions in cou-
pling matrix variables. In addition, constraint (18b) is also
nonconvex. Thus, the optimization problem (18) is noncon-
vex and mathematically challenging to solve. In the next
section, we will introduce the approach to efficiently han-
dle problem (18).

3 Proposed algorithm derivation

To facilitate the nonlinearity of the optimization prob-

lem, we define QE
�,k�

= FE
�,k�

(
FE

�,k�

)H � 0, QD
0,k0

=
FD
0,k0

(
FD
0,k0

)H � 0, QU
k�,�

= FU
k�,�

(
FU
k�,�

)H � 0, we

also denote QE =
{
QE

�,k�

}
�∈L,k∈K�

, QD =
{
QD

0,k0

}
k∈K0

,

QU =
{
QU

k�,�

}
�∈L,k∈K�

. Then, the harvested energy in

Eq. (1) can be rewritten as

Qk�

(
QE

)
= τξk�

(
L∑

s=1

Ks∑
i=1

〈
HD

k�,sQ
E
s,is

(
HD

k�,s

)H
〉

+
K0∑
i=1

〈
HD

k�,0Q
E
0,i0

(
HD

k�,0

)H
〉)

.

(19)

The achievable rates of macro-cell users in the two phases of
the downlink are respectively reformulated as

R(1)
k0

(
QD,QE

)
= τ log

∣∣∣∣INk0
+ HD

k0,0Q
D
0,k0

(
HD

k0,0

)H
Z−1
k0

∣∣∣∣
(20)

where

Zk0(Q
D,QE ) =

K0∑
i=1,i �=k

HD
k0,0Q

D
0,i0

+
L∑

s=1

Ks∑
i=1

HD
k0,sQ

E
s,is

(
HD

k0,s

)H + σ 2
k0INk0

,

(21)

and

R(2)
k0

(
QD,QU

)

= (1 − τ) log

∣∣∣∣INk0
+ HD

k0,0Q
D
0,k0

(
HD

k0,0

)H
R−1
k0

∣∣∣∣ (22)

where

Rk0

(
QD,QU

)
=

K0∑
i=1,i �=k

HD
k0,0Q

D
0,i0

(
HD
k0,0

)H

+
L∑

�=1

K�∑
i=1

Gk0,i�Q
U
i�,�

(
Gk0,i�

)H + σ 2
k0
INk0

.

(23)

The achievable rate of small-cell � in the uplink is given by

R�

(
QD,QU

)

= (1 − τ) log

∣∣∣∣∣∣IM�
+

K�∑
k=1

HU
�,k�

QU
k�,�

(
HU

�,k�

)H
J−1
�

∣∣∣∣∣∣
(24)

where

J�

(
QD,QU

)
=

L∑
s=1,s �=�

Ks∑
k=1

HU
�,ksQ

U
ks ,s

(
HU

�,ks

)H

+
K0∑
k=1

G�,0QD
0,k0

(
G�,0

)H + σ 2
� IM�

.

(25)

On the other hand, the consumption power of BSs and
SUEs (11), (12), (13) also can be rewritten respectively as

P0
(
QD

)
= ζ0

K0∑
k=1

〈
QD

0,k0

〉
+ PC0 , (26)

P�

(
QE

)
= ζ�

K0∑
k=1

〈
QE

�,k�

〉
+ PC�

, (27)

Pk�

(
QU

)
= ζk�

〈
QU

k�,�

〉
+ PCk�

. (28)

Accordingly, the design of EE maximization is recast as

max
{QE ,QU ,QD}

EE
(
QE ,QD,QU

)
(29a)

s.t. (1 − τ)
〈
QU

k�,�

〉
≤ Qk�

(
QE

)
,

∀� ∈ L, ∀k ∈ K�, (29b)

τ

K�∑
k=1

〈
QE

�,k�

〉
≤ PS�

, ∀� ∈ L, (29c)

(1 − τ)

K0∑
k=1

〈
QD

0,k0

〉
≤ PS0 , (29d)

QU ,QE ,QD � 0. (29e)
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Ascanbeobserved that the constraints in (29) becomeconvex
however the objective function (29a) is not a concave–convex
fractional one because the achievable sum rate is a noncon-
cave function. Thus, it cannot be straightforward to obtain
the optimal solution to problem (29).

Inspired by work [12], we exploit the D.C. procedure
to handle the nonconvexity of the achievable rate function.
Firstly, the achievable rate functions (20), (22), (24) can be
rewritten respectively as the difference of two concave func-
tions

R(1)
k0

(
QD,QE

)
= τ

(
log

∣∣∣∣Zk0 + HD
k0,0Q

D
0,k0

(
HD

k0,0

)H
∣∣∣∣ − log

∣∣Zk0

∣∣) , (30)

R(2)
k0

(
QD,QU

)
= (1 − τ)

(
log

∣∣∣∣Rk0 + HD
k0,0Q

D
0,k0

(
HD

k0,0

)H
∣∣∣∣ − log

∣∣Rk0

∣∣) ,

(31)

and

R�

(
QD,QU

)
= (1 − τ)

⎛
⎝log

∣∣∣∣∣∣J� +
K�∑
k=1

HU
�,k�

QU
k�,�

(
HU

�,k�

)H

∣∣∣∣∣∣ − log |J�|
⎞
⎠ .

(32)

Then, given feasible points
(
Q̄D(n), Q̄U (n), Q̄E(n)

)
at itera-

tion n, the rate functions R(1)
k0

(
QD,QE

)
, R(2)

k0

(
QD,QU

)
,

and R�

(
QD,QU

)
are tightly lower bounded by the concave

functions R̂(1)
k0

(
QD,QE

)
, R̂(2)

k0

(
QD,QU

)
, and R̂�

(
QD,QU

)
respectively defined by

R̂(1)
k0

(
QD,QE

)
= τ

(
log

∣∣∣∣Zk0 + HD
k0,0

QD
0,k0

(
HD
k0,0

)H ∣∣∣∣
−

(
log

∣∣∣Z(n)
k0

∣∣∣ +
〈(
Z(n)
k0

)−1 (
Zk0 − Z(n)

k0

)〉))
,

(33)

R̂(2)
k0

(
QD,QU

)
= (1 − τ)

(
log

∣∣∣∣Rk0 + HD
k0,0

QD
0,k0

(
HD
k0,0

)H ∣∣∣∣
−

(
log

∣∣∣R(n)
k0

∣∣∣ +
〈(
R(n)
k0

)−1 (
Rk0 − R(n)

k0

)〉))
,

(34)

and

R̂�

(
QD,QU

)
= (1 − τ)

⎛
⎝log

∣∣∣∣∣∣J� +
K�∑
k=1

HU
�,k�

QU
k�,�

(
HU

�,k�

)H
∣∣∣∣∣∣

−
(
log

∣∣∣J(n)
�

∣∣∣ +
〈(
J(n)
�

)−1 (
J� − J(n)

�

)〉))
.

(35)

where Z(n)
k0

=Zk0(Q̄
D(n), Q̄E(n)), R(n)

k0
=Rk0

(
Q̄D(n), Q̄U (n)

)
,

and J(n)
� = J�

(
Q̄D(n), Q̄U (n)

)
. Then, the energy efficiency

at iteration n can be rewritten as

ÊE
(
QE ,QD,QU

)

=

K0∑
k=1

R̂(1)
k0

(
QD,QE

)
+

K0∑
k=1

R(2)
k0

(
QD,QU

)
+

L∑
�=1

R̂�

(
QD,QU

)

P (
QE ,QD,QU

) .

(36)

Thus, problem (29) can be recast as

max
{QE ,QU ,QD}

ÊE
(
QE ,QD,QU

)
(37a)

s.t. (29b), (29c), (29d), (29e). (37b)

It is clear that the denominator of objective function in (37) is
linear while the numerator is concave with respect to all pos-
itive semi-definite matrix variables

{
QE ,QD,QU

}
. Thus,

problem (37) is a concave–convex fractional programming
and, then, the Dinkelbach approach can be applied to find
optimal solution [5]. To this end, we introduce a param-
eter λ and a parametric function U (

QE ,QD,QU , λ
) =

K0∑
k=1

R̂(1)
k0

(
QD,QE

)
+

K0∑
k=1

R(2)
k0

(
QD,QU

)
+

L∑
�=1

R̂�

(
QD,QU

)
−λP

(
QE ,QD,QU

)
. Then, problem (37) can

be rewritten as

max
{QE ,QU ,QD}

U
(
QE ,QD,QU , λ

)
(38a)

s.t. (29b), (29c), (29d), (29e). (38b)

By fixing λ, the optimization problem (38) is convex and
it can be efficiently solved by the convex solver packages,
for example, CVX [7]. For a given λ∗, the optimal solution
{QE∗,QU∗,QD∗} to problem (38) is also the optimal solu-
tion to problem (37) if U (

QE∗,QD∗,QU∗, λ∗) = 0 [5].
Thus, the step by step of the iterative algorithm to solve the
problem (29) is summarized inAlgorithm1. It isworth noting
that the objective function (37a) is a tight lower bound of that
in (29a). Thus, the objective function (29a) is non-decreasing
through iterations. In addition, due to transmit power con-
straints the objective function (29a) is upper bounded. Thus,
the convergence of Algorithm 1 is guaranteed.

4 Simulation results

In this section, we evaluate the performance of our algorithm
via numerical simulation results. In simulations, we consider
the HetNet system consisting of four small cell deployed
in the coverage of a macro cell. The macro BS is located
at (0, 0) while 4 SBSs are located at positions (R/2, R/2),
(R/2,−R/2), (−R/2, R/2), and (−R/2,−R/2)where R is
the radius of macro-cell. All system parameters and the path

123



104 T. N. Ha et al.

Table 2 List of simulation
parameters

Parameters Values

Number of small cell 4

Radius of macro cell 250 m

Radius of small cell 20 m

Number of UEs in cells K0 = K� = K = 3

Number of transmit antennas at BSs M0 = M� = M = 6

Loss due to walls Lω = 1 dB

Total noise power σ 2 = −96 dBm

Power required of each single-antenna of BS 0 dB

Fixed power consumption at the UE −25 dB

Power required of each single-antenna of UE −23 dB

Fixed power consumption at the macro-BS 20 W

Fixed power consumption at the small-BS 10 W

Energy harvesting efficiency ξk�
= ξ = 10%

Power amplifier drain efficiency ζ0 = ζ� = 30%

Pathloss from SBS to its SUE 38.46 + 20 log D (dB)

Path-loss from SBS to others UEs 38.46 + 20 log D + Lω (dB)

Path-loss from MBS to an SUE 15.3 + 37.6 log D + Lω (dB)

Path-loss from MBS to MUE 15.3 + 37.6 log D (dB)

Path-loss from BS to others BS 15.3 + 37.6 log D + +Lω (dB)

Path-loss from SUE to MUE 38.46 + 20 log D + Lω (dB)

Algorithm 1 : Iterative algorithm for EE maximization

1: Initialize: Set n = 0 and initialize feasible matrices
{
QE(0)

}
,{

QD(0)
}
,
{
QU (0)

}
and

{
Q̄E(0)

}
,
{
Q̄D(0)

}
,
{
Q̄U (0)

}
.

2: repeat
3: repeat
4: Computeλ(n) by plugging

{
QE(n)

}
,
{
QD(n)

}
,
{
QU (n)

}
to (17).

5: Given λ(n) and
{
Q

E(n)
}
,
{
Q

D(n)
}
,
{
Q

U (n)
}
, solve (37) using

CVX to obtain
{
QE(∗)

}
,
{
QD(∗)

}
,
{
QU (∗)

}
,

6: Update matrices:
{
QE(n)

} = {
QE(∗)

}
,
{
QD(n)

} = {
QD(∗)

}
,{

QU (n)
} = {

QU (∗)
}

7: until convergence

8: Update n = n + 1, update
{
Q

E(n)
}

= {
QE(n)

}
,
{
Q

D(n)
}

={
QD(n)

}
,
{
Q

U (n)
}

= {
QU (n)

}
9: until convergence
10: Output:

{
QE(opt)

}
,
{
QD(opt)

}
,
{
QU (opt)

}

loss models are given in Table 2 [2,17,18,23] in which the
distance between the transmitter and the receiver in meters
is denoted by D. The transmit power budget of all SBSs are
assumed as PS�

= Pt and the transmit power budget of the
MBS is PS0 = 5Pt . Unless specified otherwise, it is assumed
τ = 0.5. The simulation results are averaged over 100Monte
Carlo runs with random locations of users.

Example 1 In this example, we investigate the convergence
characteristic of iterative Algorithm 1. We plot the conver-
gence rate of the objective function over iterations under
different values of Pt in Fig. 2. It can be observed that the

0 5 10 15 20 25 30 35 40 45 50
0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Pt = 20 dBm

Pt = 25 dBm

Pt = 30 dBm

Pt = 35 dBm

Pt = 40 dBm

Fig. 2 Convergence behavior of Algorithm 1 for different transmit
power budgets

objective function of EE is not decreasing over iterations and
it is converged in less than 50 iterations. The results from
Fig. 2 also reveal that at the low transmit power region, the
achievableEE tends to increasewhen the transmit power bud-
get increases. However, the EE performancewill not increase
when the transmit power budget reaches to a certain level.

Example 2 This example examines the tradeoffs between
the achievable EE and sum-rate (SR) in the considered
HWPCNs. Figure 3 presents the average EE performance
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Fig. 3 The average achievable EE ofAlgorithm 1 and SEmaximization
versus different transmit power budgets

which is obtained by our EE maximization algorithm and
those obtained by the SEmaximization. Note that the optimal
solution for maximizing the SE can be obtained by setting
λ = 0 in (37). It can been seen from Fig. 3 that when the
transmit power budget is higher than a certain level, the
EE optimization algorithm offers higher EE than those of
the counterpart of the SE optimization. These results can
be explained that the EE optimization strategy only uses a
portion of the transmit power budget which can offer the
maximum EE rather than all transmit power budget when
the transmit power budget increases to a certain level. In
contrast, the SE optimization strategy tends to use all trans-
mit power budget to maximum the system sum-rate, and the
usage of all transmit power budget leads to a decrease in the
achievable EE of the SE maximization method.

To investigate more insightful tradeoffs between the EE
and SE, we plot the achievable sum-rate obtained by the EE
maximization method and those obtained by the SE max-
imization approach in Fig. 4. As can be clearly seen from
Fig. 4 that the average achievable sum-rate obtained from the
SE optimization method increases with the transmit power
budget. On the other hand, the average achievable sum-rate
of the EE optimization strategy will not increase when the
transmit power budge increases to a certain value. The reason
is that when the transmit power reaches at a certain level, the
power consumption causes energy inefficiency.

Example 3 This example studies the optimal EE and SE per-
formance versus the duration τ .We set the the transmit power
budget is Pt = 30 dBm. The average EE obtained from the
EE maximization and sum-rate obtained from the SE max-
imization are depicted in Fig. 5. It can been seen that the
achievable EE is reduced as τ increases. This is because an
increase of τ means that the WET duration increases. The
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Fig. 4 Sum rate for EE maximization and sum-rate maximization

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
0

0.5

1

1.5

2

2.5

20

30

40

50

60

70

80

0 0.02 0.04 0.06
68.5

69

69.5

70

70.5

71

Fig. 5 The EE and SE performance versus duration τ

WET is not energy efficiency since the received power is sig-
nificantly attenuated. On the other hand, theWET signals can
also cause interference to the macro-cell users which results
in a reduction of the macro-cell user sum-rate. This major
observation can conclude that the WET can give a negative
impact of the network EE. On the other hand, concerning
the achievable sum-rate as can be seen in Fig. 5, there exists
an optimal value of τ such that the achievable sum-rate is
maximized.

5 Conclusion

This paper has studied the precoding designs tomaximize the
EE in the multi-user HWPCNs in which precoding matrices
in both WET and WIT phases have been jointly considered.
To tackle the mathematical challenges of nonlinear frac-
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tional programming of the EE maximization problem, we
have invoked the D.C. programming and Dinkelbach method
to develop an efficiently iterative algorithm. The numerical
simulation results have evaluated the EE performance of our
approach.
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