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Abstract
Over the past couple of decades, the research area of network community detection has seen substantial growth in popular-
ity, leading to a wide range of researches in the literature. Nature-inspired optimization algorithms (NIAs) have given a 
significant contribution to solving the community detection problem by transcending the limitations of other techniques. 
However, due to the importance of the topic and its prominence in many applications, the information on it is scattered 
in various journals, conference proceedings, and patents, and lacked a focused-literature that synthesizes them in a single 
document. This review aims to provide an overview of the NIAs and their role in solving community detection problems. To 
achieve this goal, a systematic study is performed on NIAs, followed by historical and statistical analysis of the researches 
involved. This would lead to the identification of future trends, as well as the discovery of related research challenges. This 
review provides a guide for researchers to identify new areas of research, as well as directing their future interest towards 
developing more effective frameworks in the context of nature-inspired community detection algorithms.
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Abbreviations
ACO	� Ant colony optimization
BA	� Bat algorithm
BCO	� Bee colony optimization
CA	� Cultural algorithm
CD	� Community detection
CS	� Cuckoo search
DE	� Differential evolution
EA	� Evolutionary algorithm
FA	� Firefly algorithm
GA	� Genetic algorithm
HO	� Heuristic operator
LDA	� Latent Dirichlet allocation

MA	� Memetic algorithm
MH	� Metaheuristic
MOO	� Multi-objective optimization
MPM	� Marginal product model
NIA	� Nature-inspired algorithm
NP	� Non-deterministic polynomial time problems
PPI	� Protein-protein interaction
SA	� Simulated annealing
SN	� Social network
SOO	� Single objective optimization
SSN	� Signed social network
X	� Crossover

1  Introduction

1.1 � Overview

Nowadays, most of the complex real-world systems in the 
fields of biology, sociology, and engineering can be cap-
tured and investigated as networks of connected communi-
ties. However, the suitability of networks to represent these 
real-world systems has given an impressive spur to com-
plex networks research. Some of the examples of complex 
networks include collaboration networks, communication 
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networks, biological networks, transport networks, the 
world-wide-web, the internet, paper citation networks, neu-
ral networks, as well as metabolic and Protein-Protein Inter-
action networks (PPI) [1–3]. Generally, complex networks 
are a graphical representation of all the objects in a given 
system, where the nodes of the network represent objects, 
and a link between two objects represents the activities 
among them [4, 5]. For example, the biological collabora-
tion between proteins can shape PPI networks, where the 
nodes match with the proteins and the edges match with the 
physical or functional interactions between them. In social 
networks (SNs), individuals or objects can be human beings, 
books, or animals. Factors such as common interest, sta-
tistical commonality or other forms of social relations, are 
representing connections among network’s objects. A tight 
intra-connection, coupled with loose inter-connections, is 
a key feature of the complex networks that is observed as 
a common tendency among entities of these communities.

In summary, community detection (CD) is a network 
analysis technique that seeks to detect the hidden structure 
of a large-scale networked dataset into separate and com-
pact groups, where the number and size of subgroups are 
unknown [6]. However, the lack of a universal definition 
for these community structures is considered to be one of 
the major challenges of the field [7]. Which means that the 
CD problem is a fundamental issue in computer science 
and an ongoing challenge because many network problems 
like aligning, detecting, and the search for relationships are 
equivalent to the subgraph isomorphism problem which is 
known to be NP-hard that recently enjoyed a considerable 
interest [8–10]. This ultimately leads to the fact that optimal 
solutions are impossible to be found for all the complex net-
works and the quality of a solution depends strongly on the 
algorithm and its contents (representation, objective func-
tions, and problem-specific operators). Due to an increase in 
network complexity and the consequent exponential growth 
of the solutions space, the typical, conventional or classi-
cal methods are no longer a sustainable form of solution. 
Thus, Nature Inspired Algorithms (NIAs) have been adopted 
in order to deal with the relevant issues and challenges of 
community detection. This fact has made NIAs an attractive 
solution and research area for dealing with complex prob-
lems by providing an effective methodology that is superior 
to other competing methods.

Generally, NIAs are global metaheuristic (MH) algo-
rithms that have common characteristics. One of the first 
notes of interest is focusing on encoding schemes or the 
method in which the solutions represent inside nature-
inspired community detection algorithms. This can be done 
via randomly sampling the search space of the problem as 
different candidate solutions. Consequently, these solutions 
are optimized in terms of single objective or multi-objective 
functions. Besides this key part, solution representation, 

there are also two key components for any metaheuristic 
algorithm, these are intensification and diversification which 
are also referred to as exploitation and exploration. Both of 
these concepts refer to how the search is performed. While 
diversification focuses on a global space to generate diverse 
solutions, the intensification would focus on a local space 
and exploiting the information available in this region, rather 
than a global one. Intensification aims on developing the 
good solutions found, for which it has to go through a selec-
tion phase in order to identify the optimal or best solution, 
while diversification, on the other hand, aims on increasing 
the diversity of the solutions via randomization, which aims 
on preventing the solution to be trapped in the local optimal 
region. Combining the two strategies allows for the solution 
to reach an efficiency peak which is identified and selected 
from a global space [11].

Metaheuristic algorithms can be classified in many ways. 
One way is to classify them as population-based or trajec-
tory-based. For example, the genetic algorithm, particle 
swarm optimization, firefly algorithm, or the cuckoo search, 
are classified as a population-based algorithm. The popula-
tion changes depending on the type of algorithm, while some 
algorithms use chromosomes as population individuals, oth-
ers use particles or multiple agents as their population. There 
are also other avenues which they operate through a single 
agent, rather than multiple agents. One kind of this search 
is Simulated Annealing (SA) that mimics the annealing pro-
cess of metals. The steps or moves trace a trajectory in the 
search space, with a nonzero probability that this trajectory 
can reach the global optimum [11].

This review focuses mainly on nature-inspired commu-
nity detection algorithms that belong to the population-based 
category, as they are naturally parallel and efficient imple-
mentations can be realized to deal with large size networks.

1.2 � Review methodology

In order to conduct this review, papers were collected from 
the year 2007 until 2019. We have performed a multidisci-
plinary search to find relevant literature on the community 
detection studies based on NIAs and their issues by using 
the keywords “community detection”, “Evolutionary and 
Genetic Algorithms; Memetic Algorithm; Particle Swarm 
Optimization; Differential Evolution; Cultural Algorithm; 
Firefly Algorithm; Bat Algorithm; Ant/Bee Colony Opti-
mization; and Cuckoo Search Algorithm”, “open issues 
and challenges to community detection algorithms” and 
network pattern “signed/unsigned, static/dynamic, joint/
disjoint, and multidimensional”. Then, relevant papers and 
articles were selected from the initial search, based on the 
criteria that papers were published in peer-reviewed journals 
or conferences and have focused on community detection 
based on NIA algorithm. From the papers obtained from 
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various libraries, 30% are from conference papers, and the 
remaining 70% are from journals. The inclusion of confer-
ence papers was necessary due to the fact that some of the 
state-of-the-art techniques are presented often in conferences 
before they are fully turned into journals, thus, they provide 
a good source of identifying the direction of the research in 
the long term. On that note, most of the collected papers are 
WOS rather than Scopus, with roughly 84% of the journals 
being from WOS. This ensures that only high-quality tech-
niques and journals are selected, but also includes those that 
provide a pattern of research.

The NIAs selected are based on a book by Yang [11], 
that strived to introduce the latest developments regarding 
all major nature-inspired algorithms, including genetic algo-
rithms, differential evolution, as well as swarm-intelligence-
based algorithms (such as particle swarm optimization and 
firefly algorithm), and others.

1.3 � Goal and outline of paper

Community detection is a growing research domain that has 
a large role in solving various real-life complex problems. 
There are several published reviews, articles, studies, books 
and journals on the topic of community detection and its 
various methods and applications. The majority of the pub-
lished reviews focus on a particular type of networks, such as 
social networks [12–14], delay tolerant networks [15], mobile 
phone networks [16], dynamic network [17], and others. 
There are other reviews based on different concepts relevant 
to the community detection issue such as: disjoint/overlap-
ping communities detection and their applications in Javed 
et al. [18], metrics for community analysis in Chakraborty 
et al. [19] and evolutionary computation in Cai et al. [20] and 
Pizzuti [21]. In general, research on CD has a multidiscipli-
nary nature coming from the graph theory, physics, statistics, 
and data mining, and this made researchers face difficulties in 
locating information about CD since there are many impor-
tant references in various primarily related disciplines, and 
in particular, despite the availability of several surveys in 
the literature that fuels the researcher with valuable and use-
ful information about community detection problem, there 
is still a lack of literature that gives a macroscopic view on 
NIAs-based community detection. Hence, it is so difficult to 
get knowledgeable about basic concepts, general develop-
ments, historical analyses, and future trends in the relevant 
field, and this is the very motivation for this review. In this 
paper, we have explored the studies collected from various 
libraries, most of them are WOS to get acquainted with the 
performance of research published in the domain, and moreo-
ver, to track its temporal evolution, and later identifying basic 
characteristics of the components of the proposed approaches 
through statistical analysis.

More specifically, this paper aims to perform a sys-
tematic study that reviews CD studies based on the NIAs 
perspective and summarizing them from different aspects 
such as representation, crossover, mutation, fitness function 
employed and type of network model viz. signed/unsigned, 
static/dynamic, joint/disjoint, and multidimensional. As 
well as providing challenges and open issues that relate to 
community detection algorithms, thus there is a need and 
requirement to produce such a survey. Finally, future trends, 
pathways, and research gaps are provided at the end of the 
research which aids other researchers in further analyze and 
evolve the domain.

1.4 � Paper organization

This study is organized as follows: in Sect. 2 the definition 
of community detection in the context of complex networks 
is presented. The next section introduces a list of NIAs used 
for CD, followed by historical and statistical analysis of the 
relevant researches as well as highlighting the issues, chal-
lenges, and recent trends that the CD is currently facing. 
The final section presents a concluding remark on the whole 
review and provides insight into further research.

2 � Community detection in complex 
networks

Communities in a complex network are groups of nodes, 
which are more intensely connected to one another when 
compared to the rest of the nodes in the network. Colmmu-
nity detection is the key characteristic, which could be used 
to extract useful information from networks. It allows us to 
concentrate on the regions with some degree of autonomy 
within a graph. For example, it could be possible to dis-
tinguish vertices which are completely embedded within 
their clusters from those that are at the cluster boundary 
which may serve as brokers between the modules and as 
such, could play a significant role both in holding the mod-
ules together and in the way of spreading the processes 
across the network. The greatest challenge in community 
detection is that there are no commonly accepted protocols 
on the fundamental ingredients of the community itself. 
Therefore, community detection in large-scale networks is 
computationally intractable [7, 22]. These communities are 
composed of different densities of connections and function-
ality as well as a different number of nodes. The connection 
among nodes of the complex network can take different pat-
terns, such as unsigned/signed in SN, static/dynamic in both 
social and biological networks. One way of detecting com-
munity in an unsigned social network is to consider pairs of 
nodes as connected and as if they are positively correlated. 
Such a network is said to be an unsigned network since the 
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correlation sign is not important; even strongly negatively 
correlated nodes can be assumed as unconnected. As for 
CD in signed networks, it can be defined as an extension 
to the complex unsigned networks with additional positive 
and negative information to the connections. Communities 
in signed networks are not only defined by their link density 
but also by their link tendencies. Examples of such signed 
relationships are like-dislike, friendship-enmity, attraction-
discouragement, agreement-disagreement, or more gener-
ally, positive-negative relationships. Slashdot news review 
site, Epinions consumer review site, and Wikipedia vote 
site are some examples of this kind of network where the 
relationships that representing the attitude between pairs of 
entities in these complex networks can’t be only positive 
(i.e. like) but also negative (i.e. dislike), and more intricate 
than the relationships in the conventional social networks 
[23]. Detecting the community structure at these types of 
networks is necessary as it reflects real social networks more 
realistically and allows for the determination of instabili-
ties within the relationships, and thus, the prediction of the 
changes in the organization of group [21]. Another impor-
tant method for analyzing networks with dynamic behavior 
is to analyze their evolutions over time. In fact, dynamic 
networks capture the changes in interconnectivity over time 
and allow tracing the network structure changes at different 
times. Thus, in the absence of any dynamic behavior, the 
detection will be no different than a CD in a static network, 
which is considered to be a relatively easier task than a CD 
in a dynamic network. Most studies concentrated on com-
munity tracking agree on a set of simple events that relevant 
to the dynamic network entities: node/edge appearing and 
vanishing. Such atomic and local actions can result in pertur-
bations of the network structure at different moments in time 
[17]. There are continuous and ever-growing applications for 
CD in a dynamic network such as directions analysis in the 
social fields, the prediction of dynamic links, and cluster-
ing social media subscribers for good advertisement as well 
as facilitating the recommendations to readers, and so on 
[18]. Similarly, in PPI networks, detecting dynamic protein 
complexes can provide valuable information for therapeutic 
purposes through detecting proteins that carry out their func-
tions dynamically in multiple consecutive conserved across 
different time-points [24].

Multilayered networks are a result of the interconnec-
tions of systems that have multiple types of connections 
[25–27]. Each layer represents a combination of different 
features of the network. As pointed out in Battiston et al. 
[26] and Kivelä et al. [27], networks with multiple types 
of connections provide a much more understanding of a 
system than monoplex networks, generated by the aggrega-
tion of these mutual interactions on a single kind of link, 
since each interaction can have different roles and meaning. 
Online social networks are intrinsically multi-dimensional 

since people connect and interact with each other by using 
a variety of social media, e-mail messages, or mobile tel-
ephone calls, and perform different activities that result in 
multiple relations, and consequently, multidimensional net-
works generate.

Generally, the presence of community structure in the 
social networks has enabled a wide variety of applications 
such as discovering fraudulent telecommunication networks 
activities, detecting fraudulent websites, designing network 
protocols in delay tolerant networks, refactoring software 
packages, skill acquisition in robots, dimensionality reduc-
tion in pattern recognition, and recommendation systems [4]. 
While from the biological side, protein complex prediction is 
an important issue as it provides valuable information about 
complex biological mechanisms in the cell, drug design, and 
diseases, as well as prediction of the biological functions of 
uncharacterized proteins and cancer detection [28].

Moreover, in real-world networks, the membership of an 
entity can either belong to only one community and the pro-
cess is called detecting disjoint communities or can belong 
to several communities, so the process called detection of 
overlapping communities. In overlapping community detec-
tion, some individuals should be allocated into multiple 
groups such as a person simultaneously belongs to several 
groups i.e. family group, friends and colleagues group or 
any other interest group; as well as, in the PPI network, a 
protein may participate in different biological functions, thus 
it belonging to different complexes. Figure 1 exhibits the 
community detection problem under different network sce-
narios, in which the complex network represented as a graph 
that is composed of n nodes and e edges. As well as some 
visual examples of communities in social and biological 
networks are illustrated in Fig. 2 [29]. From Fig. 1 we can 
notice that community detection under dynamic and multi-
layer pattern are quite different from others. In the dynamic 
pattern, the community structure changes based on the time 
(t); while in the multilayer pattern, the network structure 
includes communities having different types of interactions, 
where designing NIAs to uncover these patterns of commu-
nities deemed a major challenging. In light of all the above-
mentioned connection patterns of complex networks, a large 
number of nature-inspired community detection algorithms 
have been proposed to find optimal communities in reason-
ably fast time, more details in the next section.

3 � Community detection approaches: 
taxonomy based on NIAs

In today’s world, nature-inspired metaheuristic algorithms, 
especially those based on evolutionary computation, have 
attracted much attention to address the community detection 
problem and their literature has expanded dramatically with 
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diverse applications. One of the key principles that these 
techniques have in common is that they are self-organizing. 
This feature refers to the capability of being able to evolve 
and eventually, after a while, self-organizing structures 
emerge from the system [11].

Recently, many researchers have been trying to reach 
optimal solutions for the problems of CD in many network 
types. With the search continues and progresses, a desire for 
developing more universally and robust algorithms increased 
to address the CD issues in an efficient manner. However, 
designing an efficient algorithm mainly based on the objec-
tive function which can be either single objective optimi-
zation (SOO), or multi-objective optimization (MOO), 
depending on the requirements of the research. There are 
advantages and disadvantages to each of these objective 
functions. However, regardless of the number of criteria that 
are used, all of these techniques share a single principle. This 
principle is that all these techniques are derived in one way 
or another from nature or an observed behavior in nature. 
Whether this inspiration is on the solutions representation, 

the crossover, mutation, or selection operators, is dependent 
on the technique, but the general principle remains the same. 
To further elaborate on these aspects:

•	 Encoding schemes: the success of an algorithm is highly 
dependent on its solution representation. There are sev-
eral existing methods and techniques that correspond to 
the encoding of the division of a network in a sub-graph. 
These representations are often adapted from the encod-
ing used to solve the classical data clustering problem 
with evolutionary methods. When designing a CD model, 
there needs to be an emphasis on the method in which 
the network is partitioned, as well as finding a way to 
automatically identify the number of communities.

•	 Crossover ( X ) is regarded as a macroscopic operation on 
individuals. Essentially, it is used for mixing with sub-
space and aid in making the system converge.

•	 Mutation is regarded as a microcosmic operation on indi-
viduals. While crossover focuses on the macro and the 
convergence, the mutation provides the main mechanism 

Fig. 1   Graphical illustration of CD. Classic common model (top left): 
represents an example network with two disjoint communities. Over-
lapping model (2nd top): represents an example network with two 
communities share boundary vertices, distinguished by the blue color. 
Signed model (top right): represents an example signed network with 
two communities having solid edges denote positive connections, and 

dashed edges denote negative connections. Dynamic model (middle): 
represents an example network with two communities that their struc-
tures change based on the time (t). Multilayered model (bottom): rep-
resents an example network (a) with two communities having three 
different types of interactions (b–d) respectively (Color figure online)
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for global search. It can be generalized as a randomiza-
tion or heuristic technique.

•	 Selection is an important aspect that is imperative to the 
system’s evolution and moving forward to its next step, 
which pushes the system towards its optimal state. It is 
essentially intensive exploitation [11]. Moreover, in most 
studies, Heuristic Operator (HO) is being proposed to 
improve the quality of the community division by reduc-
ing research blindness and guiding the research process 
towards promising regions.

Based on existing research, there are several ways in 
which the CD studies can be classified. However, in tan-
dem with the scope of this research, we propose a classifi-
cation that would be based on the context of NIAs with the 
summarization of the significant common characteristics 
of these nature-inspired community detection studies. As 

well as trying to understand the reason behind the effec-
tiveness of NIAs as a solution for issues faced in CD.

The following sections are a classification of NIAs and 
the various solution within. The way each of these cat-
egories is structured, is first an overview of the solution 
and its behavior, followed by their applicability on the CD 
problem. Each section also links to a table that lists and 
summarizes the studies according to techniques proper-
ties. These properties are: network type and its pattern 
connection, model employed, solution representation, and 
perturbation operators in terms of crossover and mutation, 
along with, if present, heuristic operators which adopted to 
improve the methods. The goal of this section is to provide 
an unbiased overview and an understanding of the various 
categories of NIAs as a tool used by researchers to solve 
the problem.

Fig. 2   Visual examples of com-
munities in complex networks 
of different domains. Social 
networks (a Slashdot, b Epin-
ions) that appearing on average 
fairly homogeneous. While in 
biological networks, the sets of 
protein-protein interactions of 
two organisms: a fruit fly (D. 
melanogaster), and b man (H. 
sapiens), the larger the com-
munity, the less tree-like it is. 
Adapted from: [29]
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3.1 � Evolutionary and genetic algorithms (EA/GA)

Evolutionary algorithms (EAs) and especially Genetic 
algorithms (GAs) are algorithms that revolve around gen-
erating a random population. This creates a finite number 
of individuals, which is in a GA scenario are called chro-
mosomes. The structure of the aforementioned chromo-
somes depends on the problem that the GA is attempting 
to address. The quality of such entities, commonly known 
as chromosomes, is assessed via an objective function. 
This ultimately leads to fitness values of the chromo-
somes, then a percentage of chromosomes that have the 
highest fitness values are selected for the next iteration. 
Genetic operators of crossover and mutation are applied 
to the chromosomes to achieve a better population. The 
crossover and mutation operations are repeated until the 
termination criteria are met [8]. At the termination step, 
the algorithm produces the optimal solution(s). Essen-
tially, GAs and EAs are efficient techniques to find the 
optimal solution, when compared to existing classical and 
traditional methods for solving NP-complete problems. 
This is mainly due to its robustness, operating on various 
representation, and good for noisy and dynamic problems. 
Table 1 lists studies based EA and GA that classified 
under the MOO, while Table 2 lists those that are SOO.

3.2 � Memetic algorithms (MAs)

Memetic algorithms (MAs) were named in Moscato [30], 
which are evolutionary algorithms that interspersed the 
recombination of high-quality solutions with periods 
of intensive individual optimization. The denomination 
“memetic” for this type of algorithms was inspired by 
Dawkin’s concept of a meme, which represents a unit of 
cultural evolution that can exhibit local refinement. In 
MAs, a meme is generally considered as an individual 
learning procedure capable of performing local refine-
ments. Many works of literature refer to memetic algo-
rithms as an extension or hybridization of the previous 
genetic algorithm techniques, since it relies on evolution 
as a basic principle. This is ultimately due to the fact 
that MA combines GAs and local search procedures in 
order to operate. However, when it comes to CD, this 
technique has been proven to be more effective than 
traditional Genetic Algorithm on some applications of 
the problem. Thus, MAs are considered to be a growing 
and popular topic in both computer science fields and 
operational research domains [31–33]. Table 3 lists the 
research publications relevant to MA, as well as their 
related properties.

3.3 � Particle swarm optimization (PSO)

Particle swarm optimization (PSO) attracted a large num-
ber of researchers to address the CD problem. PSO forms 
an exciting, ever-expanding research subject, called swarm 
intelligence that means working with a population of parti-
cles, which in this scenario are called a swarm of particles. 
These particles move and search in the state space of pos-
sible solutions in order to identify the optimal solution. The 
method identifies and marks each particle p based on two 
characteristics. The first is its position vector xp in the search 
space, and the second is the velocity vp of the vector itself. 
Particles are attracted towards the best position of the swarm 
Sbestp , and its personal best position pbestp while moving 
randomly at the same time. The new velocity and position 
vectors are adjusted according to the following rule:

where c1 and c2 are acceleration parameters, and �1 , �2 are 
random numbers taking values from 0-to-1 [34].

Based on predetermined rules, the velocity is adjusted 
before any movement is made. These rules inspired by the 
movement of a bird flock or fish school, make use of the best 
position visited by each particle and the global best solution 
produced by the swarm to drive particles to a promising 
region. Due to its simplicity and lack a high-level math-
ematical necessity, the PSO is considered as one of the most 
widely used and popular optimization techniques [35, 36]. 
Table 4 lists the most prominent studies based on PSO tech-
niques, as well as their related properties.

3.4 � Differential evolution (DE)

Differential evolution (DE) exhibited some merits in the 
optimization of the community detection problem. DE ini-
tiates the search with a population, similar to the previous 
algorithms. A single entity from the population, which is 
comprised of individuals, is selected and used as the target 
vector, and it is used to generate the mutant vector by the 
mutant operation. Basically, this type of algorithm identifies 
the optimized solution regardless of initial parameter values, 
it has a fast convergence, as well as requiring only a few con-
trol parameters. The performance of this technique is heavily 
reliant on the mutation scheme, and the control parameters. 
Although there are different mutation schemes, the follow-
ing strategies are the most often used [37]: DE/rand/1, DE/
best/1, DE/best/2, and DE/rand-to-best/1. The first scheme is 
often termed with the classic mutation strategy in DE which 

(1)vt+1
p

= vt
p
+ c1�1

(

Sbestp − xt
p

)

+ c2�2

(

pbestp − xt
p

)

(2)xt+1
p

= xt
p
+ vt+1

p
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Table 1   Summarization of MOO studies based on EAs & GAs

References Network Solution representation Crossover Mutation HO

Žalik [53] Unsigned SN Locus-based Two-way X Neighbor ✓
Girdhar and Bharadwaj 

[54]
Signed SN Binary matrix Modified Uniform X Modified mutation –

Zou et al. [55] Unsigned SN Locus-based – Locus-based Mutation ✓
Bara’a and Abdullah [56] Biological Locus-based Uniform X Neighbor ✓
Sharma and Bhattachar-

yya [57]
Biological – Not use X Insert/ delete nodes –

Cheng et al. [2] Unsigned SN and biologi-
cal

Locus-based Two-point X One point Neighbor ✓

Abdulateef et al. [58] Biological Locus-based Uniform X Traditional ✓
Zhang et al. [59] Unsigned SN Locus-based Two-point X One point neighbor ✓
Wu et al. [60] Signed SN Permutation -based Traditional X Traditional –
Amelio and Pizzuti [61] Dynamic multilayer 

network
Locus-based Uniform X Neighbor –

Wen et al. [62] Overlapping communities 
in SN

Clique-based One-way X Maximal-clique graph –

Yuxin et al. [63] Overlapping communities 
in SN

Link-based Uniform X One-point –

Amelio and Pizzuti [64] Signed SN Locus-based Uniform X Neighbor ✓
Bara’a and Khoder [65] Dynamic SN Locus-based Uniform X Neighbor ✓
Attea et al. [66] Unsigned SN Locus-based Uniform X Neighbor ✓
Ray et al. [67] Biological Decimal chromosome – Add/delete nodes –
Ju et al. [68] Unsigned SN Locus-based Two-point X – ✓
Bandyopadhyay et al. [69] Biological Locus-based Not use X Insert and delete nodes –
Deng et al. [70] Unsigned SN Locus-based One-way X Local ✓
Xu et al. [71] Unsigned SN Label-based 3-different X 2-different mutation ✓
Cao et al. [72] Biological – – Subgraph –
Amelio and Pizzuti [73] Multilayer Locus-based Uniform X Neighbor ✓
Ma et al. [74] Dynamic SN Locus-based Uniform X Neighbor ✓
Wang et al. [75] Unsigned SN Locus-based Uniform X Neighbor –
Hafez et al. [76] Unsigned SN Locus-based Uniform X Neighbor –
Shi et al. [77] (214) Unsigned networks Locus-based Two-point X Random –
Liu et al. [78] Overlapping community 

in signed SN
Permutation –based 

(A(P),A(C))
A(P): Partially matched X
A(C): One-way X

A(P): Random swap
A(C): Tightness

–

Folino and Pizzuti [79] Dynamic SN Locus-based Uniform X Neighbor –
Li et al. [80] Signed SN Label-based One-way X Positive neighbor ✓
Du et al. [81] Overlapping community 

in SN
Locus-based Exchange one gene X Random –

Chen et al. [82] Dynamic modified LFR Locus-based Uniform X Neighbor ✓
Amelio and Pizzuti [83] Signed SN Locus-based Uniform X Neighbor –
Amiri et al. [84] Unsigned SN Locus-based – – ✓
Ray et al. [85] Biological Traditional Not use X Delete node or add nodes –
Gong et al. [86] Unsigned SN Locus-based Two-point X One point neighbor –
Gong et al. [87] Dynamic SN Locus-based Uniform X Neighbor ✓
Shi et al. [88] Unsigned SN Locus-based Two-point X Random –
Pizzuti [1] (2012 Unsigned SN Locus-based Uniform X Neighbor –
Mukhopadhyay et al. [89] Biological Label-based Not use X Nodes insertion or dele-

tion
–

Hafez et al. [90] Unsigned SN Locus-based Uniform X Neighbor –
Shi et al. [91] LFR synthetic Locus-based Two-point X Random –
Agrawal [92] Unsigned SN Locus-based Uniform X Neighbor –
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is based on current individual vector, while the others are 
variants of perturbations based on the first strategy and also 
used the information of the best individual in order to accel-
erate search process and to avoid trapping in a local best 
individual. While the parameters are simply characteristics 
required for the method to operate, such as the population 
size, crossover size, and the scale factor [38, 39]. Table 5 
includes a list of publications that use DE as their problem-
solving tool.

3.5 � Cultural algorithm (CA)

Cultural algorithm (CA) was employed as a community 
detection framework in order to make a knowledge-based 
system. The key feature of this algorithm is a belief space 
which stores information about the entities and guides the 
search direction. In other words, the cultural algorithm is a 
dual inheritance model which consists of two main spaces, 
population and culture or belief space. When it comes to 
CD as a problem domain, each generation of the CA model 
selects a group of individuals that serve to update the belief 
spa. Based on defined parameters in the belief space, a new 
population will be generated. This type of space acts as a 
global knowledge repository which holds information on the 
individuals. This knowledge is later used to guide the search-
ing process and identifying the optimal solution. Generally, 
the optimization process starts by building a population with 
a certain number of individuals that are randomly generated 
based on the state space of the complex network. The solu-
tion (or individual) consists of a combination of different 
elements, therefore, the state space of the complex network 
contains the possible states for each element. After the first 
generation, the individual(s) with the best fitness value is 
selected to make a belief space. The belief space is a new 
state space for the network. Thus, the new individuals are 
generated based on the belief space. At the same time, the 
belief space is updated according to the state of the best-
selected individual [40]. Table 6 includes a list of research 
publications that used CA as a tool to solve the CD problem, 
alongside their relevant properties.

3.6 � Fly algorithm (FA)

Firefly algorithm (FA) is a population-based optimization 
technique which finds its inspiration in the behavioral influ-
ence of fireflies’ flash on their mobility patterns. It assumes 
that fireflies are unisexual, they are attracted to other fire-
flies proportionally to their brightness, where the bright-
ness is determined through the perspective of the objective 
function [41]. In an optimization problem, fireflies move 
towards brighter points to find a globally optimum solu-
tion. However, the performance of FA greatly depends on 
its parameters such as its attractive coefficients and random 
movement factor, even though it suffers from the problem of 
being trapped in its own local optima [42]. A firefly move-
ment can be conceived as a general form of a swarm intel-
ligence solver as:

where xt
i
 represents the i − th solution (firefly) in the popula-

tion at iteration t. The second term in the formula is the 
attractiveness function with r

ij
 represents the distance 

between solution i and j , and �0, and � are parameters that 
balance between the intensifying and diversifying search 
capabilities of the algorithm. The third term concerns to 
randomization with parameter � and et

i
 is a vector of random 

variables. Substantially, the key parts of FA are: the collec-
tive behavior, mutual attractiveness and random yet con-
trolled movement of these insects, which applied on an opti-
mization procedure [43]. Some of the research work relevant 
to FA, used as a tool to address CD problem, are listed in 
Table 7.

3.7 � Bat algorithm (BA)

As defined in Yang [44], Bat algorithm (BA) follows the 
echolocation of bats by using sonar echoes to detect and 
avoid obstacles. This type of algorithm uses a local search 
of individuals in order to reach a global optimum. The con-
cept of this algorithm is based on the behavior of bats. The 
method in which these creatures hunt and prey at night is 

(3)xt+1
i

= xt
i
+ �0e

−�r2
ij (xt

j
− xt

i
) + �et

i

Table 1   (continued)

References Network Solution representation Crossover Mutation HO

Shi et al. [93] Unsigned SN Locus-based Bidirectional X Random –
Folino and Pizzuti [94] Dynamic SN Locus-based Uniform X Neighbor –
Shi et al. [95] Unsigned SN Locus-based Two-point X Random –
Liu et al. [96] Separated/overlapping 

communities in SN
Permutation -based – – ✓

Kim et al. [97] Dynamic SN Locus-based Uniform X – ✓
Pizzuti [98] Unsigned SN Locus-based Uniform X Neighbor –
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Table 2   Summarization of SOO studies based on EAs & GAs

References Network Solution representation Crossover Mutation HO

Moradi and Parsa [99] Unsigned SN Locus-based Single point X Neighbor ✓
Rao et al. [9] Unsigned SN Dual layer Non-Linear X Adding/removing edges ✓
Said et al. [8] Unsigned SN and biologi-

cal
Locus-based Uniform X Neighbor ✓

Yuanyuan and Xiyu [100] Unsigned SN Representation of qubit – – –
Žalik and Žalik [101] Unsigned SN Label-based X based - modularity and 

community size
Neighbor ✓

Zhu et al. [102] Signed SN Label-based – – ✓
Guerrero et al. [103] Unsigned SN Locus-based Border exchange X Border migration –
Liu and Li [104] Unsigned SN Label- based Half uniform X – –
Lakizadeh and Jalili [24] Dynamic Biological Bicluster encoding Two-point X Switched on/off –
Kaur et al. [105] Unsigned SN Label-based Two-way X Neighbor Cluster –
Ramadan et al. [106] Overlapping community in 

Biological network
K- lists Not use X Insert neighbor nodes 

or move a node
–

Mathias et al. [107] Unsigned directed SN – One-point X Random ✓
Liu et al. [108] Unsigned SN Label-based One- way X Local search. ✓
Bello-Orgaz and Camacho 

[109]
Unsigned SN Group of communities Randomly point X Random –

Pizzuti and Rombo [110, 
111]

Biological Locus-based Uniform X Neighbor –

Wang et al. [112] Unsigned SN Label-based One-way X Neighbor –
He and Chan [113] Unsigned- weighted SN Straight-forward represen-

tation
Swap 2-community 

structure
Self-evolution –

Li et al. [114] Unsigned SN Binary matrix Single point X Non-uniform –
Li and Song [115] Unsigned SN Label-based X based MPM model – ✓
Shang et al. [116] Unsigned SN Label-based Two-way X Random ✓
Liu et al. [117] Unsigned SN Locus-based Uniform X Neighbor ✓
Shi et al. [118] Overlapping communities 

in SN
Locus-based Uniform X Neighbor ✓

Lin et al. [119] Overlapping community in 
dynamic SN

Hierarchical tree Traditional X Traditional ✓

Pizzuti and Rombo [120] Biological Locus-based Uniform X Neighbor –
Chira et al. [121] Unsigned SN Locus-based Best-Worst X Neighbor –
Cai et al. [122] Overlapping community 

in SN
Link-based representation Random exchange gene 

value X
Random –

Chira and Gog [123] Unsigned SN Locus-based Collaborative X Random –
Shi et al. [124] Unsigned SN Locus-based Bidirectional X Random –
Mazur et al. [125] Unsigned SN Locus-based Uniform X Neighbor –
Halalai et al. [126] Unsigned SN Locus-based Uniform X Neighbor
Guoqiang and Xiaofang 

[127]
Unsigned SN Locus-based One-point X Neighbor

Li et al. [128] Unsigned SN Label-based One-way X Random ✓
Jin et al. [129] Unsigned SN Locus-based Uniform X Neighbor ✓
Liu and Zeng [130] Unsigned SN Label-based One-way X Neighbor –
Zhu and Wang [131] Unsigned SN Locus-based Swap a fixed length of 

connected subgraph
Heuristic ✓

Shi et al. [132] Unsigned SN Locus-based Two-point X Random –
Pizzuti [133] Overlapping community 

in SN
Locus-based Uniform X Neighbor ✓

Lipczak and Milios [134] Unsigned SN Label-based Parametrized version of 
uniform X

– –

He et al. [135] Unsigned SN Label-based Multi-individual X Majority neighbor label –
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through echolocation as a means of identification. When 
the algorithm initiates, each individual or “Bat” would 
emit pulses, which are used to map the local area around 
them with a frequency that is low, but with high loudness. 
As the bat gets closer to its target or prey, the loudness is 
reduced, and the rate of pulse emission is increased. This 

frequency/loudness adjustment process can control the bal-
ance between the exploration and the exploitation opera-
tions of the algorithm [45]. In general terms, BA is a new 
metaheuristic algorithm that takes inspiration from bats in 
order to find its desired target solution and operates based 
on echolocation system to sense distance, the velocity with 

Table 2   (continued)

References Network Solution representation Crossover Mutation HO

Pizzuti [136] Unsigned SN Locus-based Uniform X Neighbor ✓
Pizzuti [137] Unsigned SN Locus-based – – –
Gog et al. [138] Unsigned SN Label-based Collaborative X Random ✓
Tasgin et al. [139] Unsigned SN Label-based One-way X Random ✓
Firat et al. [140] Synthetic Medoid-based Two-point X Random –

Table 3   Summarization of SOO & MOO studies based on MAs

References Network Model Solution representation Crossover Mutation HO

Žalik and Žalik [141] Unsigned SN SOO Label-based X based modularity and community size Neighbor ✓
Žalik and Žalik [142] Unsigned SN MOO Label-based Two-way X Neighbor ✓
Haque et al. [143] Unsigned SN SOO K-lists (lists) Keeps common and add random vertices 

X
Insert node neighbor 

then delete random 
node

✓

Naeni et al. [144] Unsigned SN SOO Label-based Modularity-based X Adaptive- mutation ✓
Wu and Pan [145] Unsigned SN MOO Label-based One-way X Neighbor ✓
Mu et al. [146] Unsigned SN SOO Label-based One-way X One neighbor point ✓
Wang et al. [147] Unsigned SN SOO List (binary list) Uniform X One point ✓
Ma et al. [148] Unsigned SN SOO Label-based Two-way X Neighbor ✓
Gach and Hao [149] Unsigned SN SOO Label-based Priority-based X – ✓
Gong et al. [150] Unsigned SN SOO Label-based – Neighbor label ✓
Gong et al. [31] Unsigned SN SOO Label-based Two-way X Neighbor ✓

Table 4   Summarization of SOO & MOO studies based on PSO algorithm

References Network Model Solution representation Perturbation operators HO

Rahimi et al. [4] Unsigned SN MOO Locus-based Two-point X
One-point neighbor mutation

–

Gao et al. [151] Dynamic SN MOO Label-based – –
Pourkazemi and Keyvanpour [3] Unsigned SN MOO Label-based Modified Neighbor mutation –
Li et al. [152] Unsigned SN MOO Label-based – ✓
Cai et al. [153] Unsigned SN SOO Unique label-based – ✓
Chen et al. [154] Unsigned SN SOO Label-based Neighbor mutation ✓
Zhang et al. [155] Overlapping com-

munities in SN and 
biological

MOO Mixed Representation Scheme Not use perturbation operators –

Cai et al. [34] Unsigned SN SOO Label-based – ✓
Cai et al. [156] Signed SN SOO Label-based – –
Gong et al. [35] Signed /Unsigned SN MOO Label-based Neighbor mutation –
Shi et al. [157] Unsigned SN SOO Structure of a particle includes 2 parts – ✓
Xiaodong et al. [158] Unsigned SN SOO Community divisive – ✓
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a fixed frequency, and loudness variations. If xi is the posi-
tion of the bat at time t , fi the frequency that moves between 
fminandfmax , vi the velocity, i.e. the change degree of its posi-
tion, r the emission rate and A the loudness, these values are 
updated with the rules:

where x∗ is the current best solution [21]. Some of the 
research articles based on BA are listed and summarized 
in Table 8.

(4)fi = fmin + (fmax − fmin)�, v
t+1
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+
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3.8 � Ant/bee colony optimization (ACO/BCO)

Ant colony optimization algorithms (ACO) and bee colony 
optimization algorithms (BCO) are two popular optimi-
zation techniques inspired by ant and bee behavior. ACO 
metaheuristic consists of a colony of artificial ants construct-
ing solutions iteratively by mimicking the foraging-behavior 
of social ants. ACO uses pheromone as a chemical mes-
senger and the pheromone concentration as the indicator of 
quality solutions to a problem of interest. From an imple-
mentation point of view, solutions are related to the phero-
mone concentration, leading to routes and paths marked by 
the higher pheromone concentrations as better solutions to 

Table 5   Summarization of SOO studies based on DE algorithm

References Network Solution representation Crossover Mutation HO

Liu and Liu [38] Unsigned SN Label-based Two-way X Rand-to-best/1 ✓
Sun et al. [159] Unsigned SN Indexed locus-based Binomial X Best/1 –
Li et al. [160] Unsigned SN – Random Cloud X Adaptive Radius mutation ✓
Jia et al. [39] Social and biological 

network
Label-based Binary X Rand/1 ✓

Table 6   Summarization of SOO studies based on CA

References Network Solution representation Crossover Mutation HO

Baofang [23] Signed SN Label-based on positive edge – – ✓
Zadeh, and Kobti [40] Unsigned SN Locus-based Uniform X Neighbor –
Zadeh and Kobti [161] Unsigned SN Locus-based Traditional cultural X Traditional –

Table 7   Summarization of SOO 
& MOO studies based on FA

References Network Model Solution representation Mutation HO

Zhang et al. [162] Biological SOO Locus-based adjacency Random –
Del Ser, et al. [43] Graphs and Zachary network SOO – Random per-

turbation 
operator

–

Lei et al. [163] Dynamic Biological SOO – – ✓
Amiri et al. [42] Unsigned SN MOO Locus-based Self-adap-

tive proba-
bilistic 
mutation

–

Table 8   Summarization of SOO studies based on BA

References Network Solution representation Crossover HO

Song et al. [164] Unsigned SN Label-based – ✓
Imane and Nadjet [165] Overlapping communities in SN Adjacent edges – ✓
Chunyu and Yun [166] Unsigned SN Ordered adjacency list – –
Hassan et al. [45] Unsigned SN Locus-based adjacency Uniform crossover X –
Imane and Nadjet [167] Overlapping community in SN Adjacent edges – –
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questions of the problem. Therefore, the two main points in 
ACO algorithm are the probability of choosing a route and 
the concentration rate of pheromone, where the probability 
of choosing a route from node i to node j can be expressed 
by the rule:

where the parameters � and � determine the relative influ-
ence of the trail information and the visibility, �ij is the pher-
omone concentration of the route between i and j , while hij 
is a heuristic function that reflects the tendency of selecting 
the edge from i to j [46].

Whereas BCO simulates the intelligent foraging behavior 
of honey bees to solve optimization problems. The model 
consists of two essential components: the nectar source and 
the bee colony. A nectar source represents a possible solu-
tion to the optimization problem. The nectar amount of a 
nectar source corresponds to the quality of the solution. The 
colony of bees consists of three groups of bees: employed 
bees, onlookers, and scouts which are flying in a D-dimen-
sional search space to find the optimum solution. Employed 
bees are associated with a particular nectar source which is 
exploited by employed bees. Onlookers search nectar source 
which is shared by employed bees. Scouts search new nectar 
source when a nectar source is abandoned. The search pro-
cess of BCO is directed by cooperation and conversion of the 
bee colony, the goal is to find the largest food source [47]. In 

(6)pij =
��
ij
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i,j=1
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other words, the BCO optimization algorithm starts with the 
employee bees that keep a food source in their mind when 
they leave from the hive to share the food source information 
with onlookers on dance area. Then, onlookers determine the 
food source by watching employee bees’ dances and trying 
to improve this source. An employee bee becomes a scout in 
case of abandoning the food source in order to explore new 
food sources randomly. The percentage of scout, employee 
and experienced employee are usually determined manually 
[48]. Both ACO and BCO lack to crossover operation that 
makes them relatively slow when it comes to convergence, 
but they are effective when it comes to search space explora-
tion. However, the slowness limits the subspace exploitation, 
in fact, lack of crossover operation is a common occurrence 
in some metaheuristic algorithms [11]. Table 9 lists some 
of the ACO and BCO studies proposed as CD optimization 
models.

3.9 � Cuckoo search (CS)

At first, Cuckoo search algorithm was proposed by Yang and 
Deb [49, 50], it is the same other evolutionary algorithms 
that are population-based search procedure and seeking for 
the best solutions. After that, a new cuckoo search algorithm 
is proposed by Yang and Deb [51] for formulating multi-
objective optimization problems and for solving structural 
design problems. The merits of the cuckoo search algo-
rithm, compared with other heuristic algorithms, is that the 
search process mainly focused on adopting the Lévy flights, 
employing a combination of vectorized mutation, crossover 

Table 9   Summarization of 
MOO & SOO studies based on 
ACO/BCO algorithm

References Network Model Solution representation HO

Mu et al. [168] Unsigned SN and biological MOO Locus-based adjacency ✓
Ji et al. [169] Unsigned SN MOO Locus-based adjacency ✓
Sani et al. [170] Unsigned SN MOO Locus-based adjacency ✓
Guo et al. [47] Unsigned SN SOO Label-based ✓
Wang et al. [171] Unsigned SN SOO – ✓
Chaabani and Akaichi [172] Unsigned- weighted SN SOO LDA methods and 

weighted edges 
formula

–

Zhou et al. [173] Overlapping community in SN SOO – ✓
Hafez et al. [48] Unsigned SN SOO Locus-based adjacency –
de Andrade et al. [174] Unsigned SN SOO – ✓
Javadi et al. [175] Unsigned SN SOO Unified label-based ✓
Mu et al. [176] Unsigned SN SOO Label-based ✓
Song et al. [177] Unsigned SN SOO Unique label-based ✓
Honghao et al. [178] Unsigned SN SOO Locus-based adjacency ✓
Chen et al. [46] Unsigned SN SOO Locus-based ✓
He et al. [179] Unsigned SN SOO Unique label-based ✓
He et al. [180] Unsigned SN SOO Unique label-based ✓
Sadi et al. [181] Unsigned SN SOO – ✓
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by permutation, to ensure the possibility and universality of 
searching the optimal solutions, and the diversity of the new 
solutions. Studies based on Cuckoo search (CS) algorithm 
are listed in Table 10.

CS operates by imitating the breeding behavior that is 
observed in Cuckoos. This type of breeding relies on brood 
parasitism of some their species. CS uses three steps in order 
to find the optimal solution: The first step involves, each 
cuckoo, at the same time, lays a number of eggs at different 
nests chosen randomly. In the second step, the new popula-
tion that will pass to the next generations, are the best nests 
with high quality of eggs. Finally, in the third step, the nests 
are abandoned based on a certain probability, after that a 
new nest with a number of eggs will be constructed. Several 
studies indicate that this algorithm could outperform both 
PSO and GA in certain circumstances [52].

4 � Results and discussion

The taxonomy as well as the list of published papers that are 
included in Tables 1, 2, 3, 4, 5, 6, 7, 8, 9 and 10 provide a 
vast array of information that has a macro analysis in order 
to identify the trends and nuances of the field. This is an 
important step, as the previous section focused on how each 
NIA managed in CD domain with listing their key charac-
teristics. In this section, the aim is to understand the pattern 
of interest, use that information in order to provide a brief 
prediction, as well as identifying the current trends in NIAs 
as a whole.

4.1 � Historical analysis of the classification

The first examination, is presenting a historical and chrono-
logical view of the published articles from the Tables pre-
sented in Sect. 3. There are several statistics that can be 
drawn from the tables to understand the direction of CD 
research in the context of nature-inspired algorithms clearly, 
and also, to present useful information help researchers 
to choose in which direction they can orient their future 
research.

Figure 3 depicts the growth rate of the published items 
over the last thirteen years. Based on Fig. 3, it can be 
observed that there has been a steady increase since 2007. 

Although the increase does not follow a linear pattern of 
growth, it still indicates a maintained interest over the years. 
The year 2019 has only six recorded publication, due to the 
fact that the yearly cycle has only begun as of the writing of 
this review, although, it is included in Fig. 3 bar chart, it may 
not convey a quite accurate look of the situation.

This information can be used in order to predict or fore-
cast the direction of the publication. Thus, Fig. 4 represents 

Table 10   Summarization of 
MOO & SOO studies based on 
CS algorithm

References Network Model Solution representation HO

Zhou et al. [182] Dynamic SN MOO Ordered neighbor list method –
Babers and Hassanien [183] Unsigned SN SOO – –
Zhao et al. [184] Dynamic Biological SOO – ✓
Zhou et al. [52] Unsigned SN MOO Locus-based adjacency ✓
Zhao et al. [185] Dynamic Biological SOO – ✓

3 3

7

12

7

15

11

21

16

19 20

15

6

0

5

10

15

20

25
Published NI-CDA Articles per Year

Fig. 3   The chronological distribution of the number of articles in 
“nature-inspired community detection algorithms (NI-CDA)” in lit-
erature published over the past 13 years

Fig. 4   Forecast chart for the years 2019 to 2021, the color blue is the 
existing data, while the color orange is the expected forecast. Colors 
yellow and grey represent: the upper confidence bound and the lower 
confidence bound, respectively (Color figure online)



239Nature-inspired optimization algorithms for community detection in complex networks: a review…

1 3

the expected forecasts for the years 2019, 2020 and 2021. 
The forecast chart uses Seasonal Based Exponential Smooth-
ing (ETS-AAA) algorithm for the prediction model, with 
existing time-based data which is set up from years 2007 till 
2018. This is due to the fact that 2019 has not yet completed 
its cycle, and thus, the six publications cannot be used as a 
data point. Using 2019 as a data point would create an error 
to the forecast process and generate an inaccurate result. As 
it is observed in Fig. 3, the publication numbers, although 
increasing, are not following a linear or predictable pattern 
of growth. Thus, the forecast could shed some light into 
the future of the nature-inspired community detection algo-
rithms as a research topic.

Based on the observations, the forecast model predicts 
an overall growth, even though the low confidence bound 
dictates a fall for the years 2019 and 2020, it predicts that 
eventually, it will grow. This is an expected growth for 
nature-inspired algorithms due to their capability to solve 
the CD problem effectively, and the field growth would seep 
into all research areas that expected to be attracted point-
edly towards addressing the related issues using NIA as a 
problem-solving tool.

4.2 � Analysis network pattern and encoding 
schemes

In this section, the aim is to identify the various forms of 
properties and categories related to the community subnet-
work and networks as a whole, in the listed references that 
are included in the Tables provided in Sect. 3, and break 
them down into their numerical representation. This would 
aid in identifying the main factors and types that are most 
popularly used, and help in identifying the trend in which 
the research work can be progressed and expanded. There 
is also a chance of identifying each of these selections and 
provide a justification as to why they are popular in contrast 
to the other provided types and categories.

Table  11 depicts the statistics related to the kind of 
community detection (overlap/non-overlap) in various 

connection patterns of the network (dynamic, multilayer, 
singed, synthetic (only), and unsigned/static). Along with 
the percent of studies that tackled different cases of commu-
nity detection in one study, such as separated & overlapping 
or singed & unsigned.

These properties were mentioned earlier in all the previ-
ous Tables listed in Sect. 3, however, they were considered 
and analyzed to provide a macro overview and to allow for 
the identification of the most popular and most used type 
of CD in the related community network (see Table 11). In 
this observation, the bulk of the values is with Unsigned SN/
Biological Network.

To complete the view more clearly, Fig.  5 presents 
another statistic based on the kind of network that addressed 
in the study which can be either social, biological or both. It 
can be concluded from Table 11 and Fig. 5 that most studies 
in this domain (CD based on NIAs) have concentrated on 

Table 11   Statistic related to the 
kind of community detection in 
various connection patterns of 
network

No. Network pattern Value

1 CD in Dynamic (SN/ Biological network/Multilayer network) 15
2 CD in Multilayer Networks 1
3 Overlapping Community Detection in (SN, SSN, Biological and Dynamic 

SN)
13

4 Separated and Overlapping Community Detection in SN 1
5 CD in Signed and Unsigned SN 1
6 CD in Signed SN 8
7 CD in Synthetic Network 2
8 CD in Unsigned SN/ Biological Network 114
Total 155

86%

11%
3%

Social Biological  Social &  Biological

Fig. 5   Statistic related to the kind of network
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uncovering non-overlapping communities in unsigned social 
networks due to their considerable wide applications.

For other connection patterns of complex network i.e. 
signed/dynamic in SN, static/dynamic in a biological net-
work, and the overlapping communities in both social and 
biological network, such community structure definition 
is yet not well explored. Being able to detect community 
structures from these kinds of networks is an essential and 
ongoing research topic, that will attract more researchers to 
highlight and address several of the existing issues and chal-
lenges in this domain by presenting more efficient solutions 
that have significant contribution in many real applications.

For instance, signed communities and community detec-
tion in the area of signed networks allows for the determina-
tion of the relationship instabilities, and, thus, using it as a 
means of predicting the changes that occur in a group [21]. 
From another side, CD in protein biological network aids 
in detecting proteins that take part in different biological 
processes, prediction of the biological functions of unchar-
acterized proteins, as well as in therapeutic purposes [28], 
while CD in a dynamic network helps in capturing the modi-
fications of interconnections over time and allows tracing the 
network structure changes at different times.

Table 12 presents the encoding schemes (solution rep-
resentation) proposed in the collected articles. As shown 

in Table 12, the greater part of CD studies based on NIAs 
focused on using “Label-based representation” or “Locus-
based representation”, due to their ability to naturally map 
the community detection problem by automatically deter-
mining the number of encoded communities k in each solu-
tion. Furthermore, they are ideal for the designing of genetic 
operators as the standard crossover and mutation operations 
will not breed invalid genotypes. Using label-based repre-
sentation, a partition of the network N is encoded as an inte-
ger string x =

{

x1, x2,… , xn
}

 , where n denotes the number 
of the vertices and xi is the integer cluster identifier of vertex 
vi , whose value lies between 1 and n [139]. In locus-based 
representation, each individual G is represented by n genes 
{

G1,G2, … ,G
n

}

 and each Gi can take j value, one of the 
adjacent nodes of node i , then interpreted as a link between 
nodes i and j. However, a decoding step is necessary for the 
locus representation to identify all the components of the 
corresponding graph [124, 136].

4.3 � Genetic operators analysis

In terms of genetics operators namely, crossover ( X ) and 
mutation, Table 13 and Table 14 view the related statistics 

Table 12   Statistic related to the kind of encoding schemes (solution 
representation)

No. Encoding schemes Values

1 Adjacent edges 2
2 Straight-forward representation 1
3 Clique-based 1
4 Community divisive 1
5 Decimal chromosome 1
6 Dual layer representation 1
7 Group of communities 1
8 Indexed locus-based 1
9 K- lists 3
10 Label-based 43
11 Link-based 2
12 Locus-based 69
13 Medoid-based 1
14 Ordered adjacency list or Ordered neighbor 

list method
2

15 Permutation-based representation 3
16 Representation of qubit 1
17 Structure of a particle includes 2 parts 1
18 Traditional 1
19 Binary matrix or Bicluster encoding 3
20 Hierarchical tree 1
21 Mixed representation 1

Table 13   Statistic related to the kind of crossover operator

No. Crossover operator Value

1 Bidirectional X or Binomial or Binary X 4
2 Collaborative X 2
3 Half uniform X 1
4 Exchange one gene X or Random exchange gene 

value X
2

5 Multi-individual X 1
6 Not use X 55
7 Non-linear X 1
8 One-way X or One-point X or Single-point X 14
9 Parameterized version of uniform X 1
10 A(P): Partially matched X, A(C): One-way X 1
11 Priority-based X 1
12 Random cloud X 1
13 Randomly point X 1
14 Traditional X 3
15 Two-way X or Two-point X 19
16 Uniform X or Modified uniform X 38
17 Best-Worst X 1
18 X based modularity and community size or X based 

modularity or X based MPM model
4

19 3-different X 1
20 Border exchange X 1
21 Keep common and add random vertices X 1
22 X: swap of two-community structure or Swap a fixed 

length of connected subgraph
2

Total 155
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which are extracted from the collected articles. As view 
in Table 13, several studies excluded the crossover, as the 
authors mentioned that crossover may result in disconnected 
components or create too many explorations that disturb the 
potentially good solutions. However, the numbers in the col-
umn “No” in Table 13 which are (16: “Uniform X”, 15:” 
Two-way X/Two-point X”, and 8: “One-way X/One-point 
X/Single-point X”), referred to the most preferred operators 
which were employed in the majority of studies.

The authors state that these types of crossovers greatly 
improved the global search capability of the domain, as well 
as enhancing the convergence factor. Especially, the crosso-
ver operator is related to the representation schemes used 
in the framework, such as the medoid-based representation 
uses a one-point crossover, the label-based representation 
uses one-point or two-point crossover [139, 150], and the 
standard uniform crossover fits well for the locus-based 
representation [136]. Based on the observations, One-way 
X fixes the roles of the parents between the source and the 
destination chromosomes. Generally, the offspring values are 
the same values of destination chromosome excepting some 
positions, where a random node is selected in the source, 
and the child chromosome is created first by transferring the 
community label i of the node selected earlier (in the source) 
to the destination chromosome, then transferring all nodes in 

source that have the same community label i to destination 
chromosome [186].

In two-way X , two offspring generated by exchanging the 
roles of source and destination of the parent chromosomes 
[150]. To employ uniform X , a random binary vector of 
length equal to the number of nodes in the network is used. 
After that, the offspring is generated by selecting gene from 
the first parent if the value of binary vector equal 1 , other-
wise the gene is selecting from second parent [1].

As regards to the kind of mutation, Table 14 depicts that 
several studies did not use explicit mutation, a mutation in 
some NIAs is not as simple an action as mutate allele value 
as in genetic algorithms. In fact, the lack of explicit crossover 
or mutation is common in some metaheuristic algorithms. 
This may explain the observations or fact that many new 
algorithms can indeed provide a competitive guarantee of 
the global optimality, but have a significant number of itera-
tions compared with algorithms that used genetic operators 
such as GA or DE. Looking closely, genetic operators may 
appear in some subtle way in some algorithms for instance 
in BCO algorithm randomization is carried out by scout bees 
and employed bees, and both are mainly mutation [11].

Mutation can take different forms; this can be explained 
due to the variations in encoding schemes. Several studies 
focused on “neighbor mutation”, that guarantees that each 

Table 14   Statistic related to the kind of mutation operator

No. Mutation operator Value

1 Not use mutation 48
2 Non uniform mutation 1
3 Adaptive mutation operator or Adaptive radius mutation or Self-adaptive probabilistic mutation 3
4 Adding or removing edges mutation 1
5 Neighbor cluster mutation 1
6 Mutation based self-evolution 1
7 Mutation based maximal-clique graph 1
8 Random mutation 19
9 Majority neighbor label mutation 1
10 Modified neighbor mutation 1
11 Neighbor mutation or One point neighbor mutation or One point mutation 55
12 Insert or delete nodes based mutation 4
13 Mutation based local search or Heuristic mutation or Local mutation or Modified mutation 4
14 Insert and delete nodes based mutation 2
15 Insert neighbor nodes or move a node mutation 1
16 Traditional mutation 4
17 Random swap mutation (1) and Tightness based mutation (2) 1
18 Rand-to-best1 mutation or Best1 mutation or Rand1 mutation 3
19 Switched on/off mutation 1
20 2-different mutation 1
21 Border migration mutation 1
22 Subgraph mutation 1
Total 155
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mutated gene is linked only with one of its neighbors. This 
method can cause one of two effects. Which both relate to 
the state of a community, by either splitting a single com-
munity or combine two communities together and ultimately 
modify the community structure. This is considered to be 
both an effective and simple method, which is apt for “locus 
based representation” [136]. While “random mutation”, sec-
ond largest percentage, be apt for the “label-based/ medoid-
based representation”, where randomly change the member-
ship of a node by assigning it to one of the other existing 
communities [128, 139, 140].

4.4 � Optimization models analysis

It should be noted that some of the included studies use 
a single objective function, as opposed to others that use 
a multi-objective optimization model. Figure 6 illustrates 
the statistical ratio between studies that use the two opti-
mization models. Using these different models allows for 
the quality of a community to be measured and how well 
the connections within the same community, and between 
different communities.

The main differing factor between the two optimization 
categories is that SOO uses a single criterion in order to 
perform the optimization task, while the MOO uses multiple 
criteria to optimize contradictory objectives simultaneously 
and perform the search process [187].

There are benefits and drawbacks to each of these afore-
mentioned optimization models. Naturally, most of the real-
life problems are characterized by contradictory objectives 
that need to be simultaneously satisfied therefore optimizing 
multiple objectives allows at the same time evaluation the 
community structure from different perspectives. Ultimately, 
the model outputs a set of representative solutions and the 
decision maker’s responsibility to select the final solution 
using some domain information or based on subjective 
preference.

Single objective optimization model, on the other hand, 
identifies a single best solution that gives insights on the 
graph organization, but it still prone to some basic chal-
lenges such as restricting the solution to a given commu-
nity structure property since only one objective function is 
considered. Additionally, if the single objective algorithms 
return a single fixed community partition, that partition may 
not be suitable for the networks with multiple structures.

To make full use of network linkage information and to 
guide the search direction towards feasible solutions, differ-
ent kinds of heuristic operators are proposed. Because using 
only genetic operators can oftentimes result in solutions that 
assign nodes to the wrong community.

For example, the simulated annealing method has adopted 
in some studies as a heuristic method in order to expedite 
the convergence speed and avoid falling into a local optimal 
situation [116, 150]. Another example is an effective local 
search based mutation algorithm presented in Liu et al. [117] 
which operates with the aid of a concept called marginal 
gene to overcome the drawbacks of traditional mutation 
methods. Figure 7 illustrates the proportion of the existing 
studies that have the heuristic operator inside NIA in con-
trast with those that lack it.

4.5 � NIAs classification analysis

The final statistic presented in Fig. 8 is related to the distri-
bution of NIAs methods that have used as CD problem-solv-
ing tools in the collected studies. For the sack of complete-
ness, Fig. 9 illustrates the development timeline for NIAs 
as well as community detection. As viewed in Figs. 8 and 
9, GA and EA have a significant contribution in addressing 
CD problems where they have attracted the interest of many 
researchers since approximately 2007 until now. Authors 
regarded them as powerful search and optimization tech-
niques due to their ability to provide a simple but efficient 

59%
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Fig. 6   Statistic related to the kind of optimization model
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Fig. 7   Statistic related to classify studies based on adopting/not 
adopting heuristic operators
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method for solving many NP-hard optimization problems 
[21, 188, 189], hence have gained more popularity compared 
with other methods.

On the other hand, due to the rapidly expanding in the 
literature, other different NIAs have adopted to solve CD 
challenges where notable progress, around the same period, 
in the related domain was noted by the development of 
ACO&BCO, PSO, and MAs. As researchers continued try-
ing to find universally better algorithms, more and more 
NIAs-based CD have been developed in the last few years, 
i.e. DE, FA, CS, BA, and CA-based CD to address most 
challenges of CD, not all. Therefore, the search is still on, 
and there is still a need to be developed such algorithms 
based on the available resources, the expertise of the deci-
sion-maker, and the type of problem. On the other hand, 
concerning the timeline of the CD pattern, we can see that 
there is further investigation and search are needed regarding 

complex networks at different levels signed, dynamic, and 
overlap.

After presenting and summarizing state-of-art-studies and 
clarify with useful statistics, now can answer the question 
that was asked at the beginning “why NIAs is so efficient to 
solve CD problem in a complex network?”

4.6 � Summary of the results

Closely speaking, CD problem has turned even more com-
plicated due to the fact that communities emerge in the net-
work in various forms such as joint/disjoint, static/dynamic, 
singed/unsigned and multilayer network [7, 8, 19 and 53].

This problem, due to its complexity, may not be prop-
erly solved by the conventional optimization methods and 
as such, CD problems have been solved using NIAs. Since 
NIAs have capability in providing simple methodology and 
efficacious at the same time, to solve complex problems, by 
defining a few basic concepts: an appropriate representation 
for the given problem, the objective function that be opti-
mized, in either minimization or maximization language, 
and how to evolve the population (set of individuals) for a 
while, according to a set of constraints or rules, to generate 
the organization structures from the system.

From another side, the relaxed nature of these nature-
inspired methods is proved to be essential for competitively 
transcending the limits of other approaches in solving CD 
problem by producing acceptable solutions in a reasonably 
practical time when an exhaustive search for the exact solu-
tion is impractical to solve such complex problems, and 
that’s why the popularity of NIAs has notably increased in 
the related domain.

Compared to conventional MH methods, NIAs are char-
acterized by a number of merits:

1.	 They are notable for their global searching abilities and 
good local learning, as well as their remarkable success 
in resolving a wide range of CD problems.

2.	 Capability to determine the number of communities 
automatically during the search process, as well as

3.	 A problem-specific knowledge can be incorporated 
inside the method, for instance, using heuristic-perturba-
tion operators instead of random ones, or using a biased 
initialization, that would allow for a more effective 
exploration of the search space of possible solutions.

4.	 They are population-based models be naturally parallel 
and efficient implementations can be performed to deal 
with large scale networked dataset [20, 21].

5.	 Community detection problem is one of the real-world 
problems, that naturally has conflicting objectives (mini-
mizing inter-connections and maximize intra-connec-
tions) requiring to be satisfied simultaneously, therefore, 
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Fig. 8   Statistic related to the distribution of methods of NIAs for CD 
in complex network
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NIAs are more suitable to solve them than other classical 
approaches.

Although a lot of NIAs have been successfully developed 
to detect the community structures in complex networks, 
according to the no free lunch (NFL) theory [190], there is 
no one-for-all method that can deal with all kinds of net-
works. Different networks have different space-time proper-
ties. When designing algorithms to solve the CD problem, 
one should take into account the special properties of the 
networks. Over and above, designing effective and fast algo-
rithms is worth thinking and more interest especially when 
dealing with the big data [21].

5 � Challenges, open issues and future 
recommendation

CD is a growing research topic that has several issues that 
are still open and not fully addressed. These problems are 
not only limited to the theoretical contribution, but also in 
empirical evaluation and prospects. Overall, the concept of 
detecting community in a network is considered to be quali-
tatively intuitive.

However, to make any method able to adequately analyze 
the network structures, the specifications need to be clear, 
quantitative and not vague when it comes to the commu-
nity structure. The subgraphs are only identifiable when the 
community itself is defined. However, on a practical view 
and when it comes to the computational concept, defining 
community is considered to be out of reach even for small 
systems. In the following subsections, some key challenges 
and issues facing CD problem are presented, in which some 
of them related how to collect and process real-life networks 
with their ground-truth partitions to validate the perfor-
mance of the NIAs accurately (as described in Sect. 5.1 and 
5.2).

In one way or another, CD is an ill-defined problem, as 
stated in the literature, since there are no typical accepted 
protocols on the fundamental ingredients such as defining 
the community itself [7]. Thus, developing a reliable objec-
tive function(s) reflects the main feature of the community 
(minimize inter-connections and maximize intra-connec-
tions) is a broad issue (as shown in Sect. 5.3).

However, employing only objective function(s) inside 
NIAs to detect communities may not be adequate to rep-
resent the real community structure due to the limitation in 
functions’ topological properties. Thus to address this issue 
need to invest the knowledge of the problem in modeling 
fitness function and in designing locally heuristic operators 
(please see Sect. 5.4). Moreover, the representation of the 
algorithm components can be enhanced by addressing the 

critical issue regarding some nodes having irregular proper-
ties (as described in Sect. 5.5).

On the other hand, there are several crucial issues on CD 
problem must investigate in future that related to exploiting 
the temporal characteristics of community structure (com-
munity evolution over-time), and modeling multiple types 
of connections among entities to provide deep insights about 
the communities (as shown in Sect. 5.6 and 5.7). Moreover, 
detecting communities in real large scale networks, that have 
many communities characterized by complex volume and 
large cardinality, required developing scalable NIAs with 
efficient parallel implementation to address the curse of 
dimensionality issue in these large real networks at the low-
est possible time (as described in Sect. 5.8 and 5.9). Addi-
tionally, the real networks are characterized by heterogeneity 
of topological that is considered a discrete issue for the CD 
algorithm since real networks from various domains differ 
in some networked characteristics (volume and cardinal-
ity) depending on the nature of the system that reflected it 
(please see Sect. 5.10).

Last but not least, further investigation is necessary as 
regards to biological networks at different levels static/
dynamic, overlap/non-overlap, and more efforts to include 
biological information inside the NIA framework, to 
improve the accuracy of solutions. Under other conditions, 
novel ideas are required to tackle overlapping community 
detection, such as new representation schemes to efficiently 
deal with overlapping communities.

5.1 � Validation issues

One of the top challenges and issues of CD is to be able to 
evaluate the quality of identified communities, via different 
algorithms. Currently, artificial networks are used in order 
to test the algorithms. However, such networks have desired 
structural properties which are oftentimes not representative 
of the real world networks. Thus, in an ideal situation, real 
networks need to be used to compare the performance of dif-
ferent CD algorithms besides artificial networks. Theoreti-
cally, it is possible to validate the accuracy of the algorithm 
in the discovery of a robust community structure through 
removal, or addition of links in the real network [18, 191].

5.2 � Availability of real and live dataset

The second problem is also a common validation issue 
which researchers face it in many aspects and disciplines 
that fall into the community detection domain. This is 
mainly due to the fact that collecting real and live data 
is extremely difficult and requires several steps involved 
threads of validity and privacy, and in-depth pre-process-
ing of the data. Raw and live datasets need to be parsed 
and processes, as an additional and critical step before 
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building a network from a real-known dataset based on 
observed relations. With the rise of interest in dynamic 
community detection, the need for a live and dynamic 
dataset has never been more important. However, in most 
cases, this is a relatively impossible task and obtaining 
such data is considered to be a task of utmost difficulty.

5.3 � Objective function

The choice of an objective function is another critical 
issue in CD problem for obtaining good solutions. Though 
many efforts based on NIAs have been directed to address 
this issue as single-objective optimization functions and 
obtaining good results on both artificial and real-world 
networks. However, in some scenarios, there can be mul-
tiple competing objectives that aim to address the same 
problem. The intuitive notion of community is that the 
number of edges inside a community should be far higher 
than the number of edges connecting with remaining nodes 
of the graph. This scenario creates two of negatively corre-
lated objectives which differ greatly from one another. The 
objectives are, to minimize external links, and maximize 
the internal links. Therefore, selection a meaningful objec-
tive function(s) is a broad issue and the point of competi-
tion among the proposed algorithms.

5.4 � Cross‑ fertilization

Despite the success of the proposed NIAs in tackling CD 
problem, the characteristic components of many, if not 
most, of them are still in their more or less traditional 
forms. They employed the problem knowledge domain 
in designing very generally single objective or multi-
objective function only, they did not exploit any possible 
heuristic to enhance the performance of their models. In 
future, more attention should be taken to invest domain-
knowledge of the problem not only in fitness function but 
also by cross-fertilizing the method with heuristic opera-
tors, in order to guide the search process towards promis-
ing regions.

5.5 � Community‑irregular property

Some nodes in the real network follow community-irregular 
property have been considered in some studies as commu-
nity-less nodes (i.e. a node has weak intra-relation with 
other nodes of its correct community comparing with nodes 
of other communities). There is a need to propose aware 
efficient algorithms is not disturbed by these nodes in the 
network.

5.6 � Temporal analysis

Time is another issue, as most of the proposed solutions 
work based of a static network, however, in a dynamic 
environment the network and the system are ever chang-
ing and evolving over time, and the process of detecting 
communities in such networks requires adapting with the 
network structure changes. Thus, it is imperative to study the 
time’s characteristics and facets more deeply with regards 
to the communities of a network in a dynamic environment. 
Although there are several studies investigating time aspect 
in single layer graphs, but when it comes to multilayer net-
works, there is still very little research was proposed [61]. 
Thus, the study in a multilayer network is considered to 
be a highly important issue that is extremely complex and 
requires more research to address its various sub-challenges.

5.7 � Multidimensional analysis

One of the most interesting topics that are discussed earlier 
was the multilayer networks. With their growth in popular-
ity, there is a need for new approaches to address these types 
of networks [192]. However, based on recent research, mul-
tilayer networks are a growing trend and the development of 
CD methods in this domain still in its beginning stages [27].

5.8 � Scalability of community detection algorithms

Scalability is an important issue that is especially of concern 
in the age of big data. The current existing algorithms have 
a tendency to reduce the dimensionality of the data before 
the patterns are properly identified. Two recent advances 
were done in the existing algorithms to be able to tackle the 
big data problems, which are Online or Streaming Cluster-
ing techniques. Ultimately, the algorithms are required to 
become even more efficient, scalable, versatile, and able to 
handle the growing size of network data with the lowest pos-
sible cost thru improving the speed and accuracy of relevant 
performance parameters since real-world networks’ growth 
is inevitable.

5.9 � Time consuming

Regardless of where they are implemented, the NIAs have 
always been known as a time-consuming process. Thus, 
many researchers and developers prefer to use the classical 
and traditional approaches rather than the NIAs, since time 
is considered to be a very crucial element. This is particu-
larly the case when the networks get extremely large, and 
the quality may start to falter. This is a vital issue as the 
technological age is notably moving towards big data and 
the requirements for heavy data management for millions 
of nodes are imperative. In order to accelerate the response 
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time, there is a need for developing parallel implementa-
tions. Evolutionary methods have default parallel character-
istics that can be developed in order to be more competitive 
with other available methods in terms of time and quality. 
Researchers can also reduce the time and space requirements 
by using more efficient representation forms such as variable 
length chromosomes [21].

5.10 � Heterogeneity of real‑world networks

The lack of a unique definition of “community”, has made 
it difficult for algorithms to be able to address CD chal-
lenges in all type of networks. For instance, both social and 
mobile networks, have a completely different definition for 
community, and cluster, thus making it difficult for a single 
algorithm to be able to identify and adapt with both sce-
narios without any extra readjustment. This differentiation 
or heterogeneity in real-world networks creates a direct chal-
lenge for all CD algorithms [193].

6 � Conclusions

The aim of this review was to provide a complete overview 
of community detection based on nature-inspired algorithms 
in complex networks. To achieve this goal, several steps had 
to be taken. First, since NIA is an important aspect of this 
process, they are required to be elaborated and explained. 
Thus, the first step is to categorize and classify NIAs as 
well as list all relevant published researches that use any 
of the NIA as a major tool for processing. The second step 
is to connect these algorithms to how they serve as a solu-
tion for community detection. Once this distinction is done, 
they are statistically broken down and summarized based 
on their common key components. With each aspect of the 
summarization, the outstanding inclinations in the relevant 
aspect were discussed.

The results and discussion of this research are divided 
into several categories. The first is the historical analysis 
of the various subcategories which provides an overview 
of the growing interest in the field as a whole. It also allows 
predicting that the field is on a positive incline, and will 
continue to grow, although steadily, rather than sharply.

The second group of statistical analysis corresponds to 
the various representation of the categories in numerical and 
ratio form. This allows to see the popularity of one group or 
kind over the others and help to know which areas are lack-
ing to study, and which areas are over-represented.

The aim of these statistics is to illustrate the focus and 
direction of the researchers on methods and approaches used 
to select the basic characteristics of NIA. This information 
would enable future researches to determine effective char-
acteristics related to their research, as well as accurately 

selecting: network type and its complexity, solution rep-
resentation kind, genetic operators’ kind, and model type 
based on the number of objective functions. Then, injecting 
the proposed method with a heuristic operator to enhance 
its performance, as recommended. Following that, we high-
lighted the open issues and future desirable developments 
relevant to this field.

Finally, the review can serve as a guiding point for 
researchers and scholars of the domain interested in 
approaching the problem of community detection with com-
putational models inspired by evolution in nature by provid-
ing a complete overview and classification that can familiar-
ize them with the most important aspects of this domain.
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