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Abstract
We applied the stochastic salp swarm algorithm (SSA) to design high power amplifier (PA) and digital pre-distorter (DPD) 
using generalized memory polynomial model. This algorithm has high exploitation and convergence speed to solve the 
non-linear coefficient of memory polynomial. We considered a single carrier WCDMA input for the static non-linearity 
of the memory based high power amplifier. Various simulations have been conducted to validate the performance of SSA 
over PA and DPD using different memory depths and degrees combinations which demonstrates that the proposed approach 
is an effective solution for linearity of high generation wideband transmitters. The performance of SSA is compared with 
particle swarm optimization and shows the superiority of SSA in terms of lower adjacent channel power ratio, error vector 
magnitude, normalized mean square error and modeling error. The implementation of SSA on PA and DPD has been done 
separately and then cascaded to generate a resultant linear output.

Keywords  Adjacent channel power ratio · Digital pre-distorter · Error vector magnitude · Particle swarm optimization · 
Power amplifier · Salp swarm algorithm

1  Introduction

An RF power amplifier is an important part of wireless 
communication system. With the advent of modern wire-
less system, the use of large envelope signals are employed 
such as wideband code division multiple access (WCDMA), 
long term evolution (LTE) and Worldwide Interoperability 
for Microwave Access (WiMAX). To transmit these signals, 
high power efficient power amplifiers are required. But these 
PA suffers from high non-linearity [1]. High non-linearity is 
proportional to high peak to average power ratio. The non-
linearity of PA can be defined by various models, e.g. Vol-
terra model and its prone forms, memory polynomial (MP) 
model and its variants [2].

Many linearization techniques have been reported in lit-
erature such as envelope feedback, feed-forward and digital 
pre-distortion [1]. Out of these alternatives, the most promis-
ing solution for nonlinearity that can be employed is called 
digital pre-distorter, a non-linear device in cascade with PA 

to remove non-linearity while maintaining power efficiency. 
Several forms of DPD have been proposed in the literature 
to meet the spectral requirements of communication system 
[3–9].

A pre-distorter model with left handed transmission line 
time delay was proposed in [3] which are applied for the 
cancellation of AM/PM distortion. A least square method 
was applied to identify the non-linear coefficient of PA [4]. 
In [5], the DPD system reduces the ACPR after bypassing 
the crest factor reduction block. The spline cross-term model 
of volterra series proposed in [6], reduces the pre-distorter 
system complexity without compromising the performance. 
A black box approach for DPD behavioral modeling was 
discussed in [7], to reduce the nonlinearity. In [8], the design 
authenticates the efficacy of the innovative pre-distorter for 
narrow bandwidth used in the 5G mobile communication 
generation. A fast and easy to implement DPD algorithm 
based on the feedback pre-distortion technique combined 
with the Complex memory polynomial structure was pro-
posed in [9]. In [10], a generalized memory polynomial 
model was employed to wideband signal providing lower 
spectral regrowth. Thus, the improvement scope includes the 
variants of non-linearity equation and the optimized adaptive 
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algorithm implementation upon PA and DPD to efficiently 
identify the non-linear coefficients.

In literature, various mathematical models have been 
used to define the PA non-linearity [2]. In this paper, the 
memory polynomial model has been used which is a special 
case of a generalized Hammerstein model. This paper model 
the power amplifier using salp swarm algorithm (PA-SSA) 
and further model the digital pre-distorter using salp swarm 
algorithm (DPD-SSA). Various sets of memory depth and 
degree of memory polynomial model have been used to vali-
date the proposed solution. Lastly, the proposed model is 
compared with the traditional PSO algorithm on the PA and 
DPD. The rest of the paper is divided into following sec-
tions. Section 2 presents the related work upon the adaptive 
optimization algorithm used for PA and DPD. The modeling 
of PA and DPD has been discussed in Sect. 3. Performance 
Metrics of Power Amplifier are discussed in Sect. 4. PSO 
and SSA algorithms are briefly elaborated in Sects. 5 and 
6, respectively. Section 7 includes the simulation study and 
discussion. Section 8 finishes this contribution by summariz-
ing the conclusions.

2 � Related works

In this section, the related work upon adaptive optimization 
algorithms has been discussed. The optimization algorithm 
is meant to reduce the system complexity without compen-
sating the performance. In [11], the optimization of least 
square method was implemented by under-sampling tech-
nique and higher bandwidth training signal. The scope also 
includes nature inspired meta-heuristic swarm algorithms 
[12] to solve real life non-linear problem. In the meta-heu-
ristic methods, the real time optimization problems are taken 
as a black box. Therefore, the trouble of finding derivative 
of the research space is removed. A meta- heuristic genetic 
algorithm was implemented in [13] to extract coefficients 
of the Wiener model to obtain better performance than the 
conventional pre-distorters. In [14], PSO was used to iden-
tify non-linear parameters and results into low memory cost 
and insignificant memory-units. The PSO was used in [15] to 
achieve a linearized PA, competent to efficiently recompense 
higher power aided efficiency and gain. A PSO with embed-
ded ability of model-size estimation was proposed in [16]. 
In [17], hill-climbing (HC) heuristic algorithm with low 
execution time was used for memory polynomial model of 
PA, to provide the best tradeoff between modeling accuracy 
and complexity.

In [18, 19], the authors implemented the hybrid of PSO 
to reduce the system complexity. In [18], the modified PSO 
was used by finding the best position as per probability and 
combined with modified artificial bee colony algorithm which 
was used to find the best fitness of the signal. This hybrid 

algorithm was used upon weiner model of PA to compensate 
non-linear distortions. In [19], a convergence solution was 
provided by modified PSO, where one particle position was 
set to the model parameter vector, rather being random. The 
remaining particles positions were randomly initialized. The 
initial velocity was taken zero to reduce the complexity.

Although, the researchers have put efforts in the improve-
ment of power efficiency and linearization of power amplifier 
using various optimization methods, but the scope of improve-
ment always exists. This paper proposed a novel optimization 
to the power amplifier using SSA and contributes in the field 
of power amplifier linearization.

3 � Modeling of power amplifier and digital 
pre‑distorter

The ultimate aim of designing appropriate pre-distorter is to 
compensate the distortions and ensure linear amplification 
of the signal to be transmitted. Conceptually, pre-distortion 
consists in applying a non-linear function prior of the PA; 
reciprocator to that of the amplifier to be linearized. Thus to 
design a DPD, the non-linearity of PA should be identified. 
The identified non-linear coefficient of PA are used to gener-
ate the coefficients of DPD in such a way that the cascade of 
both gives a resultant linear characteristics [1]. The dynamic 
non-linear system can be fully modeled by volterra series, but 
it is difficult to manipulate due to its complexity. However, a 
reduced form of volterra series, called memory polynomial 
model can be implemented. This model has reduced number 
of coefficients, while maintaining satisfactory accuracy. This 
model also considers the memory effects of PA [1]. The gen-
eralized memory polynomial model can be defined as [20]

where x(n) and y(n) are the input and output complex base 
band signal, ck,m are complex valued coefficient parameter 
and M and K are the memory length and the non-linearity 
order of polynomial. The non-linear output of PA can be 
represented as

where �MP(n) is a complex vector built using the baseband 
complex input signal samples x(n − m) according to the 
model’s basis functions set, and A is the vector containing 
the model coefficients.

The unknown complex coefficient matrix of the model can 
be written as

(1)y(n) =

M∑

m=0

K∑

k=1

c2k−1,m|x(n − m)|2(k−1)x(n − m),

(2)y(n) = �MP(n) ⋅ A,

(3)A = X−1.y,
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where X and y are known input and output matrices. Note 
here we consider only the odd harmonics because the even 
harmonics are far away from the center frequency.

Calculation of the model coefficients A requires a non-lin-
ear system identification technique such that,

The least square estimation criteria have been used to find 
the model coefficients as follows:

The error vector e = AX − Y or, its square, approaches zero 
(minima)

Thus, the cost function or fitness function used in context 
of the system design is as follows.

Minimization of fitness function is required for optimiza-
tion of PA and DPD.

4 � Performance metrics of power amplifier

In order to evaluate the performance of given models, the met-
rics used are normalized mean-square error (NMSE), adja-
cent channel power ratio (ACPR) and error vector magnitude. 
NMSE and ACPR are defined by (8) and (9), respectively [21],

where �err( f ) = �meas( f ) − �modeled( f ) is the error signal’s 
power spectrum and �meas( f ) is the measured signal power 
spectrum

The error vector magnitude (EVM) is used to analyze the 
in band distortion. EVM is a measure of how accurately the 
symbols are transmitted within its constellation. The differ-
ence between the received vector and actual signal vector 
is called the error vector and magnitude of error vector is 
EVM defined as [22]:

where α is the scaling factor and φref is reference signal.

(4)Y → AX orAX − Y → 0.

(5)min
A

||eTe|| = min||{
A

(AX − Y)T (AX − Y)},

(6)= min
A

(ATXTXA − 2YTXA + YTY).

(7)(ATXTXA − 2YTXA + YTY).

(8)NMSE (dB) = 10log10
∫ �err( f )df

∫ �meas( f )df
,

(9)ACPR (dB) = 10log10

∫
adjchn

�meas( f )df

∫
mainchn

�meas( f )df
,

(10)EVM (dB) = 10log10

√√√√ E[�2
err
]

�E[�2
ref
]
,

The cost function or fitness function for the optimiza-
tion of PA and DPD is NMSE. The minimum the value of 
NMSE, better is the performance and accuracy.

5 � Particle swarm optimization (PSO)

Particle swarm optimization (PSO) is a population based 
stochastic optimization method [23] proposed by Dr. 
Eberhart and Dr. Kennedy in 1995, inspired by the social 
behavior of bird flocking. The target position, say, a corn-
field has always a dynamic force for attracting all birds. 
The position of each particle is evaluated by calculating its 
distance from the target. Considering a swarm size S for 
a population space of dimension D, the position of each 
particle i is represented by a vector X in multi-dimensional 
space. vid is the initial velocity of the particle, ω(t)is the 
current weight of the particle. When these particles move 
in search space, then each particle position is updated to 
attain the best position called personal best represented by 
Xid

best and gbestd
t−1 is the global best position of the particle 

at the end of iterations as shown in Fig. 1. After every 
iteration, the algorithm renews the velocity vid

t and current 
position Xid

t of the Dth dimension of the ith particle by the 
following equations [23]:

If vt
id
> vdmax or vt

id
< vd

min
 then vt

id
= ∪(vdmax, v

d

min
).

where c1(t) and c2(t) = time-varying acceleration coefficients 
and ω(t) = time-varying inertia weight, rand1 and rand2 are 
uniform random numbers between 0 and 1, having differ-
ent values in different dimension, t is the current generation 
number. The speed of convergence β varies between [0, 1]. 
And � = �0 × � where, α0 is the initial value of the random-
ness parameter [0.5 < 𝛼0 < 1] where γis the control param-
eter [0 < 𝛾 < 1] . The velocity and position are renewed until 
the number of iteration is completed, usually when there is 
no further update of best fitness value. The flowchart of PSO 
is shown in Fig. 1.

(11)

vt
id
= �(t) ∗ vt−1

id
+ � × c1(t) × rand1t

id

× (Xbest
id

− Xt−1
id

) + � × c2(t)

× (1 − rand1t
id
) × (gbestt−1

d
− Xt−1

id
).

(12)
Xt
id
= rand2t

id
× Xt−1

id

+ (1 − rand2t
id
) × vt

id
.
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6 � Salp swarm algorithm (SSA)

Mirjalili [24] introduces a bio inspired salp swarm algorithm 
in 2017 for the engineering design problem. Compared to 
other swarm optimization algorithm, SSA benefits from high 
exploitation and convergence speed [24].

In this algorithm, the salps move for the search of target. 
The first member of salp chain is the leader and the rest of 
salps chains are followers. As the name of these salps implies, 
the leader guides the followers follow each other for the food 
source F. The position of salps are defined in an n-dimensional 
search space D and are reserved in a two-dimensional matrix 
called X and the position of the leader salp in the jth dimension 
is defined as [24]

whereFj is the position of the food source, ubj and lbj indi-
cates the upper and lower bound of jth dimension, c1, c2 and 
c3 are the random coefficients. The coefficient c1 balances 
exploration and exploitation and is defined as follows:

(13)x1
j
=

{
Fj + c1((ubj − lbj)c2 + lbj) c3 ≥ 0

Fj − c1((ubj − lbj)c2 + lbj) c3 < 0
,

(14)c1 = 2e
−

(
4l

L

)2

,

where l and L are the current and maximum number of itera-
tions. The followers withi ≥ 2 updates the position as

where t is iteration time, v0 is the initial speed, and a =
vfinal

v0
, 

where v =
x−x0

t
 . At t = 1 and v0 = 0, the equation can be 

rewritten as follows:

The global best position, gbest is calculated at the end of 
iterations as shown in Fig. 2.

7 � Simulation study and discussion

We applied a single carrier WCDMA signal to the static 
non-linear memory based high power amplifier. In simula-
tion based optimization approach, the PSO and SSA opti-
mization algorithms are implemented using MATLAB. The 
RF WCDMA signal is generated using RF tone generator 
of system vue software. The non-linear coefficients of the 
PA and DPD model were identified using the SSA and PSO 
algorithms as stated below.

(15)x
i

j
=

1

2
at2 + v0t,

(16)xi
j
=

1

2
(xi

j
+ xi−1

j
).

Fig. 1   Flowchart of PSO
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idX , idv , 1( )c t and 2 ( )c t
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next particle Update the velocity t
idv using (11)

If t
dgbest > best

idX

t
dgbest = best

idX
Update the position t

idX using (12)

Calculate fitness function i.e. best position If fitness function< best
idX

best
idX = t

idX

Yes

t
dgbest = best

idX

next iteration

Iteration 
complete?

No
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The methodology followed for simulation is depicted in 
Fig. 3. We considered 100 iterations for the swarm size of 
100. The performance of PSO and SSA are evaluated to 

(17)A =

(
gbestt

d
for PSO

gbest for SSA
.

fit for a minimum value of the non-linear coefficient. The 
coefficient vector set in (3) has been updated by recursive 
iterative method or the best optimal solution found by the 
algorithm as discussed in Sects. 5 and 6. The algorithms 
are applied on PA as well as upon DPD using matlab and 
the performance has been verified on the basis of power 
spectrum, amplitude and phase characteristics as shown in 

Fig. 2   Flowchart of SSA

Initialize L , jub , jlb , 2c , and 3c

For every salp i in dimension space D

next salp Calculate the value of 
1c using (14)

If gbest > best
idX

gbest = best
idX

Sort the salps to find food position jF

Update current position i

jx using (13) 

for i =1 and (16) for i >1
If fitness function< best

idX
ibes

d j
t

iX x=Calculate the fitness  function i.e. best position

Iteration completed?      
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idX
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Fig. 3   Flow chart of digital pre-
distortion processes
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Figs. 4, 5, 6 and 7. The simulation graphs are taken for train-
ing length 100000, memory 5 and degree 5. The degrees 

and memory depths are varied to evaluate the overall per-
formance as shown in Fig. 8 and Table 1.

The PSO performance is shown by blue line and SSA 
performance is depicted using pink line. The actual PA 
characteristics without algorithm have been shown using 
black color. The AM-AM characteristics of PA and DPD 
implanted with PSO and SSA are compared in Fig. 4.

The PA shows better characteristics using SSA, but has 
high dispersion using PSO. The DPD model using SSA 
has also better amplitude characteristics as compared to 
DPD using PSO.

The AM-PM characteristics of PA and DPD, modeled 
using PSO and SSA are illustrated in Fig. 5. The phase 
characteristics are more deviated using PSO modeling 
for PA as well as DPD. This indicates better accuracy 
of SSA as compared to PSO. The frequency spectrum of 
DPD+PA is illustrated in Fig. 6. It shows lower spectral 
regrowth at the output while using SSA and PSO algo-
rithms as compared to actual PA output without adaptive 
algorithm. The AM-AM characteristics of cascaded lin-
earized DPD+PA using PSO and SSA algorithms has been 
illustrated in Fig. 7 which also shows the low dispersed 
amplitude characteristics and accuracy of PSO and SSA 
optimized algorithms as compared to PA output without 

Fig. 4   AM-AM characteristics of a PA and b DPD

Fig. 5   AM-PM characteristics of a PA and b DPD

Fig. 6   Spectrum of linearized DPD+PA using PSO and SSA algo-
rithm

Fig. 7   Linearized AM-AM characteristics using PSO and SSA algo-
rithm
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Degree vs modeling error of various optimized configuration
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Degree vs simulation time for various optimization configuration
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(c)

Degree vs NMSE of various optimized configurations
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Degree vs ACPR  of various optimized configurations
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Degree vs ACPR of various optimization configurations
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(f)

Degree vs ACPR of various optimized configurations

Degree
3.5 4.0 4.5 5.0 5.5 6.0 6.5 7.0 7.5

A
C

P
R

 fo
r u

pp
er

 c
ha

nn
el

 1

-60

-50

-40

-30

-20

-10

0

 PA-PSO 
 DPD-PSO 
 PA-SSA 
 DPD-SSA 

Fig. 8   Parametric analysis of various optimized configuration at M = 5
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optimization. Also the linearity is maintained beyond the 
saturation point.

Various simulations are conducted at different degree 
and memory depth combinations and briefly presented the 
parametric performance in Fig. 8 and Table 1.

It has been observed that the modeling error is quite low 
using SSA, even for higher degrees as compared to that of 
PSO implementation. For degree 7, as shown in Fig. 8a, 
the modeling error is 8.2659e+03 for DPD-PSO while it 
is 1.1557 for DPD-SSA.

Figure 8b depicts that the simulation time increases 
with increase in the degree and memory. Comparing both 
algorithms, SSA shows lesser values of simulation time 

for lower memory depth and degrees for example, at M = 5 
and K = 7 it is 775.0986 and 789.4345 for PA-PSO and 
DPD-PSO, while 788.2425 and 767.4655 for PA-SSA and 
DPD-SSA, respectively, as shown in Table 1.

The SSA implementation has overall low NMSE 
for higher degrees and memory depths as illustrated in 
Fig. 8c. From Table 1, the values observed are − 19.6410 
and 0.0147 for PA-PSO and DPD-PSO, while − 19.9073 
and − 22.7473 for PA-SSA and DPD-SSA, respectively.

The offset value of the adjacent channels are taken at 
− 10, − 5, 5 and 10 MHz for lower 2, lower 1, upper 1 
and upper 2 adjacent channels, respectively. The ACPR of 

(g)

Degree vs ACPR of various optimized configurations
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(h)

Degree vs main channel power at various
optimization configurations
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(i)

Degree vs RMS EVM of various optimized comfigurations 
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Fig. 8   (continued)
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adjacent channels has been observed as lower in case of 
SSA implementation as shown in Fig. 8d–g.

The main channel power and root mean square EVM has 
the overall higher values using PSO, but using SSA, it shows 
insignificant EVM, even with increase in degree as shown 
in Fig. 8h, i. Note that all the simulations are performed at a 
training length of 100000 samples.

8 � Conclusion

In this paper, a memory polynomial PA and DPD model 
optimized using salp swarm optimization has been pro-
posed. This proposed approach was found to achieve good 
performance in terms of estimating accuracy while having 
reduced modeling error. The stochastic salp swarm algo-
rithm implemented on PA and DPD results into a low RMS 
EVM, NMSE and ACPR values at higher degrees and mem-
ory depths.

The SSA modeled system provides higher main channel 
power. The performances of the proposed SSA based pre-
distorter has been compared with those of the regular PSO 

based pre-distorter and the results illustrate the superior abil-
ity of SSA modeled pre-distorter to reduce spectral regrowth 
and better linearization of high generation wideband power 
amplifiers.
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