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Abstract
AQM router aims primarily to control the network congestion throughmarking/dropping packets which are used as congestion
feedback in traffic sources to balance their flow rate. However, stabilizing queuing delay and maximizing link utilization have
been considered as themain control objectives, especially inmedia dominated networks. Usually, most of theAQMalgorithms
are designed for a nominal operating point. However, time-varying nature of network parameters frequently violates their
robustness bounds. In this paper, a self-tuning compensated PID controller is proposed to address the time-varying nature of
network conditions caused by parameter variations and unresponsive connections. The proposed scheme consists of network
parameter estimation and a self-tuning AQM. Traffic load, network delay, and bottleneck link capacity are the time-varying
network parameters whose variation effects should be compensated by the controller gains adaptation. As the controller gains
are simply and directly obtained from the dynamic model, the obtained self-tuning controller can reasonably adapt itself to
different operating conditions, while preserving the simplicity of the PI controllers. Packet-level simulations using ns2 show
the outperformance of the developed controller for both latency regulation and resource utilization.

Keywords TCP networks · Congestion control · AQM · Queuing delay

1 Introduction

Due to the widespread and increasing use of the Internet,
lacking any effective and operative flow and congestion con-
trol may again be vulnerable to congestion collapse which
causes abrupt degradation of network performance. In the
intermediate network, the active queue management (AQM)
router controls the congestion in the network through mark-
ing/dropping the incoming packets, while in the entrance
(traffic sources), this signal is used as a feedback for flow
control, in which the flow rate is regulated according to the
available bandwidth.

Historically, TCP and AQM have evolved together and
have had a symbiotic relationship. When it comes to con-
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gestion control, the related algorithms have evolved in such
a way to cover the diversity and widespread use of today’s
Internet (see Fig. 1). In the early days of the Internet, the
passive algorithms sufficed to resolve the congestion. As the
Internet has expanded widely, active algorithms based on
heuristic methods have been developed to manage the traffic
congestion intelligently. However, the problematic growth
of the Internet necessitates more advanced algorithms which
could consider the dynamic behavior of the network. At the
same time, control and optimization theory provided the tools
to explore the congestion problems and dynamic behavior of
the network and therefore resolve them appropriately. Imple-
mentation and computation simplicity, alongwith acceptable
performance put the linear control theory such as PI and PIE,
as the basis method that can meet most of the AQM require-
ments [4]. As shown in Fig. 1 and according to the outcome
of the reviewed literature, we focus on the self-tuning linear
control method which tries to regulate the queuing delay.

The disturbances caused by unresponsive flows such as
UDP and short-lived HTTP connections seriously affect
the performance of the aforementioned AQM controllers
and must be taken into account in AQM controller design.
Moreover, neglecting the time-varying delay and restrictions
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Fig. 1 Evolution of AQM algorithms and our selected approach

therefrom leads to undesirable behavior of the controller. In
this paper, a self-tuning compensated proportional-integral-
derivative (ST-CPID) controller is proposed, which covers
the restrictions caused by network parameter variations.
The scheme has two features: network parameter estima-
tion and self-tuning AQM. A parameter-varying second-
order dynamic compensator is designed to retrieve unstable
internal dynamics caused by Padé approximation of the
time-varying network delay.Moreover, the desired dynamics
characteristics can be achieved through the dynamic com-
pensator. The controller gains are obtained directly from
the state-space model coefficients, and therefore, it does
not require complex analysis and tuning approaches like
the Ziegler–Nichols method. Moreover, different control
objectives can be specified through the desired dynamic
for the tracking error. Traffic load (N), network delay (R)
and bottleneck link capacity (C) are the time-varying net-
work parameters with which the controller must adapt itself.
The network parameters are estimated from measurements
made locally at the congested router. The aggregation of
unresponsive flows leads to a noisy estimation of the net-
work parameters. Due to the robustness characteristics of the
proposed controller concerning to small variations of net-
work parameters and also avoiding frequent and unnecessary
retuning of the controller, a change detection algorithm is
implemented not only to de-noise the estimated values but
also to track fast the network variations. Simulation results
using ns2 show the effectiveness of the proposed controller.
The main contributions of this paper are summarized as fol-
lows:

– An improved change detection algorithm for estimating
the traffic load and link capacity to have an accurate yet
fast tracking filter.

– A straightforward and easy to implement self-tuning
controller whose gains are obtained directly from the
state-space dynamic model.

– A flexible controller which allows specifying the desired
dynamics for tracking errors according to the desired
objectives.

The organization of the paper is arranged as follows. The
related works are reviewed in Sect. 2. In Sect. 3, the dynamic
model of the TCP/AQM network is described. In Sect. 4, the
estimation algorithms are explained. The design and digital
implementation aspects of the compensated PID controller
are presented in Sects. 5 and 6, respectively. In Sect. 7, the
proposed self-tuning AQM controller is evaluated using ns2
and compared with the baseline controller, PIE. Conclusion
and future works are finally presented in Sect. 8.

2 Related works

In its early days, the coverage of the Internet was limited
to a few specific organizations and the traffic congestion
was not an issue. Therefore, passive algorithms were con-
sidered for the queue management, which simply drop the
incoming packets as the queue become full (DropTail). Fun-
damental problems in such passive algorithms have led to the
emergence of active queue management algorithms which
apply some level of intelligence based on heuristic and intu-
itive methods. These improvements convinced the internet
engineering task force (IETF) to recommend the deploy-
ment of AQM algorithms in routers [4] such as RED [13].
Experimental results have shown that REDdoes not deal ade-
quately with network heterogeneity and its false congestion
avoidance scenario may escalate further bandwidth under-
utilization [54]. Moreover, the tuning problem of RED and
its sensitivity to the network conditions [7] have limited its
adequate use. Therefore, many alternatives such as REDwith
optimal weight parameter [56], FRED [29], DRED [2], and
SRED [38] have been proposed so far. Based on RED, an
adaptive queuemanagement is proposed in [26] which incor-
porates both the average and rate of change of the queue
length to resolve the problem of excessive packet dropping
in RED due to the frequent crossing of the maximum thresh-
old value. Each of such algorithms has focused on a particular
problem of RED with none being able to offer a comprehen-
sive solution. Based on CHOKe [39], a novel fairness-driven
AQM scheme, CHOKeH, have been presented in [1] to iden-
tify and restrict unresponsive traffic from dominating the
bandwidth.

In this category, more advanced AQM algorithms have
been developed using heuristic optimization approach. An
ant colony-based approach called ant-inspired level-based
congestion control (AILCC) is presented in [43] to man-
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age bandwidth issues effectively. To meet various bandwidth
demands from numerous applications, AILCC focuses pri-
marily on providing an efficient congestion control mecha-
nism. An adaptive traffic prediction based AQM (ATPAQM)
algorithm has been proposed in [36] in which the combi-
nation of the Kalman filtering model and the online noise
estimation is used to predict traffic accurately. The traffic
prediction results are used to reflect congestion indication in
the proposed AQM algorithm.

Meanwhile, without considering the network dynamic
behavior and its time-varying nature, the RED algorithm,
its alternatives, and the aforementioned heuristic algorithms
cannot provide the appropriate efficiency and performance
and cannot guarantee stable behavior over a wide range of
network conditions [8]. Development of the control theory in
engineering and optimization and resource allocation theory
in the economy have opened up new horizons to explore the
congestion problem.Using optimization and resource alloca-
tion theory, network congestion has been investigated from
a new point of view. Authors of [31] compare four neural
AQM schemes, namely, Neuron PID [47], AN-AQM [46],
FAPIDNN [53], and NRL [58], versus ARED, REM, and
PI together with a modified PI scheme named IAPI [48]
over a wide range of conditions and scenarios. Their sim-
ulation results for ARED, REM, and IAPI show large queue
fluctuations in long-delay networks. Therefore, these cannot
be considered as effective schemes in long-delay networks.
They demonstrate that the neuron-based schemes have faster
convergence to queue length target,with smaller queue length
jitter, while no proof of stability is available for them [31].

Computation and implementation complexity along with
the hardly tuning problem of optimization-based algorithms
divert the research to the control theory. To incorporate all
aspects of the AQM algorithm, the control theory has been
taken into account with [35], boosting such an approach
through proposing a fluid-flow dynamicmodel of TCP/AQM
networks. Based on the developed dynamic models, various
AQM controllers have been proposed using different con-
trol approaches: proportional-integral (PI) and proportional-
integral-differential (PID) controllers [19,20,44], nonlinear
controllers [15], and robust controllers [32,42,57]. Among
them, PI controllers are gaining more attention because
of their implementation and computation simplicity[49]. A
methodology to compute a non-fragile PI AQM controller
is provided in [34] in which a new method for tuning
the parameters of PI/AQM controller has been proposed.
Comparison of various PI controllers designed for the delay-
model of TCP/AQM in [49] shows that the non-fragile PI
AQM [34] is less robust compared with the others, because
their proportional or integral gain margins are relatively
large. Although these controllers fulfill the desired objec-
tives for a nominal operating condition, the high variation
of network operating conditions frequently violates their

robustness and performance. Moreover, the computational
complexities and implementation problems of the proposed
schemes [32,42,57] are contrary to the recommended fea-
tures for AQM in [4]. Furthermore, conservative designs for
theworst-case conditions lead to their degradedperformance.

Networkparameters are time-varying.Unresponsive short-
lived flows, user datagram protocol (UDP) connections, the
requirements of service level agreement (SLA), and quality
of service (QoS) frequently alter the bottleneck link capac-
ity experienced by long-lived flows. The effective number
of users utilizing each link is also usually variable. These
variations frequently violates the robustness bounds of the
controller. The time-varying nature and heterogeneity of net-
work parameters necessitate a self-tuning structure for the
AQMcontrollers leading to the development of various adap-
tive and self-tuning AQM controllers, which is essential for
the future Internet architecture [11]. A self-tuning PI (STPI)
controller is presented in [55] in which the link capacity and
the traffic load are estimated, and then the parameterized
PI controller is automatically retuned for the new operat-
ing condition. Authors of [52] propose a self-configuring PI
controller in terms of the estimated traffic load. In both of
the latter works, the controller gains are obtained through
the phase and gain margin analysis which does not lead to a
straightforward tuning method. An adaptive RED (ARED) is
proposed in [12,14] in which the RED parameters are tuned
automatically according to the network conditions. The low-
pass filter used for queue averaging leads to the sluggish and
indolence behavior of the RED algorithm and its alternative,
ARED [19].

Adaptive control has also been used to develop AQM
algorithms. The model predictive control scheme is used in
[33,50,51] to develop an adaptive controller based on the
identification of network dynamics. In [3], an optimization
scheme based on online stochastic approximation has been
proposed to dynamically tune the parameters of AQMRD
[26]. The optimization problem, which must be solved over
a prediction and controlling horizon in each sampling time
instant, complicates the computation and implementation
aspects of them, which is crucial for deployment in edge and
core routers. A self-tuning AQM controller has been pro-
posed in [6] based on the pole placement approach to adapt
the controller to traffic load changes. Without considering
unstable internal dynamics caused by Padé approximation
of the time-varying delay, the internal dynamics may con-
duct the system to the undesired sates.

Thegrowing concern about themultimedia in todays Inter-
net, yields more sensitivity about the end-to-end latency
experienced by end users [28]. Accordingly, IETF has
released some delay sensitive AQM algorithms such as
CoDel [37] and PIE [40,41]. Unlike their predecessors which
are sensitive to the queue length, these algorithms directly
control the queuing delay to meet the requirements for real-
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time and delay-sensitive applications. Using timestamps for
each packet, CoDel directly controls latency and drops the
dequeued packet if the queuing delay blows over the prede-
fined setting. Due to the expensive requirements of CoDel
for implementation and operation, a lightweight algorithm,
PIE (Proportional Integral Controller Enhanced), has also
been proposed, which benefits from the advantages of both
RED and CoDel: it is easy to be implemented like RED,
while it directly controls latency like CoDel [40]. Evaluation
of CoDel, PIE, and ARED for various static and dynamic
scenarios in [23,45] shows that PIE achieves significantly
lower delays than the other two in static scenarios, while
CoDel and ARED recover significantly faster than PIE from
traffic changes. Experimental evaluations using real-world
implementations in a wired testbed in [28] show that ARED
performsworse thanCoDel and PIE onlywhen the number of
traffic flows on the bottleneck link is very small. PI2 [9] pro-
vides an alternate and simpler design and implementation
to the PIE algorithm. The heuristic scaling steps for con-
troller gains in PIE are replaced by squaring the controller
output instead, which has less complexity and improves sta-
bility in some cases. While the PIE controls the congestion
very aggressively, resulting queue length oscillation, the PI2
encodes the drop/mark probability into a congestion signal,
which is either the square of drop/mark probability for the
case of classic controls like TCP Reno, or no encoding is
needed for scalable controls like DCTCP. A similar structure
is derived analytically in the proposed controller inwhich, the
unstable internal dynamics is compensated according to the
desired dynamics and then the PID controller is used to con-
trol the congestion. In this paper, we try to cover some of the
PIE problems using a compensated PID controller with self-
tuning capability. The controller gains are obtained directly
from the state-spacemodelwhich can be computed according
to the network parameters. The obtained controller preserves
the simplicity of PIE while covering more accurately the
objectives with comparable fewer fluctuations.

3 TCP/AQM dynamic model

Various dynamic models have been developed for the
TCP/AQM networks. The model given in [35] is used widely
incorporating fluid-flow and stochastic differential equations
to describe the dynamic behavior of the TCP/AQMnetworks.
In this model, the congestion window size and the packet
latency are used as state variables.

⎧
⎨

⎩

Ẇ (t) = 1
R(t) − W (t)

2
W (t−R(T ))
R(t−R(t) P(t − R(T ))

Ṙ(t) = N W (t)
CR(t) − 1

(1)

The following nomenclature will be used hereafter:

W (t) : TCP congestion window size (packets)
q(t) : router′s queue length (packets)
R(t) : round trip time (s) = q(t)/C + τp,

C : link capacity (packets/s)
τp : propagation delay (s)
N : traffic load (number of TCP sessions)

P(t) : packet drop probability
qmax : queue capacity (packets)
Wmax : maximum congestion window size (packets)

The congestion avoidance phase of TCP protocol is mod-
eled in the first equation of (1); the 1/R(t) term, models the
additive increase of congestion window length in response
to received packet acknowledgement, while theW (t)/2 term
models the multiplicative decrease of congestion window
length in response to packet marking/dropping probability
P(t). The dynamics of queuing delay is modeled in the sec-
ond equation of (1).

4 Estimation of network parameters

Traffic load, network delay, and bottleneck link capacity are
time-varying network parameters. In this section, the traffic
load is estimated based on the dynamic behavior of conges-
tionwindow length. The bottleneck link capacity is estimated
bymeasuring the rate of departed packets. The network delay
is composed of a fixed but heterogeneous terms; propaga-
tion delay, and a time-varying term, queuing delay. Since the
realistic network has heterogeneous TCPflowswith different
propagation delays, the propagation delay should be assumed
as a bounded quantity. The queues of non-bottleneck links
are almost empty and their queuing delays are negligible.
The queuing delay of the bottleneck link can be estimated
from measurements made locally at the congested router.

4.1 Change detection algorithm

Although a fast filter follows quickly the fast variation of the
signal, it can not attenuate the signal noise. Though, a slow
filter suppresses the signal noise accurately, it lags from the
fast variation of the signal. Therefore, there is an inconsis-
tency between accuracy and speed of the filter, which can be
compromised using a change detector along with adaptive
filter. Change detector is a nonlinear filter used for signals
with sharp and sudden variations such as traffic load and
link capacity [30]. For example, an algorithm combining a
Kalman filter and a change detection algorithm (CUSUM)
is proposed in [22] for RTT estimation. Furthermore, due to
the robustness characteristics of the proposed controller with
respect to the small variations of the network parameters and
also in order to avoid frequently and unnecessary retuning
of the controller, which leads to the instability and sluggish
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behavior, a change detection algorithm is developed to not
only remove the estimation noise, but also to track the fast
changes of the network conditions.

By using a change detector with an adaptive filter which
is tuned according to the robustness characteristics, the con-
troller is retuned whenever a considerable change of the
network parameters is announced. The proposed change
detector decides according to both level and speed of param-
eter changes and is composed of two parts: distance measure
and stopping rule. It is typically a modified version of
CUSUM along with recursive least square (RLS) or least
mean square (LMS) filter [16]. The parameters are estimated
using RLS or LMS, and the distance measure is computed
according to the last change. The stopping rule works based
on the defined threshold, and the choice of threshold depends
not only on the robustness bounds but also on the accuracy
requirement of the controller. Furthermore, it must avoid the
frequent retuning of the controller, which may lead to the
sluggish behavior of the system. According to the robustness
characteristics of the proposed algorithm, if the estimated
network parameters (traffic load or link capacity) varies
for more than 10 percent, the change detector alarms for
re-tuning the controller. Therefore, in our simulations the
threshold set to 10 percent of the network parameter value.
These algorithms are described more in the next sections.

4.2 Estimation of traffic load

Estimation of the effective number of users hasmany applica-
tions in communication networks.Router assisted congestion
controllers, such asXCP [27], R-XCP [17] andRCP [10], use
the traffic load to advertise the congestion window to traffic
sources. In this paper, the traffic load is estimated according to
a refined version of TCP/AQM dynamic model (1). Revising
(1) in terms of traffic rate X(t) and using W (t) = X(t)R(t),
yields:

⎧
⎪⎨

⎪⎩

Ẇ (t) = +X(t − R(t))(1 − P(t − R(t)) 1
X(t)R(t)

−X(t − R(t))P(t − R(t)) X(t)R(t)
2

q̇(t) = +N X(t) − C

(2)

The first term in the first equation of (2) models the additive
increase while the second term models the multiplica-
tive decrease of congestion window length. The achieved
dynamic model has an equilibrium point which is obtained
by zeroing the dynamics of both congestion window length
and queue length as follows:

{
0 = 1−P0

R0
− X2

0R0P0
2

0 = N0X0 − C
(3)

Using the first equation of (3) and substituting R0, the trans-
mission rate of each source in equilibrium point is obtained
by:

X0 = 1

τp + q0/C

√
2(1 − P0)

P0
(4)

As it can be seen, the equilibrium transmission rate is
achieved in terms of P0 and q0, which are measurable locally
in the router.According to the second equation of (3), the traf-
fic load is obtained as the ratio of the bottleneck link capacity
over the estimated transmission rate as follows:

N̂ = Ĉ

X0
(5)

where N̂ is the estimated traffic load. While the traffic load
is noisy due to short-lived flows, it also has abrupt changes
that necessitate the change detector not only to remove the
noise but also to track the fast variations of the signal. The
distance measure gNk is computed according to both level
and rate of changes of the traffic load, and stopping rule ζN
is determined according to the robustness characteristics of
the controller with respect to the traffic load uncertainties.

Anadaptivefilter (normalized leastmean square—NLMS)
with change detection [16] is used to attenuate noise as well
as to track fast the abrupt changes of the traffic load. Algo-
rithm 1 shows the CUSUM NLMS filter for estimation of
the traffic load N̂ . In order to lower the influence of the input
signal amplitude on the gradient noise, the NLMS algorithm
is used in which the step size λN is scaled and normalized
by the variance of the input signal X . In this algorithm, Xk

Algorithm 1 The CUSUM NLMS Filter for Estimation of
the Traffic Load

λk ← λN
1+X2

k

N̂k+1 ← N̂k + λk Xk(Yk − Nk Xk)

εN ← Yk − Nk Xk
gNk ← max(gNk−1 + εN − ζN , 0)
if gNk > hN then

alarm to retune the controller
gNk ← 0

N̂k+1 ← C/Xk
end if

is the traffic rate obtained from (4), Yk = Ĉ is the measured
link capacity, λN is the step size, and λk is the normalized
step size.

4.3 Estimation of link capacity

Due to the other rate-varying traffic such as UDP, SLA,
and QoS requirements, the bottleneck link capacity is time-
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varying. This parameter can be estimated simply by measur-
ing the rate of departed packets which is equal to the ratio
of departed packets to the router’s busy time. The bottleneck
link capacity can also be estimated using spectral and sta-
tistical analysis of traffic. Packet transmission frequency is
impressed from the packet size and link bandwidth. This fre-
quency can be seen strongly in the spectral representation of
the aggregate traffic observed at a downstream monitoring
point [18]. Therefore, using the power spectral density of the
traffic, the bottleneck link capacity could be estimated. Both
of these estimation schemes for link capacity are noisy along
with sharp variations which necessitate its filtering using an
adaptive filter (Recursive Least Square - RLS) with change
detector [16]. Algorithm 2 shows the CUSUM RLS filter for
estimation of the link capacity. The distance measure gCk is
computed according to both level and rate of changes of link
capacity and stopping rule ζC , is defined according to the
robustness characteristics of the controller with respect to
the link capacity uncertainties. In this algorithm, dk is the

Algorithm 2The CUSUMRLS Filter for Estimation of Link
Capacity

Yk ← dk
�t

Ĉk ← λcĈk−1 + (1 − λc)Yk
εc ← Yk − Ĉk−1
gck ← max(gck−1 + εc − ζc, 0)
if gck > hc then

alarm to retune the controller
gck ← 0

Ĉk+1 ← Yk
end if

departed packet size, �t is the sampling interval, λc is the
forgetting factor, and Ĉk is the estimated link capacity.

5 Design of the self-tuning AQM controller

Having the network dynamic model, the objective of this
study is to design an AQM controller capable of achieving
asymptotic stability of the TCP/AQM network. The AQM
controller aims to stabilize the queuing delay and jitters
through accurate regulation of the packet latency (queuing
delay) whose accurate operation also improves the other
objectives: maximizing the link utilization and minimizing
the packet loss. Thereby, it can achieve predictable delay
according to the QoS requirements. The other control objec-
tive is the robustness of the congestion control algorithm
against the disturbance on the network parameters which
are time-varying. The packet marking/dropping probability,
P(t), is used as the control action, and the router queuing
delay is the measurable output. The time-varying network
parameters are network delay, traffic load and bottleneck link

capacity in which the controller should adapt itself with their
variations.

5.1 Delay-based dynamic model

We develop the controller based on a linearized parameter-
varying delay-based dynamic model. Assuming the traffic
load N (t), and delay term R(t) are constant, the linearized
model is obtained as follows [19]:
⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

δẆ (t) = − N
CR2

0
(δW (t) + δW (t − R0))

− 1
R2
0
(δR(t) − δR(t − R0))

−C2R0
2N2 δP(t − R0)

δ Ṙ(t) = + N
CR0

δW (t) − 1
R0

δR(t)

(6)

Ignoring the internal delay as the high frequency small gain
parasitic terms [19], the transfer function becomes:

F(s) = δR(s)

δP(s)
= −

C
2N e

−R0s

(

s + 2N
CR2

0

) (
s + 1

R0

) (7)

which comprises of two stable poles (−1/R0, −2N/(CR2
0))

and an input/output delay (R0). In order to handle the
input/output delay and considering it in controller design
with a finite-dimensional form, it is approximated with a first
order Padé rational function as:

e−sR0 = 1 − R0
2 s

1 + R0
2 s

(8)

The unstable zero transfers the dynamic system into a non-
minimum phase system. The non-minimum characteristics
caused by unstable internal dynamics restrict the direct appli-
cation of conventional control techniques. To circumvent this
restriction, the unstable internal dynamics should be compen-
sated through an appropriate compensator not only to capture
the unstable zero, but also to achieve an appropriate dynam-
ics for the tracking error. The achieved third order system is
simplified in order to utilize the well-known form of the sec-
ond order system dynamics. Hence, the reduced order model
is obtained as follows:

F(s) =
R0C
4N

(
s − 2

R0

)

(

s + 2N
CR2

0

)(
s + 1

R0

) (9)

The state-space equivalent of (9) is acquired as:

⎧
⎨

⎩

ẋ1(t) = x2
ẋ2(t) = −a0x1(t) − a1x2(t) + u(t)
y(t) = b0x1(t) + b1x2(t)

(10)
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where R0 is the delay parameter, a0 = (2N )/(CR3
0),

a1 = 1/R0 + 2N/(CR2
0), b0 = −C2/(2N ) and b1 =

(C2R0)/(4N ). Since, the relative degree of the obtained
second-order system (10) is r = 1, the overall stability of
the whole system depends upon not only to the stability
of input/output pair, but also to the stability of the inter-
nal dynamics. The normal form transformation [21] is used
to distinguish the internal dynamics from the input/output
dynamics as follows:

W (t) = [ξ(t) η(t)]T ↔ Φ(x) = [y(t) x1(t)]T

The obtained model is:

⎧
⎨

⎩

η̇(t) = a11η(t) + a12ξ(t)
ξ̇ (t) = a21η(t) + a22ξ(t) + βu(t)
y(t) = ξ(t)

(11)

where a11 = −b0/b1, a12 = 1/b1, a21 = −b20/b1 − a0b1 +
a1b0, a22 = b0/b1 − a1 and β = b1 are the corresponding
coefficients. The obtained zero dynamics of the system has
an unstable eigenvalue which is equal to 2/R0. Therefore,
the internal dynamics is unstable for all positive time delays
and must be considered carefully in the controller design.

5.2 AQM controller design

A parameter-varying dynamic compensator, which is
achieved according to the tracking error and the unstable
internal dynamic, can cover the problem of non-minimum
phase system limitations caused from Padé approximation of
the delay. Figure 2 shows the proposed structure consisting
of the compensator (E(s)) and controller (C(s)). Primar-
ily, using the proposed method in [25] the unstable internal
dynamics of the delay-based dynamic model described in
Sect. 5.1, is compensated as follow:

[
d2

dt2
+ m1

d

dt

]

η(t) + n0e(t) = 0. (12)

The acquired dynamic compensator has two unknown coef-
ficients: n0 and m1. These two parameters should be deter-
mined according to the tracking error and the unstable
internal dynamics. By designating a second order dynamic
system with suitable characteristics as the desired error

Fig. 2 AQM controller structure

dynamics, the unknowns can be calculated. Rewriting (12)
and using η̇(t) = ē(t), the dynamic compensator with
parameter-varying characteristics is achieved as:

˙̄e(t) + m1ē(t) + n0e(t) = 0 (13)

While the proposed compensator captures the unstable inter-
nal dynamics and conducts the closed-loop system into a
desired region of state-space, it allows to specify an appro-
priate dynamics for tracking error. Then, according to the
acquired compensator (12), the PID controller is obtained as
follow [25]:

u(t) = kpē(t) + kd ˙̄e(t) + ki

∫ t

0
ē(ρ)dρ (14)

where ē is the filtered and compensated error based on the
dynamic compensator (12). ThePIDcontrol parameters (pro-
portional kp, derivative kd , and integral ki ) are obtained as
kp = a1, kd = 1, and ki = a0, which are related directly
to the state-space parameters in (10). Hence, the controller
parameters are obtained directly from the state-space model
coefficients and the achieved PID controller does not require
to be tuned over the system operating envelop.

5.3 Parametrization of AQM controller

The PID controller parameters are directly obtained from the
state-spacemodel ofTCP/AQMnetwork.Hence the achieved
controller is excellently parameterized in terms of network
parameters, and it does not require further gain calculation
approaches like the Ziegler–Nichols method. The compen-
sator is designed not only to stabilize the internal dynamics,
but also to specify an appropriate dynamics for the track-
ing error. Therefore the parameters of the compensator are
computed according to the unstable internal dynamics and
the desired dynamics for the tracking error. According to the
control objectives, the desired dynamics for the tracking error
is specified through a well-known second order dynamic
system ë(t) + 2ζwnė(t) + w2

ne(t) = 0. To calculate the
compensator unknowns, we equalize the achieved dynamic
model for compensator (12) and the desired dynamic model
for the tracking error. Hence, the compensator parameters,
m1 and n0, are obtained in terms of ζ and wn and internal
dynamics parameters, a11 and a12 as follows:

⎧
⎨

⎩

m1 = 2ζwn + w2
n

a11

n0 = a12w2
n

a11

(15)

We investigate the effect of these two parameters (wn and ζ )
on the correct operation of ST-CPID. To do this, we simulate
the ST-CPID for different wn and ζ : wn from 1.0 to 6.0 and
ζ from 0.1 to 1.0, respectively. Figure 3 shows the result of
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Fig. 3 RMSE of queuing delay with respect to the wn and ζ

these simulations. As it can be seen, the root mean square
error (RMSE) of the queuing delay is less affected by the
variation of compensator parameters. However, according to
these results, it is recommended that wn be between 3.5 and
6 and ζ be between 0.5 and 0.8.

6 Packet-level implementation

Selecting the zero-order-hold transform and the sampling
interval Ts , the PID controller (14) in discrete time domain
is achieved as follows:

p(k) = d0δR(k)+d1δR(k−1)+d2δR(k−2)+p(k−1) (16)

where u(k) = p(k), ē = δR(k) = R(k) − Rref , d0 =
kp + kd/Ts = a1 + 1/Ts , d1 = −kp − 2kd/Ts + ki Ts =
−a1 − 2/Ts + a0Ts , d2 = kd/Ts = 1/Ts , and Rre f is the
desired queuing delay. The sampling frequency Fs = 1/Ts
is typically selected 10 times of the loop bandwidth [19].
Similarly, the compensator (13) in discrete time domain is
obtained as follows:

ē(k) = acē(k − 1) + bce(k − 1) (17)

where ac = 1 − m1Ts and bc = n0Ts . At every sampling
time instance, the estimation of the traffic load and the link
capacity are updated, filtered out, and then the controller is
retuned accordingly. Due to the robustness characteristics of
the controller, whenever a considerable change is announced
through the change detector, the controller is retuned for the
new operating conditions. Hereinafter, the self-tuning com-
pensated PID controller is called ST-CPID.

7 Packet-level evaluations

In this section, the proposed controller and its adaptive
scheme are evaluated under various simulation scenarios

Fig. 4 Single bottleneck dumbbell topology

through network simulator, ns2, with a sampling frequency
of Fs = 100Hz. The simulation scenarios are regulated
according to ones used in [55] and other related papers. The
proposed self-tuning compensated PID controller (ST-CPID)
is evaluated using a single-gateway dumbbell topology (see
Fig. 4) which is widely used to evaluate the AQM controller
[33,50]. However, we extend the evaluations to the case of
a network topology with multiple bottlenecks to show the
scalability of the proposed AQM controller.

7.1 Varying traffic load

In the first simulation scenario, the proposed controller is
evaluated under varying traffic load using the well-known
single bottleneck dumbbell topology, where C = 50Mbps
or C = 6250packets/s, link delay ranges uniformly between
80 and 260ms, packet_si ze = 1000byte, and N (t) is time-
varying: N (0 : 60) = 50, N (60 : 120) = 100, N (120 :
180) = 200, N (180 : 240) = 300, N (240 : 300) = 400,
and N (t1 : t2) is the traffic load from t1 to t2. Using the pro-
posed change detector, the estimated value of the traffic load
is continuously monitored, and by detecting a considerable
change in the traffic load, the controller is retuned for the
new operating point. Figure 5 depicts the output of change
detector alongwith the estimator. Despite the high-frequency
oscillations of the estimated value, retuning is just applied
when the change is considerable and its variance remains
approximately bounded.

As it can be seen in the figure, the change detector not only
removes the noise accurately, but also tracks the fast varia-
tions of the traffic load at time instances of t = 60, 120, 180,
and 240s. Using the estimated value of the traffic load, the
controller adapts itself to the variations of the traffic load.
Figures 6 and 7 give the evolution of control action P(t) and
queuing delay versus time for both ST-CPID and PIE and
Table 1 shows the performance criteria. The figures show
that, the ST-CPID controller regulates accurately the queu-
ing delay under varying traffic load from light to heavy traffic
load. While ST-CPID shows a stable behavior under varying
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Fig. 5 Evaluationof change-detection algorithmon the estimated traffic
load in a network with 50, 100, 200, 300, and 400 FTP flows at time
interval 0–60, 60–120, 120–180, 180–240, and 240–300s, respectively
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Fig. 6 Evaluation of the ST-CPID to regulate the queuing delay under
varying traffic load with 50, 100, 200, 300, and 400 FTP flows at time
interval 0–60, 60–120, 120–180, 180–240, and 240–300s, respectively

traffic load, the PIE shows sluggish and near unstable around
light traffic load.

We extend the evaluation of the proposed controller under
more realistic conditions: noisy and time-varying traffic load.
The aggregated short-lived flows on high-bandwidth links
behave as a Gaussian noise [24]. The simulation setup is not
changed except thatC=15Mbps, linkdelay ranges uniformly
between 160 and 240ms, and the short-lived http flows with
rate 200 flows/s are additionally generated using the Pack-
Mime module from Bell-Labs [5]. Figure 8 gives the time
evolution of the real traffic load, the estimated traffic load,
and the filtered traffic load. Despite the noisy traffic, the esti-
mation algorithm follows the real value but overestimates the
number of long-lived flows. Since, the aggregation of short-
lived flows behaves as a Gaussian noise [24], an increase in
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Fig. 7 Evaluation of PIE to regulate the queuing delay under varying
traffic load with 50, 100, 200, 300, and 400 FTP flows at time interval
0–60, 60–120, 120–180, 180–240, and 240–300s, respectively

Table 1 Performance measures under varying traffic load

avg(s) std(s) RMSE Loss% Util%

STCPID 0.0996 0.010 0.10 0.046 0.99

PIE 0.1004 0.012 0.12 0.048 0.99
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Fig. 8 Evaluationof change-detection algorithmon the estimated traffic
load under noisy traffic and in a network with 50, 100, 200, 300, and
400 FTP flows at time interval 0–60, 60–120, 120–180, 180–240, and
240–300s, respectively

the rate of incoming traffic can be seen. This increase shows
itself as additional long-lived flows in the estimation process.
Figure 8, gives the time evolution of the estimated traffic load
and the change detector. When the traffic is a combination
of responsive and unresponsive flows, the estimated value
becomes noisy. So the change detector discovers the con-
siderable changes and avoids the frequently retuning of the
controller for small changes.
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Fig. 9 Evaluation of ST-CPID to regulate the queuing delay under vary-
ing and noisy traffic load with 50, 100, 200, 300, and 400 FTP flows at
time interval 0–60, 60–120, 120–180, 180–240, and 240–300s, respec-
tively
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Fig. 10 Evaluation of PIE to regulate the queuing delay under varying
and noisy traffic load with 50, 100, 200, 300, and 400 FTP flows at time
interval 0–60, 60–120, 120–180, 180–240, and 240–300s, respectively

Table 2 Performance measures under varying traffic load

avg. delay (s) std. delay (s)

ST-CPID 0.1006 0.020

PIE 0.1018 0.026

Figures 9 and 10 show the variation of control action and
queuing delay versus time for both ST-CPID and PIE. The
proposed controller adapts itself with the variation of traffic
load and regulates the queuingdelay accurately on the desired
value, but on the other side, PIE tries to regulate the delay
with oscillatory behavior (see Table 2).
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Fig. 11 Evaluation of change-detection algorithm on estimated link
capacity in a network with 15, 30, and 45Mbps at time interval 0–100,
100–200, and 200–300s, respectively

7.2 Varying link capacity

Unresponsive short-lived flows, UDP connections, and the
scheduling algorithm frequently alter the bottleneck link
capacity experienced by long-livedflows. In the second series
of simulations, the proposed controller is evaluated under
varying bottleneck link capacity. The simulation setup is
like the first scenario but instead of traffic load, the bot-
tleneck link capacity is varying. At time t = 100 s and
t = 200 s, the bottleneck link capacity is increased from
C = 15Mbps to C = 30Mbps and C = 45 Mbps, respec-
tively. A change detector is designed to detect a considerable
and steady change of the estimation. By detecting a consid-
erable change in bottleneck link capacity, the controller is
retuned for the new operating conditions. Figure 11 shows
the variation of estimated link capacity and change detector
versus time. To regulate the queuing delay accurately over
varying link capacity, the AQM controller should set differ-
ent queue length according to the varying link bandwidth. As
presented in Fig. 12, both the ST-CPID and PIE change the
queue length with respect to the link bandwidth, to minimize
the queuing delay variation. Figures 13 and 14 show the time
evolution of control action and queuing delay for both the
proposed controller and the baseline controller PIE under
varying link capacity. The ST-CPID regulates the queuing
delay accurately with less fluctuations (see Table 3).

7.3 Multiple bottleneck topology

In this section we evaluate the ST-CPID under more realis-
tic network topology, known as multiple bottleneck network
topology (see Fig. 15)). The aforementioned topology has
also been used in various related papers [15,50]. This topol-
ogy consists of a total of 6 routers (R1 to R6) with 120 FTP
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Fig. 12 Evolution of queue length over varying link capacity
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Fig. 13 Evaluation of ST-CPID to regulate the queuing delay under
varying link capacity with 15, 30, and 45Mbps at time interval 0–100,
100–200, and 200–300s, respectively
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Fig. 14 Evaluation of PIE to regulate the queuing delay under varying
link capacity with 15, 30, and 45Mbps at time interval 0–100, 100–200,
and 200–300s, respectively

Table 3 Performance measures under varying link capacity

avg. delay (s) std. delay (s)

ST-CPID 0.096 0.018

PIE 0.095 0.036

Fig. 15 Multiple bottleneck network topology [50]

0 50 100 150 200 250 300
0

0.1

0.2

0.3

0.4

D
el

ay
 (s

ec
)

0 50 100 150 200 250 300
0

0.2

0.4

0.6

0.8

1

Time (sec)

M
ar

k/
D

ro
p 

P
ro

b.

Fig. 16 Evaluation of ST-CPID to regulate the queuing delay in amulti-
ple bottleneck link networkwith 50, 100, 200, 300, and 400FTPflows at
time interval 0–60, 60–120, 120–180, 180–240, and 240–300s, respec-
tively

flows from left to right, and 30 FTP cross-flows. It consists of
two bottleneck links: link R2 ↔ R3 and R4 ↔ R5. Since the
other links are not bottleneck, their queuing delay are almost
close to zero. Link R2 ↔ R3 and link R4 ↔ R5 have similar
behavior. Therefore, we just investigate the behavior of link
R2 ↔ R3. The queuing delay of R2 ↔ R3 for both PIE and
ST-CPID is shown in Figs. 16 and 17. The figures show that
the ST-CPID and PIE are scalable for multiple bottleneck
network topology and compared to the PIE, ST-CPID has
more stable behavior.

7.4 Mixed TCP sources

We extend the evaluation of the proposed controller with
a mix of different TCP sources (Reno, SACK, and Vegas).
Since different types of TCP have approximately similar
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Fig. 17 Evaluation of PIE to regulate the queuing delay in a multiple
bottleneck link network with 50, 100, 200, 300, and 400 FTP flows at
time interval 0–60, 60–120, 120–180, 180–240, and 240–300s, respec-
tively
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Fig. 18 Evolution of queuing delay with respect to time for ST-CPID
(top) and PIE (bottom) with mix of different TCP sources

Table 4 Performance measures for a network with mixed TCP traffic

avg(s) std(s) RMSE Loss% Util%

STCPID 0.099 0.012 0.12 0.013 0.998

PIE 0.099 0.020 0.20 0.015 0.997

dynamic behavior in the steady state, there are little changes
compared to the simple traffic. The queuing delay for both
PIE and ST-CPID is shown in Fig. 18. As it can be seen,
ST-CPID behaves more stable than PIE. Table 4 also shows
the outperformance of ST-CPID.
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Fig. 19 Evolution of queuing delay with respect to time for ST-CPID
(top) and PIE (bottom) with OC-12 link

Table 5 Performance measures for a network with OC-12 link

avg(s) std(s) RMSE Loss% Util%

STCPID 0.0940 0.011 0.12 0 0.997

PIE 0.0936 0.023 0.24 0.001 0.992

7.5 OC-12 Bottleneck link

In this section, we evaluate the proposed controller under a
high-speed bottleneck link, Synchronous Optical Network-
ing (SONET) fiber optic networks, OC-12. OC-12 lines
are commonly used by ISPs as Wide area network (WAN)
connections, as the backbones of many regional ISPs, web
hosting companies or smaller ISPs buying service from larger
ones. Therefore, the traffic load on this link is high. The pro-
posed controller is evaluated and compared with the PIE on
dumbbell topology. The bottleneck link is OC-12with capac-
ity of 622Mbps and the traffic load is 1000 of FTP flows.
Figure 19 gives the time evolution of queuing delay of the
ST-CPID and PIE. Regarding the PIE, the ST-CPID shows
more stability in the tracking error in terms of mean and stan-
dard deviation (see Table 5). The link utilization of STCPID
is approximately 0.5% higher than that of PIE which equals
about 3.1Mbps. The standard deviation of queuing delay for
PIE is 0.023sec, almost twice that of STCPID 0.011 which
for OC-12 link become about.

In high speed link, the queue dynamics (NW (t)/R(t)−C)
is more affected by the dynamics of congestion window
length which is controlled through the marking/dropping
feedback of AQM. However, by increasing the number of
TCP flows (N ), which is reasonable in WAN connections,
the queue dynamics become more stable and is under the
influence of cumulative behavior of many TCP flows. The
PIE aims to keep queuing delay to a target (τ0) by updating
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the drop probability p which consists of a proportional and
an integral part, weighted respectively by the gain factors β

and α:

p(t) = p(t − T ) + α(τ(t) − τ0) + β(τ(t) − τ(t − T ))

(18)

where τ(t) is the queuing delay. The proportional gain β

is the main correction of p and the integral gain α is typi-
cally smaller than the proportional one. In high speed links,
the growing speed of the queue (τ(t) − τ(t − T )) is high
(the proportional term). Therefore p is more affected by the
proportional terms and leads to the sluggish behavior of the
queue length or queuing delay in the PIE.

8 Conclusion

Regulating accurately the queuing delay yet keeping high
the link utilization and keeping low the packet loss rate are
the main objectives of a communication network which are
achieved through AQM controller. However, highly vary-
ing dynamics of the network, does not allow most of the
AQM controllers to meet these objectives well. Moreover,
frequently re-tuning of an AQM controller with respect to
the small variations of the network parameters, leads to the
sluggish behavior of the controller. In this paper a self-tuning
compensated PID controller is proposed which considers the
time-varying nature of delay and network parameters. More-
over, the parameter-varying dynamic compensator increases
the robustness against noise and uncertainties caused from
unresponsive connections. Due to harsh variations of the net-
work parameters, the proposed change detector provides an
accurate yet fast tracking filter for the estimated parameters.
Packet-level evaluations using ns2 show that the proposed
controller is able to tune itself accurately and quickly with
respect to the harsh variations of the network parameters.
Since the controller parameters are obtained directly from
the state-space model coefficients, identification of the net-
work dynamics with a linear state-space model provides
directly the controller gains and it is not necessary to estimate
each network parameter individually. This is regulated as the
future work of this research.
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