
Telecommunication Systems (2019) 71:505–515
https://doi.org/10.1007/s11235-018-0523-4

Enhancing network resources utilization and resiliency in
multi-domain bandwidth on demand service provisioning using SDN

Alaitz Mendiola1 · Jasone Astorga1 · Eduardo Jacob1 · Kostas Stamos2

Published online: 30 October 2018
© Springer Science+Business Media, LLC, part of Springer Nature 2018

Abstract
This paper presents a solution to increase bandwidth utilization and to reduce the time necessary to recover from network
failures in multi-domain bandwidth on demand service provisioning. The proposed solution is based on software-defined
networking (SDN) in order to implement novel traffic engineering (TE) techniques. In fact, most standards development
organizations and researchers agree that the logically centralized control plane and high programmability of SDN can revo-
lutionize TE with novel and powerful strategies. In this context, the dynamic path computation (DynPaC) framework, relies
on the OpenFlow SDN protocol to provide resilient layer 2 services with bandwidth guarantees within OpenFlow domains.
In order to make DynPaC support multi-domain service provisioning, it has been extended with an additional operational
mode and REST API calls, making it fully compliant with the Network Services Interface-Connection Service protocol. In
this way, DynPaC can behave as a network resource manager (NRM) in the network services framework. As a result, the
presented solution is the first OpenFlow-enabled NRM with resiliency capabilities that implements novel TE strategies that
enhance the utilization of network resources. In order to validate the proposal, it has been implemented using the ONOS
network operating systems and several tests have been conducted using diverse service demand patterns. The obtained results
show that DynPaC is suitable to be used as an NRM and that the number of accepted services increases thanks to the flow
reallocation mechanism included in the framework, achieving in this way a better utilization of network resources.

Keywords Software-defined networking · Bandwidth on demand · Traffic engineering · Multi-domain connectivity

This work was supported in part by the EC through the Horizon 2020
Research and Innovation Programme (GN4) under Grant 731122 and
in part by the Spanish Ministry of Economy, Industry and
Competitiveness through the State Secretariat for Research,
Development and Innovation under the “Adaptive Management of 5G
Services to Support Critical Events in Cities (5G-City)” Project
TEC2016-76795-C6-5-R.

B Jasone Astorga
jasone.astorga@ehu.eus

Alaitz Mendiola
alaitz.mendiola@ehu.eus

Eduardo Jacob
eduardo.jacob@ehu.eus

Kostas Stamos
stamos@cti.gr

1 Department of Communications Engineering, University of
the Basque Country UPV/EHU, Bilbao, Spain

2 Technological Educational Institute of Western Greece,
Patras, Greece

1 Introduction

In this new era of large-scale particle physics or genomic
experiments, the e-science is at its peak. Researchers and
innovators require novel networking services to access large
amounts of data stored in remote data centers, so as to dis-
tribute the data obtained in their experiments to be processed
in high performance computing facilities. Likewise, big data
is revolutionizing industries and businesses, generating new
service demands that require disruptive traffic engineering
(TE) strategies.

To satisfy this sort of requirements, Internet Service
Providers (ISP) and National Research and Education Net-
works (NREN) have started to include novel types of services
in their portfolios, like bandwidth on demand (BoD). In
a nutshell, BoD allows end-users to request high capacity,
short term and flexible circuits with bandwidth guarantees
using an automated provisioning tool, and it has become
a very popular service among companies and researchers.
When providing BoD, TE strategies are essential to satisfy

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s11235-018-0523-4&domain=pdf
http://orcid.org/0000-0002-5532-004X


506 A. Mendiola et al.

the Service Level Agreements (SLA) subscribed with the
users, because once a service request is accepted by the pro-
visioning tool, the resources that are or will be consumed
by the service are reserved. This characteristic of BoD and
advanced reservation systems in general can lead to resource
over-provisioning, where the TE mechanisms to optimize
network resources’ utilization become of uttermost impor-
tance.

Since the appearance of software-defined networking
(SDN) [1], the research community and the Standards Devel-
opment Organizations have agreed on the potential of this
new networking paradigm to revolutionize TE. As stated by
theOpenNetworkingForum, SDN is a disruptive networking
paradigm that proposes the decoupling of the forward-
ing and control planes, and the use of open interfaces to
program the network devices from a logically centralized
control plane. This approach can benefit network operators
by enabling the automation of service provisioning and by
reducing the network operational cost. Additionally, it also
makes possible to apply novel and disruptive TE strate-
gies to optimize network resources’ utilization based on
exploiting the finer granularity of the data planes, or even
include efficient resiliency mechanisms thanks to the logi-
cally centralized control plane aware of the complete network
state. Consequently, many NRENs and big telecommunica-
tion companies such as AT&T have started to work on novel
services powered by SDN, aware of the benefits provided by
technologies such as OpenFlow [2], NETCONF [3] or ALTO
[4].

More specifically, the pan-European Research and Educa-
tionNetworkGÉANThas started towork on the SDN-ization
of its services, including the BoD service, which is currently
provided through the AutoBAHN provisioning tool [5]. One
of the most interesting features of GÉANT’s BoD is that it
enables the provisioning of multi-domain dynamic circuits,
which is achieved through the Network Services Interface-
Connection Service (NSI-CS) protocol [6], a technology
agnostic protocol part of the network services framework
(NSF) [7] that allows to deploy services across multiple
and heterogeneous domains. Moreover, given the nature of
current research initiatives and projects, where researchers
distributed all around the world must cooperate, the future
GÉANT’s SDN-based BoD service must be able to keep
guaranteeing its interoperability with the BoD provisioning
tools of other organizations.

With this scenario in mind, this paper presents a solution
for an SDN-based BoD service with multi-domain capa-
bilities. It is based on the utilization of the dynamic path
computation framework (DynPaC) [8], a powerful advanced
bandwidth reservation system for SDN that provides resilient
VLAN-based L2 services taking into consideration band-
width constraints in OpenFlow domains. In order to be able
to interoperate with the BoD services of other organizations,

regardless of the transport technology being used, DynPaC
has been designed to be NSI-CS compliant, acting as the
network resource manager (NRM) of OpenFlow domains.
This strategy will allow GÉANT to easily migrate its net-
work resources to SDN-enabled ones, while keeping the
strategic connections to provide worldwide connectivity ser-
viceswith other NSI-CS-capable domains, like theAmerican
Internet2 or the Energy Sciences Network (EsNET). More-
over, the future SDN-based BoD will benefit GÉANT by
reducing the capital expenditures (CAPEX) and operating
expenses (OPEX), by minimizing the currently excessive
manual configuration (which is error prone) and by opti-
mizing the network resources’ utilization. Additionally, the
DynPaC framework is currently implemented as an appli-
cation for the open network operating system (ONOS) [9],
which is a very powerful, modular and flexible SDN frame-
work with multiple southbound interfaces, including support
forOpenFlow1.3. This provides also the possibility to further
extend DynPaC, and therefore the SDN-based BoD service
in GÉANT, not only to support OpenFlow domains, but also
other SDN technologies.

The rest of the paper is structured as follows. Section 2
reviews current proposals for multi-domain SDN-based BoD
solutions. Section 3 briefly describes the architecture of the
DynPaC framework and the features that it provides. Then,
Sect. 4 presents the REST interface that has been designed
to support the integration of the DynPaC framework as an
NRM on the NSF. Finally, Sect. 5 provides a performance
evaluation of the implementation, while Sect. 6 summarizes
the conclusions and presents the future work.

2 Related work

As mentioned before, BoD is a service provided by multiple
NRENs and ISPs, and some of them have already started
to integrate their solutions with SDN technologies. One
of the most representative alternatives is the one proposed
by the OLiMPS project, where they extend the on-demand
secure circuits and advance reservation system (OSCARS)
to operate over SDN domains [10]. OSCARS is the soft-
ware framework used at EsNET to provide BoD circuits,
and it is based on the path computation element (PCE)-
based architecture [11]. Originally limited toMPLS/GMPLS
domains andwithout an automated network topology discov-
ery mechanism, the OLiMPS project enhanced the OSCARS
software framework to overcome such limitations and sup-
port OpenFlowdomains, first using the FloodLight controller
and later using the OpenDaylight network operating system
[12]. In addition, OSCARS provides multi-domain capabil-
ities through the inter-domain controller protocol first and
with NSI-CS later, as it happened with GÉANT’s Auto-
BAHN.

123



Enhancing network resources utilization and resiliency in multi-domain bandwidth on demand… 507

Other NRENs are also trying to enhance their BoD sys-
tems with SDN to evolve from static to dynamic layer 2
circuit provisioning. This is the case of Internet2, which
currently provides static BoD among its Advanced Layer
2 services [13]. In addition, through the open exchange soft-
ware switch they provide dynamic layer 2 virtual circuits to
users, which is based onOpenFlow 1.0. This service provides
very interesting features, such as automated switch and topol-
ogy discovery, VLAN usage monitoring or NSI-CS support
for multi-domain circuit provisioning. However, it lacks the
mechanisms to enforce quality of service (QoS) at the net-
work devices. In order to solve this limitation and provide full
SDN-based BoD, they are currently updating their system to
support OpenFlow 1.3.

In general, PCEs are becoming increasingly popular not
only to provide BoD services, but all kinds of services
that require advanced TE strategies. For instance, several
solutions for WANs using SDN include a PCE in their archi-
tecture,whichmakes possible to optimize network resources’
utilization. An example of such solutions is the Cisco WAN
Automation Engine [14], a tool able to provide optimized
services like BoD, premium routing and global load balanc-
ing. Similarly, Juniper Networks’ NorthStar Controller [15]
relies on a stateful PCE to achieve a granular visibility and
control of IP/MPLS flows in large networks with the aim
of optimizing the use of network infrastructures while tak-
ing into account specific user-defined constraints. Analogous
approaches are also followed by some SDN-based solutions
for the optimization of the inter-data center WANs. On the
one hand,Google uses anSDN-basedTE solution to optimize
the link utilization in their B4 network, which relies on a fair
flow allocation mechanism that uses statistical information
about the network usage [16]. On the other hand, Microsoft
Research proposes SWAN [17], a system able to improve
network resources’ utilization based on the coordination of
the services’ sending rates and a centralized path allocation
mechanism. Their TE strategy is engineered to leverage the
high granularity available at the OpenFlow data plane, mak-
ing use of traffic reallocation and disaggregationmechanisms
to increase the amount of traffic carried out by the network.
However, these solutions do not provide multi-domain capa-
bilities.

All in all, as far as the authors know, our proposal
is the first OpenFlow 1.3 enabled NRM with resiliency
capabilities that enforces the required QoS at the network
devices to guarantee the SLAs subscribed with the users.
Furthermore, most SDN-based solutions perform path com-
putation using PCEs to apply constrained-shortest path first
(CSPF) algorithms, while the DynPaC framework imple-
ments a custom algorithm with support for flow reallocation
to accept new service demands that otherwise would not be
accepted.

3 DynPaC, a dynamic path computation
framework for SDN

Currently, the SDN ecosystem consists of a plethora of tech-
nologies, ranging from pure management protocols such as
OVSDB or OF-CONFIG to more complex frameworks and
technologies such asOpenFloworForCES,which definenew
and more powerful forwarding planes and protocols [18].
Having this heterogeneity inmind, this section presents a ref-
erence architecture to support BoD service provisioning in
software-defined networks, DynPaC. It defines a set of mod-
ules and features that allow to optimize network resources’
utilization while providing resilient L2 circuits with QoS
guarantees.

As depicted in Fig. 1, the DynPaC framework consists
of seven different modules and a REST API, which will be
further explained in Sect. 4. It follows a modular approach
to ease the introduction of new modules and functionalities
and to support the rapid modification of the existing ones.

– Service manager the core module of the entire archi-
tecture. It is in charge of the coordination among the
remaining modules and storing the information about
previous reservations.

– PCE the module in charge of the path computation for
the requested services.

– Topology abstraction the module in charge of abstracting
the topology to ease the resource management and the
path computation.

– Resiliency the module in charge of listening to topol-
ogy events and reacting upon link failures and network
updates.

– Network programmer the module in charge of program-
ming the network devices to install or remove flows
according to the service’s lifecycle.

– GUI a graphic user interface that allows users to request
the services using a web browser.

– CLI an interface that allows users to request the services
from the ONOS CLI console.

– REST API an open API that allows to interact with exter-
nal entities.

The current implementation of the DynPaC framework
is based on ONOS, and it is meant to operate over Open-
Flow enabled domains. As mentioned before, the reference
architecture establishes the functionalities that each module
must implement, but it does not specify how this must be
achieved. This allows to easily exchange current modules,
as long as they provide the required functionalities. The fol-
lowing subsections provide a detailed overview of how the
current implementation of the DynPaC framework works.

123



508 A. Mendiola et al.

Fig. 1 Integration of the DynPaC framework as NRM for multi-domain BoD service provisioning

3.1 Network topology discovery

When the DynPaC application is activated in the ONOS
network operating system, it first retrieves the topological
information via de topology abstraction module. This infor-
mation is later used for the correct path computation.

DynPaC relies on the topology service, the edge port ser-
vice and the device service provided by ONOS to discover
and abstract the topology. To ease the path computation
between two egress points, DynPaC assumes bidirectional
and symmetrical services. This assumption makes possible
to abstract the topology using a vector, inwhich each position
refers to a bidirectional link and its value to the maximum
allowed bandwidth as advertized by the OpenFlow devices.

DynPaC also assumes that the services can only be pro-
vided between two endpoints within a domain. Therefore, in
order to build the list of user-selectable (source or destina-
tion) endpoints, the topology abstraction module identifies
among all the nodes inside the domain the edge-nodes; and
among their ports, it selects the ports that are not used to
connect to other nodes, that is, that are facing users.

3.2 Path pre-computation

Once the topology is retrieved, the DynPaC framework (via
thePCEmodule) pre-computes all the possible paths between
the endpoints (as identified by the topology abstraction mod-
ule), that is, the networking devices facing end users or
external administrative domains. The list of possible paths is
then stored in a non-persistent database, where the paths are

ordered prioritizing the shortest paths. This approach allows
to accelerate the processing of a new service request.

3.3 Accessing the DynPaC GUI

In order to support BoD service requests within a domain,
the DynPaC framework extends the ONOS GUI to provide
a user-friendly tool to interact with the system. The Dyn-
PaC GUI is a single web page that can be opened from
the ONOS GUI menu, based on ONOS’ AngularJS build-
ing blocks for its layout and JSON communication with the
ONOS/DynPaC back-end. It provides detailed and real time
information about the already accepted services in the net-
work, including information about their state, whether they
are active or reserved, the VLAN assigned to the service, etc.

It also provides an easy way to request new services by
specifying parameters such as the requested VLAN ID or
VLANrange, the start and end times of the service, the source
and destination endpoints, the requested bandwidth and the
type of service. Feedback about the success or not of the
request is then provided by the DynPaC service manager.

3.4 New service request

DynPaC provides support for two types of BoD services,
depending on whether they have a totally disjoint backup
path guaranteed or not. On the one hand, gold services are
guaranteed with a backup path, which is pre-computed and
automatically installed in the network in case of link failure.
When a user requests a gold service, the system analyzes if

123



Enhancing network resources utilization and resiliency in multi-domain bandwidth on demand… 509

TIME

L1 L2

L3

L4

L5

BW1

BW1 BW1 0 0 0

L1 L2 L4L3 L5

BW1 BW1 0 0 0

L1 L2 L4L3 L5

Alternative 1

L1 L2

L3

L4

L5

BW1

0 0 BW1 BW1 BW1

L1 L2 L4L3 L5

0 0 BW1 BW1 BW1

L1 L2 L4L3 L5

Alternative 2

TOTAL
OCCUPIED

BW

Service 1

Start time: 00:00 01/01/2018
End time: 23:59 31/07/2018
Concurrent services: Service 1

Network Snapshot 1

L1 L2

L3

L4

L5

BW1

BW2

BW1 BW1 BW2 BW2 BW2

L1 L2 L4L3 L5

BW1 BW1 0 0 0

L1 L2 L4L3 L5

Alternative 1

TOTAL
OCCUPIED

BW

Service 1

Start time: 00:00 01/08/2018
End time: 23:59 31/12/2018
Concurrent services: Service 1, Service 2

Network Snapshot 2

0 0 BW2 BW2 BW2

L1 L2 L4L3 L5

Service 2

L1 L2

L3

L4

L5

BW2

BW1

BW2 BW2 BW1 BW1 BW1

L1 L2 L4L3 L5

0 0 BW1 BW1 BW1

L1 L2 L4L3 L5

Alternative 2

BW2 BW2 0 0 0

L1 L2 L4L3 L5

Fig. 2 Network snapshot’s structure and transition in time

there are enough resources to provide both the primary and
the backup path. If there are not enough resources available
for the backup path, the system notifies the user that it is
not able to provide the requested service. On the other hand,
regular services are not guaranteed with a backup path. How-
ever, the architecture does provide a backup path for these
types of services when there are enough resources available.
The difference is that if there are not resources available for
the backup path, the service request is processed normally,
and the user gets notified that the service request has been
accepted but without guarantees.

DynPaC allows to reserve time-bounded resources for
future BoD services. Therefore, it is a framework with
resource reservation capabilities and scheduling functional-
ities. In order to handle the time-dependent network state,
the service manager implements network snapshots, which
in the DynPaC framework are used to represent the state
of the network in a specific period of time. Network snap-
shots provide information about the concurrent services at a
given time interval and the different path alternatives that are
viable to guarantee the provisioning of the already accepted
services. Each path is represented with a vector, where each
position represents the bandwidth consumed by the service
in a given link. The service manager uses the list of all the
possible paths for a given pair of endpoints provided by the
PCE to generate the different alternatives, which are the path
combinations that guarantee that there are enough available
resources in the network to allocate all the concurrent ser-
vices in the snapshot. Figure 2 represents the evolution of the
network resources’ utilization using the network snapshots.

In particular, it depicts the different alternatives that exist to
allocate the services in two consecutive network snapshots,
the first one with a single concurrent service and the second
one created as the result of an additional concurrent service
reservation.

Upon a new BoD service request, the DynPaC framework
executes an admission control procedure, consisting of two
phases: check and update. The check phase starts when the
service manager receives all the relevant information about
the service, namely, the start and end time, the source and
destination endpoints, the requested bandwidth and the type
of service (gold or regular). With this information, the ser-
vice manager analyzes if there are enough resources in the
network (bandwidth, VLANs, etc.) to provide the requested
service, taking into consideration all the snapshots it over-
laps. This phase takes a time denoted as tcheck and after its
completion, theDynPaC framework notifies the userwhether
the requested service is accepted or not.

The second phase, update, only takes place for accepted
services and it consists of selecting the optimal path for the
requested service, as well as updating the necessary informa-
tion in the network snapshot structures. In fact, the service
manager implements an algorithm to select the shortest path
among all the available paths that satisfy the connectivity
requirements (for both the primary path and the backup, in
case there is one), taking into consideration the bandwidth
constraints and the previously reserved services. The shortest
paths are retrieved from the list computed by the PCEmodule
in the path pre-computation phase. Additionally, in order to
avoid using always the same paths for the same source and

123



510 A. Mendiola et al.

destination endpoints, paths of the same length are provided
by the PCE to the service manager in a random fashion. In
this way, a uniform distribution of services along the network
is achieved. Note that randomization is only applied among
paths of the same length, prioritizing always shortest paths.

It is worth noting at this point that DynPaC implements
also a flow reallocation mechanism with the aim of maxi-
mizing the number of services accepted in the network, and
thus, optimizing network resources’ utilization.More specif-
ically, if a new service cannot be accepted with the current
distribution of ongoing or reserved services in any of the
network snapshots it overlaps, DynPaC executes flow real-
location mechanisms independently in each of the affected
network snapshots. Therefore,DynPaCanalyzes the different
path alternatives for the services that constitute the affected
network snapshot and tries to reallocate services into alter-
native paths in order to make room for the newly requested
service that otherwise could not be provided, thus, increasing
the number of accepted services, also known as the service
acceptance ratio. In the case of ongoing services, the new
path is installed starting from the end, so that the whole path
is already available when the first packets are transmitted
through it, avoiding packet loss. On the other hand, in the
case of services scheduled for the future, path reallocations
canbeperformedwithout affecting the services’ performance
in any way.

The update phase, including optimal path selection, possi-
ble reallocation of flows and update of the information stored
by the affected data structures, for all the overlapped network
snapshots, takes a tupdate time.

3.4.1 Reservation model

The time required to execute both phases, check and update
is denoted as tsetup, as shown in Eq. 1. This is the minimum
time that must elapse between consecutive service requests
in order to guarantee that the data structures that represent
the network state are up-to-date and stable.

tsetup = tcheck + tupdate (1)

This tsetup time conditions how long, prior to the ser-
vice’s start time, must a service be requested to the DynPaC
framework. This time is known as the book-ahead interval
(tbook_ahead). That is, at least a tsetup timemust elapse between
the time at which a service is requested and the start time of
this service. The relationship between tbook_ahead and tsetup is
given in Eq. 2.

tsetup ≤ tbook_ahead (2)

The relationship between all the previously defined time
intervals is graphically depicted in Fig. 3.

On the other hand, the average tsetup time depends on
whether a service request has been accepted in the network
or rejected due to lack of resources, therefore, t<setup> is
denoted as:

t<setup> = tcheck + pA ∗ tupdate (3)

being pA the probability that a service is accepted in the
network.This probability, is also knownas theServiceAccep-
tance Ratio (SAR) and it is a frequently used parameter to
assess the performance of advance reservation systems. In
fact, this parameter represents the amount of service reserva-
tion requests that are accepted by the system in comparison
with the total amount of received service reservation requests,
as shown in Eq. 4

SAR =
∑

serviceaccepted/
∑

servicerequested (4)

Tightly linked to the SAR, the Blocking Ratio (BR) repre-
sents the amount of service reservation requests rejected by
the system, compared to the total amount of received service
reservation requests:

BR =
∑

servicerejected/
∑

servicerequested (5)

3.5 Network devices programming

Once a service request is accepted by the service manager,
it remains in reserved state until it’s start time arrives. It
is when the service’s start time reaches that the service
state changes to active, and the service manager informs
the network programmer so that it installs the flows in the
networking devices. The same happens when the service’s
end time reaches. In this case, the service is marked with
the state finished, and the service manager informs the net-
work programmer to remove the corresponding flow from
the networking devices. The network programmer relies on
the flow objective service provided by ONOS to generate
the OpenFlow messages, and the application service to asso-
ciate the generated flows to the DynPaC application. This
module translates the information provided by the service
manager to real OpenFlow control actions, which in the cur-
rent implementation involves the usage of meters for rate
limiting purposes and enforcing the QoS constraints.

As previously mentioned, of uttermost importance in
the DynPaC framework is the smooth flow reallocation
mechanism. DynPaC is able to reallocate the services into
alternative paths in order to free the necessary resources for
a new service request, but only when it is strictly necessary.
This feature is handled by the service manager when a new
network snapshot is about to become active, selecting the
best alternative among the pre-computed ones in the net-
work snapshot that guarantees minimum flow reallocations.

123



Enhancing network resources utilization and resiliency in multi-domain bandwidth on demand… 511

requestService(Tstart, Tend, VLAN, BW)

Accept Service

tcheck

tupdate

tsetup

REQUESTED

RESERVED

ACTIVE

FINISHED

Tstart

Tend

Synchronous operational
mode

DynPaC CLI/GUI

R
es

ou
rc
e
R
es

er
va

tio
n

tbook_ahead

requestService

Accept Service

tcheck

tupdate

tsetup

provisionService

REQUESTED

RESERVED

releaseService

ACTIVE

RESERVED

provisionService

terminateService

ACTIVE

FINISHED

Tstart

Tend

DynPaC NSA/REST

R
es

ou
rc
e
R
es

er
va

tio
n

Asynchronous operational
mode

tbook_ahead

Fig. 3 DynPaC operational modes and services’ lifecycle

In this way, the network devices are programmed only when
it is necessary, avoiding unnecessary service disruptions due
to switches’ re-programming.

3.6 Reaction to link failures

One of the main functionalities provided by the architecture
proposed in this paper is network resiliency. DynPaC has a
resiliency module able to re-program the affected network
devices to setup the flow entries associated to the backup
path upon link failure. To be able to listen to link events,
the resiliency module relies on the link listener service pro-
vided by ONOS. Upon reception of a link failure event, the
resiliency module identifies the services that were being pro-
vided through that specific link, and triggers a procedure in
the network programmer to install the new flow entries asso-
ciated to the backuppaths. It isworth reminding, thatDynPaC
differentiates gold and regular services. As a consequence,
since the gold services have a guaranteed backup path, the
resiliency module will always trigger the recovery procedure
for these types of services. On the contrary, the regular ser-
vices have a backup path only if there are enough resources
in the network. Therefore, the resiliency mechanism needs
to identify if the affected services are gold or regular.

4 NSI-CS support

Asmentioned before, in order to providemulti-domain capa-
bilities, the DynPaC framework has been designed to be
NSI-CS compliant. This has been achieved extending the
REST API exposed by DynPaC and introducing a second
operational mode that allows DynPaC to act as the NRM of
OpenFlow domains.

In NSI-CS, two main elements are involved in the end-
to-end service provisioning. On the one hand, the network
services agents (NSA) are in charge of handling the com-
munication with the other NSA peers and of negotiating the
end-to-end services’ setup, activation/deactivation,modifica-
tion and tear down. They also exchange topology information
and thus, handle an abstracted form of the domain topology
that is suitable for advertisement. In other words, the NSAs
are in charge of the inter-domain aspects of the service provi-
sioning. On the other hand, the NRM is the NSI component
ultimately responsible for managing the transport resources.
It thus needs to be able tomodel the detaileddomain topology,
maintain a resource utilization calendar and calculate intra-
domain paths based on calendar and topology constraints.

In order to be able to use the DynPaC application as
an NRM, the NSA needs to be able to map the internal
NSI states within the DynPaC work-flow. NSI allows for

123



512 A. Mendiola et al.

advance reservations, which is a concept already supported
by DynPaC, but it also supports the concept of multiple pro-
visioning/releasing cycles within a reservation, which is the
process of building or tearing down the actual circuit without
cancelling the booking of resources. This feature is very use-
ful for the cases where there is a planned network downtime
and the user needs to be aware of the exact times when the
circuit is unavailable, without setting off monitoring alarms.

As a consequence, to be compliant with the NSI-CSwork-
flow, we have introduced an additional operational mode
in the DynPaC framework, called asynchronous network
update, in which the network devices are updated upon exter-
nal request. This operational mode differs from the default
mode at which the DynPaC framework operates, called syn-
chronous network update, in which the network devices are
updated using the start and end times specified in the service
requests.

For the integration with external entities, the DynPaC
framework exposes a REST API, which was originally
designed to support the reservation or removal of generic L2
service demands. Furthermore, it also provides the means
to retrieve information about the already reserved services
and about the edge nodes with their corresponding ports and
VLANs. In addition to these calls, we have extended the
REST API in order to support the communication with the
NSAs. More specifically, the new REST API calls have been
designed to support the explicit service provisioning and the
release of the resources of an active service. With these new
API calls, theNSA is able tomap the internalNSI states to the
appropriate REST API calls so that the work-flow proceeds
as specified by the NSI-CS standard [6]. Figure 3 depicts
the two operational modes available in the DynPaC frame-
work, and how the services’ state varies in both cases upon
reception of the new REST API calls.

5 Performance evaluation

In order to test the feasibility of the DynPaC framework as an
NRMand as an advanced reservation system, we have imple-
mented the proposed solution in a real-world testbed and we
have performed a set of experiments in order to evaluate the
performance of the platform from the users perspective. For
that aim,we have conducted three types of experiments. First,
we have measured the setup time, which is the required time
to compute a path for a service request in order to guaran-
tee that the DynPaC framework provides a response to the
user in a time frame that can be considered real-time. Sec-
ond, the blocking ratio, that is, the ratio of accepted service
requests versus the rejected ones, and how it is improved by
the flow reallocation mechanism. Finally, we have studied
the effectiveness of the resiliency mechanism, by measuring
the necessary time to install the backup paths of a set of ser-

Fig. 4 Network topology (Color figure online)

vices affected by a link failure. We have decided to evaluate
these three metrics because they are related to the limitations
present in the current BoD service that the DynPaC frame-
work and the utilization of SDN solve.

The evaluation has been conducted usingmininet to imple-
ment a network that consists of 14 Open vSwitches (OVS)
with OpenFlow 1.3 support connected as depicted in Fig. 4.
Specifically, the 14 OVSs are denoted as blue ovals in Fig. 4
and they are connected forming a ring, where each switch is
directly linked to two adjacent neighbours. Nevertheless, in
order to allow the existence of redundant paths, some addi-
tional links are also established between switches which are
not adjacent neighbours in the ring. Additionally, each of
the switches has an end-host connected, depicted as a grey
square in Fig. 4. End-hosts are the only entities in the network
that behave as traffic source or destinations. The reason for
selecting this topology is that its complexity level is similar
to the network used by GÉANT to provide BoD services. All
the OVSs are controlled through an ONOS 1.4 instance with
the DynPaC application installed. The whole setup runs in a
Ubuntu 14.04 machine, with 12 GB of RAM, 40 GB of disk
memory and four dedicated cores of an Intel i7 processor at
3.40 GHz. All the experiments have been repeated 30 times
to consider a normal distribution.

5.1 Service setup time

This measurement refers to the time required to compute
a path for a given service reservation. Figure 5 depicts the
obtained results for 1 Mbps, 10 Mbps, 100 Mbps, 1 Gbps,

123



Enhancing network resources utilization and resiliency in multi-domain bandwidth on demand… 513

Reallocated services 0 %
Rejected services 0 %
Blocking ratio 0 %

(a) 1 Mbps

Reallocated services 0 %
Rejected services 0 %
Blocking ratio 0 %

(b) 10 Mbps

Reallocated services 0.97 %
Rejected services 0.46 %
Blocking ratio 0.46 %

(c) 100 Mbps

Reallocated services 16.98 %
Rejected services 48.55 %
Blocking ratio 48.55 %

(d) 1 Gbps

Reallocated services 5.9 %
Rejected services 92.64 %
Blocking ratio 92.64 %

(e) 10 Gbps

Reallocated services 15.265 %
Rejected services 6.45 %
Blocking ratio 6.45 %

(f) Random BW

Fig. 5 Setup time, number of reallocated and rejected services

10 Gbps and random bandwidth service requests from ran-
domly selected pairs of source and destination nodes. We
have limited the number of concurrent services in the three
latest cases because the network was already saturated. The
tests show that the time it takes to compute a path depends
on the amount of already reserved services and the resources
already consumed by them. The setup time gets increased
until it reaches its maximum value when services are start-
ing to be rejected and the number of possible alternatives to
make future combinations gets reduced. We have decided
to show the median value of the setup time because the
average time gets affected by the setup time of the rejected
services.

5.2 Blocking ratio

The blocking ratio refers to the percent of the service requests
that cannot be satisfieddue to somenetwork resource unavail-
ability. Figure 5 also shows the mean number of reallocated
services and the mean number of rejected services for the
same service requests distribution and a summary table with

the percentage of reallocated services, rejected services, and
the blocking ratioswith andwithout reallocationmechanism.

The effect of the reallocation mechanism in the service
setup time isminimal. For instance, in Fig. 5c the reallocation
mechanism is used from service request number 400th with-
out impacting the service setup time. However, the different
service allocation alternatives that are maintained to make
possible the flow reallocation does affect the time required
to reject a service. All in all, even if the median setup time
gets increased by the time associated to a service rejection,
the blocking ratio gets improved, meaning that the path com-
putation algorithm that runs in the DynPaC framework is
improving the network resources’ utilization.

5.3 Recovery time

Another fundamental feature of the DynPaC framework is
that it is able to re-program the network devices to install
a backup path upon link failure. As a consequence, we
have conducted a third experiment to characterize the time
required to restore all the affected services into their backup

123



514 A. Mendiola et al.

path upon a link failure. For this particular experiment, we
have selected a scenario in which a link failure affects all
the services using that link, specifically, 100 gold services.
Therefore, the backup path for all the affected services is
already pre-computed and ready to be installed in the net-
work. In such a scenario, we havemeasured the time required
to restore all the affected services by installing their backup
path. After repeating the experiment 30 times, the obtained
results show that the average time necessary to have all
the affected services running through their corresponding
backup path is of 0.84 s, being the standard deviation of
all the obtained measures of 0.29 s.

6 Conclusions

This paper presents DynPaC, a dynamic path computa-
tion framework able to provide BoD services in OpenFlow
domains. It has been extended to be NSI-CS compliant, by
incorporating a new operational mode that allows NSAs to
control the life-cycle of the reserved services using a REST
API.

In order to test the feasibility of DynPaC as an advanced
reservation system able to provide BoD services, we have
conducted three different experiments. First, we have demon-
strated that DynPaC is able to compute a path for a given
service demand in less than 1 s for different service sizes
when the network is not overloaded. In this latter case, the
time increases due to the application of the flow realloca-
tion algorithm. However, this algorithm improves the overall
Service Acceptance Ratio, achieving more than a 15% of
improvement using random service demands, compared to
when there is no flow reallocation. Finally, the resiliency
mechanism requires around a second to reinstall the backup
paths of 100 affected services upon link failure.

To the best of our knowledge, this is the first multi-
domain SDN-based BoD systemwith resiliency capabilities.
Additionally, being NSI-CS compliant, the DynPaC frame-
work can be easily integrated with AutoBAHN, the current
GÉANT BoD service, to support SDN domains. In this way,
it will be possible to leverage the power and flexibility of
modern SDN controllers without any change in the way it
presents itself to BoD neighbours: the inter-domain protocol
remains NSI and switching the current vendor-specific tech-
nology toDynPac/ONOSwould be transparent to an external
peer.

Compliance with ethical standards

Conflict of interest On behalf of all authors, the corresponding author
states that there is no conflict of interest.

References

1. Open Networking Foundation (ONF). (2012). Software-defined
networking: The new norm for networks. ONF White Paper.
https://www.opennetworking.org/images/stories/downloads/sdn-
resources/white-papers/wp-sdn-newnorm.pdf. Accessed Septem-
ber 11, 2018.

2. McKeown, N., Anderson, T., Balakrishnan, H., Parulkar, G., Peter-
son, L., Rexford, J., et al. (2008). OpenFlow: Enabling innovation
in campus networks. ACM SIGCOMM Computer Communication
Review, 38(2), 69–74. https://doi.org/10.1145/1355734.1355746.

3. Enns, R., Bjorklund,M., Schoenwaelder, J., & Bierman, A. (2011).
Network configuration protocol (NETCONF). RFC 6241. Inter-
net Engineering Task Force (IETF). https://tools.ietf.org/html/
rfc6241. Accessed September 11, 2018.

4. Seedorf, J., &Burger, E. (2009). Application-layer traffic optimiza-
tion (ALTO) problem statement. RFC 5693. Internet Engineering
Task Force (IETF). https://tools.ietf.org/html/rfc5693. Accessed
September 11, 2018.

5. Automated BandwidthAllocation across Heterogeneous Networks
(AutoBAHN). https://geant3.archive.geant.org/service/autobahn/
pages/home.aspx. Accessed September 11, 2018.

6. Roberts, G., Kudoh, T., Monga, I., Sobieski, J., MacAuley, J., &
Guok, C. (2014). NSI connection service v2.0. grid forum docu-
ment (GFD). GFD-R-P.212. Open Grid Forum NSI-WG. https://
www.ogf.org/documents/GFD.212.pdf. Accessed September 11,
2018.

7. Roberts, G., Kudoh, T., Monga, I., Sobieski, J., Guok, C., &
MacAuley, J. (2014). Network services framework. Grid forum
document (GFD), informational (I). GFD-I-213. Open Grid
Forum NSI-WG. https://www.ogf.org/documents/GFD.213.pdf.
Accessed September 11, 2018.

8. Mendiola, A., Astorga, J., Jacob, E., Higuero, M., Urtasun, A., &
Fuentes, V. (2015). DynPaC: A path computation framework for
SDN. In Fourth European workshop on software defined networks.
https://doi.org/10.1109/EWSDN.2015.77.

9. Open network operating system. https://onosproject.org. Accessed
September 11, 2018.

10. Guok, C., Robertson, D., Thompson, M., Lee, J., Tierney, B., &
Johnston, W. (2006). Intra and interdomain circuit provisioning
using theOSCARS reservation system. In 3rd international confer-
ence on broadband communications, networks and systems. https://
doi.org/10.1109/BROADNETS.2006.4374316.

11. Farrel, A., Vasseur, J.P., & Ash, J. (2006). A path computation
element (PCE)-based architecture. RFC4655. Internet Engineering
Task Force (IETF). https://tools.ietf.org/html/rfc4655. Accessed
September 11, 2018.

12. Newman, H. B., Barczyk, A., & Bredel, M. (2014) OLiMPS:
OpenFlow link-layer multipath switching. Final report. Califor-
nia Institute of Technology. https://www.osti.gov/servlets/purl/
1163919. Accessed September 11, 2018.

13. Internet2’s advanced layer 2 service. https://www.internet2.
edu/products-services/advanced-networking/layer-2-services/.
Accessed September 11, 2018.

14. Cisco WAN automation engine (WAE). https://www.cisco.com/
c/en/us/products/routers/wan-automation-engine/index.html.
Accessed September 11, 2018.

15. Juniper Networks NorthStar Controller. https://www.juniper.
net/us/en/products-services/sdn/northstar-network-controller/.
Accessed September 11, 2018.

16. Jain, S., Kumar, A., Mandal, S., Ong, J., Poutievski, L., Singh, A.,
et al. (2013). B4: Experience with a globally-deployed software
defined wan. ACM SIGCOMMComputer Communication Review,
43(4), 3–14. https://doi.org/10.1145/2534169.2486019.

123

https://www.opennetworking.org/images/stories/downloads/sdn-resources/white-papers/wp-sdn-newnorm.pdf
https://www.opennetworking.org/images/stories/downloads/sdn-resources/white-papers/wp-sdn-newnorm.pdf
https://doi.org/10.1145/1355734.1355746
https://tools.ietf.org/html/rfc6241
https://tools.ietf.org/html/rfc6241
https://tools.ietf.org/html/rfc5693
https://geant3.archive.geant.org/service/autobahn/pages/home.aspx
https://geant3.archive.geant.org/service/autobahn/pages/home.aspx
https://www.ogf.org/documents/GFD.212.pdf
https://www.ogf.org/documents/GFD.212.pdf
https://www.ogf.org/documents/GFD.213.pdf
https://doi.org/10.1109/EWSDN.2015.77
https://onosproject.org
https://doi.org/10.1109/BROADNETS.2006.4374316
https://doi.org/10.1109/BROADNETS.2006.4374316
https://tools.ietf.org/html/rfc4655
https://www.osti.gov/servlets/purl/1163919
https://www.osti.gov/servlets/purl/1163919
https://www.internet2.edu/products-services/advanced-networking/layer-2-services/
https://www.internet2.edu/products-services/advanced-networking/layer-2-services/
https://www.cisco.com/c/en/us/products/routers/wan-automation-engine/index.html
https://www.cisco.com/c/en/us/products/routers/wan-automation-engine/index.html
https://www.juniper.net/us/en/products-services/sdn/northstar-network-controller/
https://www.juniper.net/us/en/products-services/sdn/northstar-network-controller/
https://doi.org/10.1145/2534169.2486019


Enhancing network resources utilization and resiliency in multi-domain bandwidth on demand… 515

17. Hong,C.Y.,Kandula, S.,Mahajan,R., Zhang,M.,Gill,V.,Nanduri,
M., et al. (2013). Achieving high utilization with software-driven
WAN. ACM SIGCOMMComputer Communication Review, 43(4),
15–26. https://doi.org/10.1145/2534169.2486012.

18. Mendiola, A., Astorga, J., Jacob, E., & Higuero, M. (2017). A sur-
vey on the contributions of software-defined networking to traffic
engineering. IEEE Communications Surveys & Tutorials, 19(2),
918–953. https://doi.org/10.1109/COMST.2016.2633579.

AlaitzMendiola received her B.Sc.,
and M.Sc, degrees in Telecom-
munication Engineering in 2011
and her Ph.D, in 2017 from the
University of the Basque Coun-
try (UPV/EHU). She worked as
a researcher on the I2T research
group from 2012 to 2017, partici-
pating in the EU funded GN3plus,
DynPaC and GN4 projects. She
joined GEANT in 2018 as an SDN
developer. Her research interests
include Traffic Engineering, Soft-
ware Defined Networking and Net-
work Function Virtualization.

JasoneAstorga received her B.Sc.,
and M.Sc. degrees in Telecom-
munication Engineering in 2004
and her PhD in 2013 from the
University of the Basque Coun-
try (UPV/EHU). From 2004 to
2007 she worked at Nextel S. A.,
a Telecommunications enterprise.
In 2007 she joined the UPV/EHU
as a lecturer and as a researcher
in the I2T research lab. Currently
she is an assistant professor on the
same Department. Her research
interests include Software Defined
Networking and Network Func-

tion Virtualization, IP-enabled wireless sensors, security in distributed
environments and mobility management.

Eduardo Jacob received a B.Sc.
in Industrial Engineering and a
M.Sc. in Industrial Communica-
tions and Electronics from the
University of the Basque Coun-
try (UPV/EHU) in 1991. He spent
two years in a public R&D
Telecommunications enterprise
(currently Tecnalia). Later, he
spent several years as IT direc-
tor in the private sector before
returning to the Faculty of Engi-
neering of Bilbao and completing
his Ph.D. in ICT in 2001. He is
currently an assistant professor on

that same Faculty, where he acted as Head of the Communications
Engineering Department for five years, from 2012 to 2016. He also
leads the I2T (Engineering and Research on Telematics) research lab.
His research interests are related to applying Software Defined Net-
works to industrial communications, cybersecurity in distributed sys-
tems and IP-enabled wireless sensors.

Kostas Stamos received his
Diploma, Master Degree and Ph.D.
from the Computer Engineering
and Informatics Department at the
University of Patras. He has
worked for the University of
Patras, Research Unit 6 of CTI,
for the Technical Educational
Institute of Patras and GRNET,
the Greek research network. His
research interests include network
applications, SDN, QoS, and
bandwidth on demand.

123

https://doi.org/10.1145/2534169.2486012
https://doi.org/10.1109/COMST.2016.2633579

	Enhancing network resources utilization and resiliency in multi-domain bandwidth on demand service provisioning using SDN
	Abstract
	1 Introduction
	2 Related work
	3 DynPaC, a dynamic path computation framework for SDN
	3.1 Network topology discovery
	3.2 Path pre-computation
	3.3 Accessing the DynPaC GUI
	3.4 New service request
	3.4.1 Reservation model

	3.5 Network devices programming
	3.6 Reaction to link failures

	4 NSI-CS support
	5 Performance evaluation
	5.1 Service setup time
	5.2 Blocking ratio
	5.3 Recovery time

	6 Conclusions
	References




