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Abstract
Newly emerged applications in vehicular networks demand high throughput to transfer large amount of data through both
Vehicle-to-Vehicle and Vehicle-to-Infrastructure links. One solution which recently draws researchers attention to itself for
improving the throughput in this type of network is to deploy some Road-Side-Units (RSUs) in the streets with storage
capability and store the data closer to the end users. Consequently, vehicles are able to download their inquired contents from
these local RSUs instead of the base station. This will decrease the network traffic of the base station and also the average
delay each vehicle has to wait to receive his requested files. The main issue to implement this distributed approach in this type
of environment compared to other types of networks is that the fast moving vehicles make the topology of the network highly
dynamic. Also due to limited storage capacity of the caches in the RSUs, we should decide on how to distribute the contents
in the RSUs to maximize the number of locally satisfied vehicles. In this paper, we address the cache content placement
problem in vehicular networks and model it using a game theoretic approach. We show that the proposed game model is a
special case of generalized covering games. Considering the hit ratio of the caches as the performance metric in our model,
we propose a method to distributively optimize this metric using the RSU’s local information. In addition, we propose a
combinatorial approach to find efficient file placements in the RSUs using Markov approximation. Empirical evaluations on
realistic trace-based simulations show an improvement of 7.5% in the average hit ratio of the proposed method compared
to other well-known cache content placement approaches. Newly emerged applications in vehicular networks demand high
throughput to transfer large amount of data through both Vehicle-to-Vehicle and Vehicle-to-Infrastructure links. To improve
the network throughput, we deploy some Road-Side-Units (RSUs) in the streets with storage capability and store the data
closer to the end users. Consequently, vehicles are able to download their inquired contents from these local RSUs instead of
the base station. The main issue to implement this distributed approach is that the fast moving vehicles make the topology
of the network highly dynamic. Also due to limited storage capacity of the caches in the RSUs, we should decide on how to
distribute the contents in the RSUs to maximize the number of locally satisfied vehicles. In this paper, we address the cache
content placement problem in vehicular networks and model it using game theoretic approach and Combinatorial approach.
We show that the proposed gamemodel is a special case of generalized covering games. Considering the hit ratio of the caches
as the performance metric in our model, we propose a method to distributively optimize this metric using the RSU’s local
information. In addition, we propose a Combinatorial approach to find efficient file placements in the RSUs using Markov
approximation. Empirical evaluations on realistic trace-based simulations show an improvement of 7.5% in the average hit
ratio of the proposed method compared to other well-known cache content placement approaches.
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1 Introduction

New generation of portable electronic devices and in-vehicle
communication interfaces in vehicular networks enable lots
of new Intelligent Transport System (ITS) applications.
Examples of these applications consist of downloading mul-
timedia contents [1], automatic collision warning [2], remote
vehicle diagnostics [3], vehicle tracking [4], automobile high
speed internet access [5], advertisements, infotainment [6]
and also offloading cellular traffic to vehicular networks [7].
As a result, content downloading and data transmission via
both Vehicle-to-Infrastructure (V2I) and Vehicle-to-Vehicle
(V2V) have recently received significant attention from the
research community. As Machine-tomachine communica-
tion (M2M) and Device-to-device communication (D2D)
are envisioned to be the features of 5G cellular networks
in an effort to realize Internet of Things (IoT), the number
of machine-type devices (MTD) connected to a cellular base
station in 2020 may be 10 times to 100 times more than the
mobile phones. This issue is well investigated in the compre-
hensive report published byCisco [8]. Based on its analysis, a
40-fold increase in thewireless network traffic volume is pre-
dicted in the next five years and it is estimated that themobile
network traffic volume will reach from 93 petabytes to 3600
petabytes by the end of 2020. To handle this large amount
of data transmission, we need to enhance the throughput of
vehicular networks.

One way to improve the throughput of vehicular networks
is to equip the Road Side Units (RSUs) [9] with storage
devices and use them as local caches for vehicles. This will
help the vehicles to get access to a subset of files through
these RSUs using the Dedicated Short-Range Communica-
tion (DSRC) technology [10,11]. A vehicle interested in a
file from the library has three options to download the file,
(i) directly from the central server at the base station over cel-
lular network, (ii) from the cache servers located at the RSUs
over Vehicular Communication Networks (VCN), or (iii)
from other vehicles usingV2V communications. As reported
in [12], the throughput of Vehicle-to-Vehicle communica-
tions is observed to be at most one-fifth of the throughput
of Vehicle-to-Infrastructure communications. Consequently,
the first two mentioned solutions attract more scientist’s
attention towork on. Successful downloading of the enquired
files by the vehicles from the local RSUs results in lower con-
gestion and delay over the cellular network and the base sta-
tion. Subsequently, the throughput of vehicular networkswill
be improved. However, the main question is how we should
distribute the files in the caches of the RSUs to maximize the
local hit ratio experienced by the vehicles. This is known as
Cache Content Placement (CCP) problem and we will dis-
cuss about the researchworks related to this topic in Sect. 1.2.

In this paper, we develop twomethods for solving theCCP
in a distributed fashion. The main reason behind using this

approach is that it will help the cache content placement to
adapt faster to the dynamic situations (e.g., rapidly changing
the traffic pattern of the vehicles in the streets or the popu-
larity of files requested by the vehicles). Besides, the cost of
communication and the network overhead are higher for the
centralized approach. Additionally, the distributed approach
prevents single point of failure. Accordingly, we formulate
the CCP as the maximization of the expected hit ratio of the
vehicles in downloading the enquired files, successfully from
local RSUs instead of the base station. We propose solving
CCP optimization problem by utilizing road side units.

We show that this problem is an NP-hard Integer Linear
Programming (ILP). We model the problem using a game
theoretic approach to optimize the objective function of the
CCP distributively. The intuition behind using game theory
is that it is a tool for decision making in the strategic situa-
tions and it is a powerful approach for designing distributed
systems. Game theory has been previously applied in content
dissemination problem for other types of networks [13,14].
However, to the best of our knowledge, this is the first study
on deploying game theory for improving content dissemi-
nation in networks with highly dynamic topology such as
vehicular networks. We also design a distributed utility func-
tion for each RSU in our game theoretic model and show
that our game is in the category of generalized covering
games [15]. In addition, we provide a lemma presenting our
proposed game as a potential game [15] with at least 50%
efficiency of the optimum solution. Consequently, it will be
guaranteed that there exist some local dynamics, such as best
and better reply, which are convergent to an equilibrium. To
continue, we propose a combinatorial optimization approach
for CCP in order to find efficient solution at RSUs, using
Markov approximation method [16]. The results show an
improvement of 7.5% in the average hit ratio of the proposed
method compared to other well-known cache content place-
ment approaches.

1.1 Contributions

In summary, contributions of this paper are:

– Presenting a newmodel for the centralizedCCPandprov-
ing the interactability of this problem.

– Proposing two approaches to solve CCP distributively.
One is based on game theory and the other is based on
combinatorial optimization approach.

– A utility function is proposed for each RSU in order to
find efficient content placement using RSUs’ local infor-
mation.

– Proposing a combinatorial optimization approach to find
efficient solution forCCPatRSUs, usingMarkov approx-
imation method.
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– Showing that the proposed content placement approach
outperforms other cache content placement approaches
such as MobiCacher , FemtoCacher and Populari t y
Cacher .

1.2 Related works

The idea of deploying caches for distributing contents in the
networks has been investigated in [17–19]. The focus of these
research works are on minimizing the delay experienced by
the users during the hand-off between two access points in
wireless networks. In [20], the authors use the combinatorial
optimization approach to improve the quality of content dis-
semination in cellular networks. They attempt to solve the
cache content placement problem for a network with fixed
caches and fixed users and by considering the file popularity
distribution and network topology as inputs to the problem.
Our work is distinguished from [20], since we are consider-
ing the vehicular networks,where themobility of the vehicles
between RSUs plays a decisive role in solving CCP.

Simultaneously, several approaches were proposed to
improve the performance of content distribution in vehicular
networks. Some researchworks use network coding to reduce
the download delays experienced by vehicles, e.g., Code Tor-
rent [21], VANETCODE [22], CodeOn [23], and VCD [24].
These papers do not consider caching in their approaches,
while here, we propose to store contents at the RSUs to
enhance content-centric VANETs. Another related work is
[25], where Luan et al. focus on improving the throughput of
vehicular networks by considering some light-weight, low
cost and easy to install buffers called Road Side Buffers
(RSBs) as the local cache servers for the vehicles. They also
consider a simple mobility model for vehicles in the streets
based on an on-offMarkovmodel. Here in our work, we con-
sider a general and realistic mobility model for the vehicles
and we let them to visit any sequence of RSUs along their
traveling path.

In [26,27], the authors investigate inter-vehicular commu-
nication for data dissemination in vehicular networks. Aser
et al. in [26] propose a vehicle-to-vehicle based content dis-
tribution in the metropolitan area using the bus and metro
networks. By exploring the stable bus schedule and pre-
dictable bus mobility pattern and by using temporary storage
at bus stations, they suggest a routing protocol that takes the
randomness of road traffic into account for delivering the con-
tent from source to destination.Whilemaking a collaboration
between vehicles and using Vehicle-to-Vehicle communica-
tion can boost the network capacity, it is still insufficient to
provide a reliable and high rate data service for vehicles due
to the highly dynamic network topology and harsh channel
condition. As reported in [12], the throughput of Vehicle-to-
Vehicle communications is observed to be atmost one-fifth of
the throughput of Vehicle-to-Infrastructure communications.

Populari t yCacher only considers the popularity of files
and fills the caches only based on this parameter. This
approach doesnt consider the geographical distribution of
the RSUs and the mobility of the vehicles. Since RSUs store
the most popular files in their caches, the diversity of files
is low. As a result, vehicles visiting multiple RSUs in their
paths cant take advantage of the RSUs storing the same set of
files. Therefore Populari t yCacher doesn’t show good per-
formance compared to other content placement approaches.

FemtoCacher [20] considers the popularity of files and
the geographical distribution of the RSUs and vehicles, but
not the mobility of vehicles. Therefore, by changing the geo-
graphical distribution of vehicles in the map, this approach
fails to adapt to the new situation. We discuss about this
approach in details in Sect. 5.

Finally in [28], the authors consider a small base sta-
tion scenario with mobile users. They consider application
layer semantics of spatial and temporal locality and bring the
mobility patterns of users into account to make caching deci-
sions. Since this problem isNP-Complete, a polynomial-time
heuristic solution calledMobiCacher with bounded approx-
imation ratio is proposed. TheMobiCacher decomposes the
original problem into subproblems, with one sub-problem
for each small-BS, and every one of them is solved indepen-
dently.

Compare to the mentioned research works, in this paper,
we model the cache content placement problem in vehicu-
lar networks, where the highly mobile vehicles (requesters)
play a decisive role in solving CCP. Also we formulate this
problem using game theoretic approach and combinatorial
optimization approach. By taking the mobility pattern of the
vehicles in the streets into account, we also propose a utility
function for each RSU, based on the average local hit ratio
experienced by the vehicles, to solve the CCP problem dis-
tributively. In Sect. 5, we show that our approach outperforms
other cache content placement approaches.

The rest of the paper is organized as follows. In Sect. 2, we
discuss about the system model and the problem definition
of our work. Section 3 presents a game theoretic approach
and connect it to the class of games called covering games. In
Sect. 4, we propose an approach to find an efficient solution
for CCP using combinatorial optimization. In Sect. 5, we
evaluate the performance of our proposed methods. Finally,
in Sect. 6, we conclude our findings and outline directions of
future researches.

2 Systemmodel and problem formulation

We consider a vehicular network in an urban environment,
where each vehicle may demand to download several files
anytime along its route. The requested content can be related
to the traffic pattern of the nearby streets, map of the local
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Table 1 Semantics of notations used in this paper

Notation Description Notation Description

M Set of RSUs in the region of interest F Set of flows in the region of interest

Li Cache size of RSU i ω f Average traffic density of flow f

X Collection of admissible content allocations of RSUs λkf Popularity of file k in flow f

Q(X) Hit ratio for any given allocation X Psuc Probability of successfully downloading the file from a RSU

N Set of files in the library Vi,m Probability of visiting RSU m by vehicle i

ps Time share of the content placement strategy s Ui (.) Utility function of RSU i

Rx,x ′′ Transition rate from state x to state x ′′ X j Content placement of RSU j

P(n) Popularity of file n φ(.) Potential function of corresponding potential game

Vu Upper vertex set in bipartite graph G Vl Lower vertex set in bipartite graph G

area, etc. We consider a collection of m RSUs indexed by
set M = {1, 2, . . .m} and a library of n fixed files indexed
by N = {1, 2, . . . , n}. The environment is homogeneous in
terms of RSUs. For simplicity, we assume that all the files are
of equal size.1 We let the i th RSU to have a storage capacity
of up to Li files. Vehicles in this setup can travel from any
source to any destination. To model the mobility pattern of
the vehicles, we consider a set of flows F = { f1, f2, . . . , fl},
where each fi : 1 ≤ i ≤ l represents a stream of vehicles
moving along a particular route. Hence, each flow is identi-
fied by a sequence of RSUs visited by the traffic stream and
a real value that shows the traffic density of that flow. There-
fore, a flow f ∈ F is represented as f = (M f , ω f ), where
M f ⊂ M and ω f is the average number of vehicles in f in
unit time. Flows can be easily learned by studying the traffic
history of the streets over some periods of time (more details
in Sect. 5). Let the relative popularity of a file k ∈ N in flow
f ∈ F be λkf , i.e.,

∑
k∈N λkf = 1. Also, let the contents of

RSU i ∈ M be Xi , i.e., Xi ⊂ N , where |Xi | ≤ Li . Finally,
we define X = {X1, . . . , Xm}, as the system state. Table 1
shows the semantics of the system parameters.

A vehicle interested in a file from the library has three
options to download the file, (i) directly from the central
server at the base station over cellular network, (ii) from the
cache servers located at the RSUs over Vehicular Commu-
nication Networks (VCN), or (iii) from other vehicles using
V2V communications. As we mentioned in Sect. 1, since the
throughput of the V2V communication is poor [12], in this
paper, we utilize the V2I communication. When interested
in a file, a vehicle first send its request to the central server
at the base station. The central server provides authorization
for downloading from the RSUs alongwith the specifications
of a search interval. The search interval may be chosen as a
function of the delay tolerance of the requesting application.
During the search period, the application requesting the file

1 Large sized files may be split into several chunks of equal size and
each chunk may be treated as a new file.

attempts to download the file from the cache servers that the
end-user (vehicle) visits as it travels. When the attempts fail,
the file will be downloaded directly from the central server
at the end of the search interval. The success rate for down-
loading the files from local RSUs is called the hit ratio. For
a given system state X , the average hit ratio is defined as,

Q(X) =
l∑

f =1

n∑

k=1

q
(|X | f ,k

)
λkf · ω f (2.1)

where q(∅) = 0 and q(∅̄) = 1 and |X | f ,k = {m ∈ M :
m ∈ f , k ∈ Xm}, the set of RSUs those belonging to flow f
and has file k for a given system state X . Please note that we
consider the cache capacity of the RSUs in the condition of
the cache content placement optimization problem in 2.3.

It is easy to observe that the function in (2.1) is sub-
modular. Let X{s} represent an allocation of files in a set of
RSUs s ⊂ M . Suppose s ⊂ s′ where s, s′ ⊂ M and j ∈ M .

Then,

Q(X{s}∪ j ) − Q(X{s}) =
∑

f : j∈ f

∑

k∈X j

1|X{s}| f ,k=∅λkf ω f

≥
∑

f : j∈ f

∑

k∈X j

1|X{s′}| f ,k=∅λkf ω f

= Q(X{s′}∪ j ) − Q(X{s′}), (2.2)

where 1A is the indicator function of statement A, that is,
1A = 1 if A is true and 1A = 0 otherwise. Also, the second
inequality is due to the fact that |X{s}| f ,k ⊆ |X{s′}| f ,k .

Our goal is to find a state that maximizes the average hit
ratio, that is solving the following optimization problem:

max Q(X)

subject to Xi = {S ⊆ N : |S| ≤ Li },∀i ∈ M .
(2.3)

We refer this problem as Cache content placement (CCP)
problem.
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F1 F2 F3 F4 F5 F6

C1 C2 C3 C4C1 C5Caches

Flows

Cover Set 1 Cover Set 2 Cover Set 3

Fig. 1 t-Disjoint set cover problem

Next we discuss the computational complexity associated
with solving the CCP.

2.1 Computational intractability

We show that CCP is NP- Hard by reducing the decision ver-
sion of CCP to t-disjoint set cover problem which is known
to beNP- complete [29]. First let us state the decision version
of CCP.

CCP decision problem Does there exist a system state
X = (Xi , · · · , Xm) where Xi = {S ⊆ N : |S| ≤ Li } for
each i ∈ M such that Q(X) ≥ r where r ∈ R

+.

Next, we state t-disjoint set cover problem.
t-disjoint set cover problem Consider a bipartite graph

G = (Vu, Vl , E) where the edges in E connect the upper
vertex setVu to the lower vertex setVl (seeFig. 1). LetN (v ∈
Vu) = {v′ ∈ Vl : (v, v′) ∈ E} be the set of neighbor vertices
of v. The t-DSC(G) problem is to find t disjoint vertex set
{V 1

u , V 2
u , . . . , V t

u }, where V i
u ⊆ Vu : ∀i ∈ {1, 2, . . . , t},

such that
∑t

i=1 |V i
u | = |Vu | and Vl = ∪v∈V i

u
N (v) for each

i ∈ {1, 2, . . . , t}. For example, in Fig. 1, we categorize the
upper vertex set into three disjoint cover sets in a way each
of them covers all the vertices of the lower vertex set.

It is known that the t-DSC(G) problem is NP-complete
[29]. In the following lemma, we formally prove the
intractability of cache content placement problem.

Lemma 1 t-disjoint Set Cover Problem ≤L Cache Content
placement Problem, where ≤L denotes the polynomial time
reduction.

Proof Consider the following instance of t-DSC(G) which
we can map to a CCP decision problem: The set of caches
correspond to the upper vertex set and the set of flows cor-
respond to the lower vertex set, i.e., M = Vu and F = Vl .
We connect fi ∈ Vl to C j ∈ Vu if C j ∈ M fi which means,
cache C j is in the flow fi . Each flow fi ∈ Vl , consists of
several caches, that is, fi = {C j ∈ Vu : (C j , fi ) ∈ E}. Let
ω fi = 1,∀i ∈ {1, 2, . . . , l}. Furthermore, we let the num-
ber of files to be equal to the number of disjoint sets, that
is, n = t . Also we let λkf = 1/k for all f ∈ F . Finally, we
consider Li = 1,∀i . Having this parameter setup. now the

question is how to divide the set of caches in Vu into t dis-
joint cover sets (and store each file in one of the cover sets)
in order to make sure that all the flows in Vl have access to
all the files in the library. This will map the t-DSC(G) to the
CCP decision problem and therefore, solving CCP decision
problem is harder than solving t-DSC(G). ��

3 Game theoretic model

In this section, we propose a game theoretic approach to
optimize our objective function in 3 distributively. Wemodel
CCP as a strategic game with the following components:

– A set of players M = {1, 2, . . . ,m}.
– An action set Xi = {S : S ⊆ N , |S| = Li } for each
player i . In this section, the action set of each player is
equivalent to the set of contents he chooses to store in its
cache.

– A utility function Ui : Xi → R
+.

whereUi (Xi , X−i ) = ∑
f :i∈ f

∑
k∈Xi

ω f .λ
k
f .g(|X | f ,k).

Here, Xi means that the content placement strategy of player
or cache i is X and X−i means that the content placement
strategy of all the other caches except i is also X . We refer
g : N → R

+ as resource sharing function. Now let g(k) =
1
k for k > 0 and g(k) = 0 otherwise. We prove that our
game is a valid utility game and as a result, the efficiency of
equilibrium is guaranteed to be at least 1

2 [30]. To show that
Cache Content Placement strategic game with the specified
g function is a valid utility game, we consider the following
definition. A game is said to be a valid utility game if it
satisfies the following two properties:

1. Ui (Xi , X−i ) ≥ Q(X) − Q(X−i ).
2.

∑
i Ui (Xi , X−i ) ≤ Q(X).

where Q is the objective function defined in Sect. 2. Con-
sidering this definition, it can be shown that the agent utility
function satisfies these two properties:

1. Q(X) − Q(X−i ) =
∑

f :i∈ f

∑

k∈Xi

(1|X−i | f ,k=∅).ω f .λ
k
f

≤
∑

f :i∈ f

∑

k∈Xi

1

g(|Xi | f ,k) .ω f .λ
k
f (3.1)

2.
∑

i

Ui (Xi , X−i ) =
∑

i

∑

f :i∈ f

∑

k∈Xi

1

g(|Xi | f ,k) .ω f .λ
k
f

=
∑

f

∑

k:|Xi | f ,k>0

g(|Xi | f ,k). 1

g(|Xi | f ,k) .ω f .λ
k
f

= Q(X). (3.2)
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Therefore, the mentioned game is a valid utility game and
the efficiency of the equilibrium would be greater than 1

2 . To
make the distributed utility function of each player in this
game theoretic model more readable, consider γ k

f = ω f .λ
k
f .

Now we have:

Ui (X) =
N∑

k=1

⎛

⎝Xk
i

∑

f :i∈ f

γ k
f

∑
j∈ f X

k
j

⎞

⎠ , (3.3)

where Xk
i = 1 if file k exists in cache i and Xk

i = 0 otherwise.
We designed this utility function in a way that all the RSUs in
the same flow storing the same file in their caches will share
the gain of storing that file proportionally. In Sect. 3.1, we
connect this model to a collection of games called covering
games.

Algorithm 1 Better Response Dynamics for CCP Problem
1: procedure Cache- Content- Placement
2: In each time step t :
3: randomly pick a j ∈ M,

4: if CacheUpdateState( j) = 1 then
5: pick X ′ ∈ X j ,

6: if Uj (X j (t − 1), X− j (t − 1)) < Uj (X ′, X− j (t − 1)) then
7: X j (t) = X ′
8: goto end;
9: else goto (5)
10: else X j (t) = X j (t − 1)
11: goto (3)
12: end.

3.1 Connection to the generalized covering
problems

In the previous section, we discussed a game theoretic
approach to solve the optimization problem in (2.3) distribu-
tively. In this section, we map the CCP problem to the set
of problems, called generalized covering problems. We first
recall the definition of generalized covering problem [31]:

– Universal set U .
– For each u ∈ U , we have a weight wu .
– Some sets A1, A2, . . . , Am where Ai ⊆ 2U .
– Pick ai ∈ Ai such that

∑
u∈∪m

i=1ai
wu is maximized.

Now we map the cache content placement problem to the
generalized covering problems. We start by mentioning that
in each RSU, by storing any single file, we can satisfy all
the requests from the vehicles in the flows that pass through
that RSU and request that file. Suppose U = {(n, f ) : n ∈
N , f ∈ F} is a collection of ordered pairs formed from a file
n ∈ N and a flow f ∈ F . In this representation, when a RSU
stores some files, it will cover all the pairs of the global state

space set where the first element is the stored files in that RSU
and the second element is the set of all the flows that pass
through that RSU. That is, RSU i covers the pairs {(α, β) :
α ∈ Ni , β ∈ Fi }, where Ni is the set of all the files stored in
the RSU i and Fi is the set of all the flows that pass through
the RSU i . The weight associated with each element u ∈ U
is wu = λnf .ω f . Finally, for each i ∈ N , we define Ai =
{ f : i ∈ f } × x̄ where x̄ ∈ X = {s : s ⊆ N , |s| ≤ Li }.
Essentially, Ai is the collection of ordered pairs formed from
the set of flows visiting RSU i and any set of files that can be
stored inRSU i at a time. our goal is to choose the proper pairs
for the RSUs to cover, that is the proper subset of file library
for storing in each RSU, to maximize the total weight of the
union of all the covered pairs in the global state space set.

By taking this model into account, we can say that our
problem is in the class of covering game which is the general
case ofmax-n-cover problem. The covering game is the sub-
class of congestion games [32], in which each player receives
a payoff based onhis utility sharing function.By taking a look
at our definition for the players utility function in 3.3, we can
find out that every RSU shares the payoff of storing a file
with all the other RSUs that store that file and are in the same
flow of that RSU.

In the following lemma, we will prove that cache content
placement game is a potential game.

Lemma 2 Considering the potential function in (3.4), the
class of games G = (M,Xi ,Ui ) are potential games.

φ(X) =
∑

f

∑

k

δ f ,k (X)∑

j=1

g( j).ω f .λ
k
f . (3.4)

where function g is defined in Sect. 3 and δ f ,k(X) is the num-
ber of RSUs in flow f that store file k in content placement
X.

Proof In order for our problem to be a potential game, we
need to show that if a player changes his action set and
increases his utility function by Ψ , then φ(s) also increases
by Ψ . We consider that player i changes his action set from
si : (e1, . . . , eL) to si ′ : (

e1′, . . . , eL ′). Therefore the dif-
ference between the new utility function and the old utility
function would be as follows:

Ψ =
∑

e∈si

1

δe (si , s−i )
−

∑

e∈si ′
1

δe(si ′, s−i )
. (3.5)

The difference between the new and old potential function
would be:

123



Modeling and improving the throughput of vehicular networks using cache enabled RSUs 397

φ(si
′, s−i ) − φ (si , s−i )

=
∑

e∈E

δe(si ′,s−i )∑

i=1

fe(i) −
∑

e∈E

δe(si ,s−i )∑

i=1

fe(i). (3.6)

for e ∈ si ′ande /∈ si , we have δe(si ′, s−i ) = δe (si , s−i ) + 1
and (3.6) will be simplified as follows:

∑

e∈si ′,e/∈si

⎛

⎝
δe(si ′,s−i )∑

δe(si ,s−i )+1

fe(i)

⎞

⎠ =
∑

e∈si ′,e/∈si
fe

(
δe(si

′, s−i )
)
.

(3.7)

for e ∈ si , e /∈ si ′ we observe that δe(si ′, s−i ) + 1 =
δe (si , s−i ) and (3.6) will be simplified as follows:

−
∑

e∈si ,e/∈si ′

⎛

⎝
δe(si ,s−i )∑

δe(si ′,s−i )+1

fe(i)

⎞

⎠

= −
∑

e∈si ,e/∈si ′
fe (δe(si , s−i )) . (3.8)

By summing up (3.7) and (3.8) we have:

∑

e∈si ′,e/∈si
fe

(
δe(si

′, s−i )
) −

∑

e∈si ,e/∈si ′
fe (δe(si , s−i ))

=
⎛

⎝
∑

e∈si ′,e/∈si
fe

(
δe(si

′, s−i )
) +

∑

e∈si ′∩si
fe

(
δe(si

′, s−i )
)
⎞

⎠

−
⎛

⎝
∑

e∈si ,e/∈si ′
fe (δe(si , s−i )) +

∑

e∈si∩si ′
fe (δe(si , s−i ))

⎞

⎠

= Ui (si
′, s−i ) −Ui (si , s−i ) = Ψ .

Therefore the game is a potential game. ��
Proving that the game is a potential game guarantees the

existence of some local dynamics such as best response or
better responsewhich converges to an equilibrium. In the next
section, we discuss about the performance of our proposed
model.

4 Combinatorial optimization approach

In this section, for the sake of readability, we consider the
cache placement matrix X as a binary N × M matrix, where
the element Xn,m is equal to 1, if the file n is stored in the
RSU m, and 0 otherwise. We also consider P(n) to be the
average popularity of file n over all the flows, that is, P(n) =
1

|F |
∑F

f =1 λnf . We also let I = {1, 2, . . . , i} to be the number
of vehicles in the region of interest. Our objective is to find
the optimum X which maximizes the expected number of

vehicles Q that download their requested files successfully
from the local RSUs. Thus, first, we should find this expected
number as a function of X, and then maximize it.

By considering the definition of flows in Sect. 2, and by
studying the traffic history of the roads over time, we can
extract a mobility pattern for the vehicles in the flows. That
is, we can estimate that if a vehicle is in a specific flow, what
is the probability for that vehicle to visit the nearbyRSUs.We
present this mobility pattern with a two dimensional matrix
V . The element Vi,m shows the probability of visiting RSUm
by the vehicle i . For example, if a vehicle reaching a junction
may turn to each of the four possible directions with similar
probability, then the elements of matrix V related to that
vehicle and for the RSUs along each directionwould be equal
to 1

4 . We let the probability of a vehicle visiting far away
RSUs to be 0.

Now suppose that vehicle i needs file n. This vehicle can
download his requested file from RSU m if he meets this
RSU along his path, and also this RSU has stored file n,
i.e., Vi,m = 1 and Xn,m = 1. Thus, the probability that this
vehicle can download this file along his path from at least
one RSU is equal to,

Psuc = 1 −
M∏

m=1

(
1 − (

Vi,mXn,m
))

. (4.1)

By averaging over all the possible requests for this user,
and summing over all the vehicles, the expected number of
users satisfied by RSUs will be,

Q =
I∑

i=1

N∑

n=1

[

1 −
M∏

m=1

(
1 − (

Vi,mXn,m
))

]

P(n). (4.2)

Thus our optimization problem will be,

max
X

Q

s.t.
N∑

n=1

Xn,m ≤ Lm, ∀m,

xn,m ∈ {0, 1} , ∀m, n.

(4.3)

We can further simplify Q as follows:

Q =
I∑

i=1

N∑

n=1

P(n) −
I∑

i=1

N∑

n=1

(
M∏

m=1

(
1 − (

Vi,mXn,m
))

)

P(n)

= 1 −
I∑

i=1

N∑

n=1

M∏

m=1

(
M
√
P(n)

) (
1 − (

Vi,mXn,m
))

= 1 −
I∑

i=1

N∑

n=1

M∏

m=1

(
αn − (

βi,m,n Xn,m
))

, (4.4)
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where,

αn = M
√
P(n),

βi,m,n = Vi,m
M
√
P(n).

Thus, we can reformulate the optimization problem in
(4.3) as:

min
X

I∑

i=1

N∑

n=1

M∏

m=1

(
αn − (

βi,m,n Xn,m
))

s.t.
N∑

n=1

Xn,m ≤ Lm, ∀m,

Xn,m ∈ {0, 1} , ∀n,m.

(4.5)

This optimization problem is an Integer Non Linear Prob-
lem (INLP), which is hard to solve in general. Also, our
problem is similar to the optimization problem considered in
[33], and since their problem is shown to be computation-
ally intractable, we also look for non-exact solutions for our
problem.

In order to do this, we consider different approacheswhich
are as follow:

– Random Placement In this approach, caches at all RSUs
are randomly filled with the files of the library with-
out taking into account file popularity distribution, RSUs
range overlapping, and mobility patterns of vehicles. As
we will see later in Sect. 5, these parameters are essential
for improving our mentioned performance metric.

– Heuristic Placement 1 In the first heuristic method we
consider only the popularity of files. To do so, we first
sort the files regarding to their popularity and then store
the first Lm most popular files in RSUm for all the RSUs.
Similar to the naive approach, this heuristic also doesn’t
consider the mobility pattern of the vehicles and RSUs
range overlapping. As we will discuss in Sect. 5, this
heuristic would not show good results when the wireless
range of theRSUs is high and the number of RSUs visited
by each vehicle in his path increases.

– Heuristic Placement 2 In the second heuristicmethod,we
consider all the mentioned three essential parameters.We
first sort the files regarding to their popularity. This will
help us taking the files popularity into account. Also we
sort the RSUs regarding to the number of visitation of
each RSU by the vehicles and we show this by P =
{P1, P2, . . . , Pm}. For example, P1 is the most popular
RSU. This parameter helps us taking the mobility pattern
of the vehicles into account. We can do this because we
have the vehicles paths as input to our problem and so we
know that how many times each RSU will be visited by
the vehicles during their trips. Now we store the first LP1

most popular files in P1 and the next LP2 most popular
files in P2, etc. This will help us to take the RSU range
overlapping into account.

– Markov Approximation The next approach to solve our
problem is to use a recently proposed method byMingua
et al. [34] called Markov approximation. The advantage
of using this method is that the approximation gap is
upper-bounded by 1

γ
log |S|, where γ is a positive con-

stant and S is the set of all the feasible solutions of the
optimization problem. That is, S is the set of all the
matrices X that meets the constraints in the optimization
problem. In this approach, we first need to reformulate
our objective function in (4.5) as follows:

max
S

I∑

i=1

Q′
i (s) s ∈ S, (4.6)

where,

Q′ = −
N∑

n=1

M∏

m=1

(
αn − (

βi,m,n Xn,m
))

, (4.7)

and S would be the set of all the feasible solutions that
meets the optimization problem’s constraints. The next
step is to use the Log-Sum-Exp approximation function:

gγ (q ′) � 1

γ
log

(
∑

s∈S
exp

(

γ
∑

i∈I
Q′

i (s)

))

, (4.8)

where γ is a positive constant and q ′ = [∑i∈I Q
′
i (s), s ∈

S]. Finally by considering the objective function in (4.6)
and by using the approximation in (4.8), we can solve
the convex optimization problem in (4.9), instead of our
original non-convex optimization problem:

max
p≥0

∑

s∈S
ps

∑

i∈I
Q′

i (s) − 1

β

∑

s∈S
ps log ps

s.t.
∑

s∈S
ps = 1,

(4.9)

where ps shows the time share of the content placement
strategy s. Now we can solve this convex optimiza-
tion problem with Karush–Kuhn–Tucker (KKT) [35] to
obtain the p∗

s (q
′) [36]:

p∗
s (q

′) = exp(γ
∑

i∈I Q′
i (s))∑

s′∈S(exp(β
∑

i∈I Q′
i (s

′)) , ∀s ∈ S. (4.10)

To proceed we need to design a Markov chain with state
space X, which is the collection of all the feasible solu-
tions to the problem and with the stationary state being
p∗
x (q

′). In our problem, each state of the Markov chain
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Fig. 2 Part of our Markov chain model. Each state is a feasible solution
X for mentioned optimization problem

will be a matrix S that satisfies our two optimization
constraints. Each state in theMarkov chain should be dif-
ferent from its neighbors only in one swap in the RSU’s
contents. For example consider a part of theMarkov chain
shown in Fig. 2. In this example, we have three files and
three RSUs, so each feasible solution X is a 3× 3 matrix
that shows which file is stored in which RSU. As it is
shown, each adjacent state should be different only in
one file swap. That is, X1 stores the blue file in second
RSU and the red file in third RSU, but its adjacent state
X2 stores the blue file in the third RSU and the red file in
second RSU. That means X1 and X2 are the same except
that we swap the place of red and blue files in second
and third RSU. Also X2 and X3 are the same except that
we swap the blue and green files in first and third RSUs.
Next, we need to choose a proper transition rate for the
adjacent states. We use the suggested transition rates in
[36]. For two adjacent x and x ′ that have direct transitions
we have:

Rx,x ′ = α exp

(

β
∑

i∈I

(
Q′

i (x
′) − Q′

i (x)
)
)

, (4.11)

where Rx,x ′ is the transition rate to go from state x to x ′.
Now by having this Markov chain, we can start from one
state and explore and visit other states by considering the
transition rates and become closer to the optimum state.

5 Performance evaluation and discussion

We evaluated the performance of our two proposed content
placement approaches by simulating a discrete-event urban
environment using SUMO simulator [37]. As it is shown in
Fig. 3, we simulated the 3 km × 3 km map of the University
of Colorado Boulder, Main Campus (which is completely

Fig. 3 Simulated map of the University of Colorado at Boulder, Main
Campus

Fig. 4 Real map of the University of Colorado at Boulder, Main Cam-
pus

similar to the real map of the environment, see Fig. 4). We
randomly placed RSUs along the streets and set 100 vehicles
to traverse the map with randomly selected destinations. The
average velocity of each vehicle is considered to be 60km/h.
Each vehicle may visit multiple RSUs along its path. Due to
the existence of obstacles in the environment, such as build-
ing blocks or towers, we set the communication range of the
RSUs uniformly within the range [200;500] m. Finally, we
assumed to have 50 files in the library and the capacity of
RSUs is set to be [5;10] files.

As depicted in Fig. 5, we compare different cache con-
tent placement approaches with the game theoritic approach
mentioned in Sect. 3 and combinatorial approach mentioned
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Fig. 5 Comparison of the cache hit ratio different CCP approaches

in Sect. 4. In this regards, the random placement approach
basically places the files randomly in the RSUs. The opti-
mum approach places the files in the RSUs in a way that it
maximizes the hit ratio experienced by the vehicles. The two
heuristic based appraoches are already discussed in Sect. 4.
For every number of RSUs, we simulate the network 100
times and we report the result with error bars. The confi-
dence interval of the bars are 95%. The hit ratio of the caches
has close relationship with the number of RSUs in the area
of interest. The results in Fig. 5 show that for the number
of RSUs less than 25 in the area, all the content placement
approaches show poor performance, due to limited access of
the vehicles to the local caches, and by increasing the num-
ber of RSUs, the performance will improve. As presented,
both proposed methods shows better performance compared
to other content placement approaches and also the results
confirm the lower bound efficiency of half since the hit ratio
of the game theory approach is greater than half of the hit
ratio of the optimum approach. Note that the combinatorial
approach shows better results compared to the game the-
ory approach but with higher time complexity. We consider
convergence rate as another performance metric to compare
the complexity of the cache content placement approaches
which we talk about it later in this section. Another point that
we can derive from Fig. 5 is that the curves of the proposed
approaches are concave. This will confirm that the objec-
tive function in (2.1) is sub-modular, as we mathematically
proved it in (2.2).

We consider convergence rate as one over the number of
iterations that each approach consumes to reach the equi-
librium. As it is shown in Fig. 6, by increasing the number
of RSUs in the environment, the convergence rate of both
approaches will decrease.

In the rest of this section, we analyse the performance
of the combinatorial approach (Markov approach) since it

0 20 40 60 80 100 120 140 160 180
−0.02

0

0.02

0.04

0.06

0.08

0.1

0.12

Number of Caches

C
on

ve
rg

en
ce

 R
at

e

 

 
Optimum Approach
Proposed Approach

Fig. 6 Convergence rate of the game theory approach

20 30 40 50 60 70 80 90 100
0

10

20

30

40

50

60

70

80

90

100

Average cache capacity per sector

C
ac

he
 H

it 
R

at
io

 %

 

 

Proposed Approach
MobiCacher
FemtoCacher
PopularityCacher

Fig. 7 Comparing the cache hit ratio of four cache content placement
approaches for different cache capacity at each sector

showed better hit ratio compared to the game theory app-
proach. Therefore, in the following, by proposed method, we
mean the second approach that is the combinatorial approach.

5.1 Performance evaluation of the combinatorial
approach

Figure 7 compares the hit ratio of the combinatorial content
placement approach with three well-known cache content
placement approaches (see Sect. 1.2 for more details about
these approaches) and for different average cache capacity
of RSUs. PopularityCacher only considers the popularity
of files in each flow. This approach does not consider the
geographical distribution of the RSUs and the mobility of
the vehicles. Since RSUs store the most popular files in
their caches, the diversity of files in each flow is low. As
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a result, vehicles visiting multiple RSUs in a flow can not
fully benefit from the RSUs storing the same set of files.
Therefore PopularityCacher produces the lowest hit ratio
compared to other approaches. FemtoCacher [20] consid-
ers the popularity of files and the geographical distribution
of the RSUs and vehicles, but not the mobility of vehi-
cles. Therefore, by changing the geographical distribution
of vehicles in the map, this approach fails to adapt to the
new situation.MobiCacher [28] considers all the three men-
tioned parameters, that is, popularity of files in the sectors,
geographical distribution of the RSUs in the map and the
mobility of the vehicles. This is why this approach shows
higher hit ratio compared to PopularityCacher and Femto-
Cacher. Aswe already discussed, decidingwhether a content
should be stored at each RSU or not is affected by what con-
tents are stored in nearby RSUs. InMobiCacher, in order to
simplify the proposed heuristic solution, the authors decom-
pose the CCP problem into multiple sub-problems, one for
each sector and solve each sub-problem independently. In
contrast, in the two proposed approaches in our paper, we
consider this dependency among RSUs. We design the util-
ity function for each RSU in a way that if RSUs, which
are in the same flow (geographically close to each other),
store similar files, their utility decreases. In other words,
RSUs in the same flow share the gain of storing similar files.
This deduction of the utility function causes the contents
of the RSUs in the same flow to diversify. As a result, the
cache hit ratio experienced by the vehicles increases (see
Fig. 7).

Next, we report the results of second approach, that is,
combinatorial optimization or Markov approach for differ-
ent vehicles’ mobility model. We compared the hit ratio of
this methods with other content placement approaches dis-
cussed in section 4. The reported values for each method
has the confidence interval of 90%. As depicted in Fig. 8,
we compared five different content placement approaches
which we already discussed in Sect. 4. For every approach,
we ran the simulation several times and report the hit ratio
experienced by the vehicles with some box-plots. In every
simulation run, the mobility pattern of the vehicles would
be different. Since our content placement approach consid-
ers the mobility pattern of the vehicles, it can essentially
adapt with every situation and make good decisions in vari-
ous combinations of requesting contents from RSUs. In this
regards, the Markov approximation method shows high hit
ratio compared to two other proposed heuristics approaches.
But as it is shown in Fig. 11, the time complexity of this
method is higher than other approaches. Also the second
heuristic method shows better performance due to the fact
that it considers all the mentioned essential factors on the
cache content placement problem. This heuristic took into
account the mobility pattern of the vehicles, the popular-
ity of the files and the overlapping of RSU ranges and

Fig. 8 Cache hit ratio of content placement methods, based on combi-
natorial optimization approach

Fig. 9 Hit ratio of the combinatorial optimization approach for various
RSU communication ranges

therefore achieved better hit ratio compared to the first
heuristic which only took into account the popularity of
files.

As it is shown in Fig. 9, generally, by increasing the RSU’s
communication range, the hit ratio achieved by all the meth-
odswill increase except for the first heuristic. This is because,
by increasing the range up to 200 m, the hit ratio of the first
heuristic method increases due to the fact that the probabil-
ity of visiting more RSUs for each vehicle along its path
increases, But for the ranges more that 200 m, the hit ratio in
this method decrease because this method doesn’t consider
the RSU’s communication range. Therefore, by increasing
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Fig. 10 Cache hit ratio for different file library sizes

Fig. 11 Operational delay of the combinatorial optimization approach

the range, and by increasing the number of RSUs visited
by vehicles along their paths, this method suggests to store
redundant, and duplicatemost popular files in the RSUs. This
uniformity in storing files in multiple RSUs will cause the
reduction of hit ratio in this method. But we don’t have this
poor behavior in second heuristic, because we store the first
C most popular files in the most popular RSU and the nextC
most popular files in the second most popular RSU, etc. This
diversity in storing files in RSUs helps us to achieve high hit
ratio even in the situations with large RSU communication
ranges. In Fig. 10, we observed the effect of the cache sizes
on the performance of the combinatorial content placement
method. We simulated this approach for different file library
sizes and for three different average cache sizes. First, it is
obvious that by increasing the number of files in the library

the hit ratio experienced by the vehicles will be decreased.
Second, by increasing the average cache sizes, the availability
of the vehicle requests in the local RSUswill be increased and
the hit ratio of the caches will be also increased. For example,
in the case where we have 20 files in the library and the aver-
age cache size is 10, the hit ratio of the cacheswould be 100%
andvehicles can download all their requests from localRSUs.
Overall, the results confirm the efficiency of thismethod. The
combinatorial content placement approaches improves the
throughput of vehicular networks by accepting reasonable
operational delay for converging to an efficient equilibrium
(see Figure 11). Finally, we should mention that to have
better insight about the performance of the two proposed
approaches, we need to evaluate them in more realistic and
extensive environments. To complete this work, we should
consider some parameters to make the model more similar to
the realistic situations. For example we can take the network
capacity of the RSUs into account. That is, when RSUs can
only serve a certain number of requests at each time. Also
we should consider the packet loss and other communication
parameters of vehicular networks into account to have amore
realistic model of the environment. Another way to extend
this work is to utilize the V2V communication to improve
the throughput of the vehicular networks even more. Addi-
tionally, we can extend our work to highway environments
and observe the behavior of the proposed methods in those
situations. Last but not least, we can consider a scenario in
which the vehicles themselves can play the role of mobile
RSU and be local caches for other vehicles in the nearby
area.

6 Conclusion

In this paper, we proposed two approaches for improving
the throughput of vehicular networks. Considering the RSUs
to play the role of local cache servers for the vehicles, the
requested files can now be satisfied locally which leads to
have lower network congestion over the base station links.

In the first approach, we proposed a solution for the CCP
problemusing game theory that distributively suggestswhich
file should be store in which RSU to maximize the local hit
ratio experienced by the vehicles. In the second approach, we
modeled this problem using combinatorial optimization. We
formulated the problem as maximizing the expected number
of users which can successfully download their requested
files from RSUs, instead of downloading them from base
station. We then proposed an optimization problem to find
the best combination of files for storing in each RSU. The
simulation results showed that these approaches improve the
performance metric compared to other content placement
approaches.
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