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Abstract
This paper analyzes the carrier-to-interference ratio (CIR) of the so-called shotgun cellular systems (SCSs) in τ dimensions
(τ = 1, 2, and 3). SCSs are wireless communication systems with randomly placed base stations (BSs) over the entire plane
according to a Poisson point process in τ dimensions. Such a system can model a dense cellular or wireless data network
deployment, where locations of BSs end up being close to random due to constraints other than optimal coverage. In this
paper we apply SCSs in τ dimensions and also, in addition to path-loss and shadow fading, consider Rayleigh fading as a
most commonly used distribution to model multi-path fading, and analyze the CIR over the composite fading channel [i.e.,
Rayleigh–Lognormal (or Suzuki) fading channel], and determine a generalized expression for the distribution of CIR and
obtain the tail probability of CIR.

Keywords Random cellular deployment · Shotgun cellular systems · Generalized carrier to interference ratio · Rayleigh
fading · Lognormal shadow fading · Composite Rayleigh–Lognormal fading

1 Introduction

The modern cellular communication network is a com-
plex overlay of heterogeneous networks such as macrocells,
microcells, picocells, and femtocells. The BS deployment
for this network can be planned, unplanned, or uncoordi-
nated. Even when planned, the BS placement in a region
deviates from a regular hexagonal grid due to site-acquisition
difficulties, variable traffic load, and terrain. The coexis-
tence of heterogeneous networks have further added to these
deviations [23]. As a result, the BS distribution appears
increasingly irregular as the BS density grows and is outside
standard performance analysis. Two approaches of modeling
have been widely adopted in the literature. At one end, the
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BSs are located at the centers of regular hexagonal cells to
form an ideal hexagonal cellular system. These ideal hexago-
nal cellular systems provide upper performance bound (upb).
At the other end, the BS deployments are modeled accord-
ing to a τ -dimensional (τ -D) Poisson point process with a
parameter λ(r), as a function of the distances between BSs
and the mobile station (MS) which is the average BS den-
sity for the SCS [23–26]. Note that throughout this paper we
consider τ = 1, 2, and 3 for τ -D SCS.

In the homogeneous τ -D SCS, τ = 1 is a model for the
highway scenario, τ = 2 models the planar deployment of
BSs in suburbs, and τ = 3models theBSdeploymentswithin
large multi-storey buildings and wireless LANs (WLANs)
in mutistorey residential areas. Such systems provide lower
performance bound (lpb).

Brown [6,7] investigated the dynamic channel assignment
in an SCS and the results were comparedwith hexagonal sys-
tem. The difference between upper bound and lower bound is
small under operating typical conditions in modern CDMA
and TDMA cellular systems. The performance of wire-
less systems depends on using accurate statistical model to
characterize the propagation channel. Depending on the envi-
ronment, the propagation channel is susceptible to several
physical problems such as path-loss, interference,multi-path,
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and shadow fading. For example, in a typical communication
system, the effects of fading cause the received signal to fluc-
tuate rapidly around itsmean.Models that describe the effects
ofmulti-path fading are known as short-term fading, whereas
models that describe the effects of shadow fading are called
long-term fading. In many real world scenarios, the effects of
both multi-path and shadow fading are present in the system.
Models that combine the effects of short and long term fading
are known as composite fadingmodels [4]. In an SCS, similar
to each wireless system, the signal propagation is affected by
path-loss, shadow fading (slow fading), and multi-path fad-
ing (fast fading). Many cellular deployments have significant
randomness. Therefore, SCS is a system affected by random
phenomena. The performance metric of interest is the signal
quality at the MS. The performance in the SCS is defined as
the ratio of the received signal power to the total interference
power, and is denoted byCIR = PC

PI
. TheMS listens to theBS

with the strongest received signal power PC , where the sub-
scriptC stands for the signal-carrying BS. The interference is
the sum of the received power from all the other co-channel
BSs and is denoted by PI , where the subscript I stands for the
signal-interfering BSs.We know that the performance differs
slightly between the uplink and downlink, but qualitatively
they are similar and downlink may yield to at least much
simpler analysis and simulations [7]. For these reasons, in
this paper, similar to previous works, we only focus on the
downlink. The SCS and its performance metrics have been
studied under different channel models [5–7,15,21–26,32].
In this paper, we study a τ -D SCS over composite Rayleigh–
Lognormal fading channels with random variables, by two
methods.

First, in method 1, we analyze the effect of shadow fad-
ing and multi-path fading on the τ -D SCS, separately, and
then consider both effects together (composite Rayleigh and
Lognormal fading) and determine expressions for the distri-
bution of reverse CIR, and the probability density function
(pdf) of CIR is calculated in an analytical form, and obtain
the tail probability of CIR.

Second, in method 2, we analyze effect of shadow fad-
ing and multi-path fading on the τ -D SCS together by using
composite Rayleigh–Lognormal distribution and determine
expressions for the distribution of reverse CIR, and the pdf
of CIR is calculated in an analytical form, and obtain the
tail probability of CIR. Because of complicated calculations,
an approximation for the distribution of the reverse CIR
over shadow fading and Rayleigh fading channels is pro-
posed and its parameters are determined. So, a clear-tractable
expression for the distribution of CIR is approximated.While
reducing the mathematical complexity, this approximation
provides fairly accurate pdf for the CIR. The paper is orga-
nized as follows. In Sect. 2, we explain system model. In
Sect. 3,we reviewpreviousworks. InSect. 4,we explainmain
results. This section consists of two subsections. In Sect. 4.1,

we use method 1 for analyzing τ -D SCS over composite
Rayleigh–Lognormal facing. In Sect. 4.2, we use method 2
for analyzing τ -D SCS over composite Rayleigh–Lognormal
fading. In Sect. 5, the details of simulation results are pre-
sented and finally Sect. 6 concludes the paper.

2 Systemmodel

In the SCS with fixed non-variable radio properties and no
shadow fading, the BS closest to the MS will be chosen as
the carrying or serving BS, and all the others are interfering
BSs. When random radio properties and shadow fading are
introduced to this system, the serving BS is not necessarily
the BS closest to the MS. Since our focus is on the downlink,
we consider the performance (i.e., CIR) of a single MS. This
MS, without loss of generality, is assumed to be located at
the origin and around this MS, BSs are placed according to
a τ -D Poisson point process with a parameter λ(r) which
is the average BS density for the SCS [5–7,21–26,32]. In
this paper, we assume a τ -D SCS, which the BSs and MS
are placed over the entire plane, according to a BS density
function λτ (r), where M ∼ Poisson(λτ (r)). The received
power at the MS from a BS is given by:

Pr = K PT R
−εΨ φ (1)

where K is a radio factor and PT is transmitter power. The
path-loss is a function of the BS to MS separation R and fol-
lows an inverse power law with ε, as the path-loss exponent.
The multi-path fading factor and shadow fading factor are
introduced with φ and Ψ , respectively.

Shadow fading is usually modelled as a Lognormal
random variable [5,7–9,12,15,21,22,24–26,33]. Also, multi-
path fading is modelled as a Rayleigh variable [1,2,4,10,13,
14,16–18,20,28–31,34–36]. The Rayleigh fading model is
one of the simplest and most commonly used distribution to
model short term-fading [4]. This model is an appropriate
model for describing multi-path fading in urban environ-
ments with high buildings, when there is no direct line of
sight (LOS) between the transmitter and the receiver, and
the resultant signal at the receiver will be the sum of all the
reflected and scattered waves (see Fig. 1).

In the SCS, the MS communicates with only one BS. In a
systemwith multiple channel reuse groups (CGs), each BS is
assigned to oneCG. The channels are assumed to be perfectly
orthogonal to each other. All the interferences are due to co-
channel radios. In Gaussian channels the received signal Y
from transmitted signal X can be written as Y = hX + Z ,
in which Z is noise of channel, and h is fading coefficient.
In different channels, h can be modeled as different random
variables (RVs) such as shadow fading Ψ and multi-path
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Fig. 1 The model fading is Rayleigh when there is no direct line of
sight (LOS) between the transmitter and the receiver

fadingφ. Therefore, assumingGaussian channels in the SCS,
the received power at the MS from a BS is given by Eq. 1.

The MS receives signals from all the BSs and chooses to
communicate with the BS that corresponds to the strongest
received signal power. This BS is referred to as the carrying
BS, and all the other BSs are called the interfering BSs. Thus,
the signal quality at the MS is defined as the ratio of the
received power from the serving BS to the sum of the total
interference power, i.e., carrier-to-interference ratio C

I = PS
PI
.

3 Previous works

In this section, we review the previous works. Madhusud-
hanan et al. [23] studied the performance of a τ -D SCS with
shadow fading modelled by i.i.d Lognormal random vari-
ables. A semi analytical expression for the CIR and the tail
probability of CIR was obtained. Also, it was shown that an
SCS affected by Lognormal shadow fading is equivalent to
another SCS without shadow fading with different BS den-
sity function.

Madhusudhanan et al. [22] and Brown [6] considered a 2-
D SCS, where the BSs were placed over the entire 2-D plane
according to a 2-D Poisson point process with a constant BS
density. They considered path-loss and shadow fading, while
ignored multi-path fading and noise. They showed that the
CIR random variable only depends on the distances between
BSs andMS. So, they concluded that a uniform τ -DSCSwith
a constant BS density λ is equivalent to a non-uniform one-
sided 1-DSCSwith aBSdensity functionλτ (r) = λbτ r (τ−1)

∀r ≥ 0, where b1 = 2, b2 = 2π and b3 = 4π . Therefore,
all analyses and results are sufficient to be stated in terms of
a 1-D SCS.

Brown [7] compared the performance of an SCS with
hexagonal cellular system over shadow fading channels, and
it was shown that the SCS is a useful system because its
performance over very shadowed environment is close to
hexagonal systems performance.

Madhusudhanan et al. [23,26] investigated the perfor-
mances of τ -D SCSs with placing BSs as a non-homogenous
Poisson distribution with random distances from origin. The

authors in [26] also studied a 1-D SCS with BS density
function λ(r), where shadow fading in the form of i.i.d
non-negative random factors Ψ was introduced. Also, it was
shown that in a homogenous τ -D SCS, shadow fading does
not affect the performance at the MS and in noisy shadowed
channels this term is completely captured in the noise power.
They have numerically analysed effects of different fading
factors in the performance of SCS.While they have not deter-
mined the distribution of performance in a closed form for
all channel models.

Khodadoust and Hodtani [15] considered correlated shad-
owing paths between BS and MS pairs as a most important
factor and analyzed the CIR in a 2-D SCS over this corre-
lation and determined an expression for distribution of CIR
and finally obtained the tail probability of the CIR.

4 Main results

4.1 Method 1

In this subsection, first, we obtain a generalized expression

for the pdf of reverse CIR, x =
(
C
I

)−1
, on the τ -D SCS

over channels with only path-loss, and then we review the
results that have been concluded in previous papers about
the performance of an SCS over only shadow fading channels
and we obtain an expression for the pdf of reverse CIR on
the τ -D SCS over channels with shadow fading. After that,
we obtain an expression for the pdf of reverse CIR on the τ -
D SCS over channels with only Rayleigh fading. Finally, we
calculate the pdf of performance of a τ -DSCSby considering
the path-loss, the shadow fading, and Rayleigh fading, and
then we obtain the tail probability of performance.

The received power at theMS from a BS can be expressed
in a more general form, based on Eq. 1. The radio factor
K would be a random variable to capture the variations in
antenna gains and antenna orientations, but here we just
assume K as a constant. We model shadow fading factor
Ψ as a zero mean Lognormal random variable with variance
σ . Also multi-path fading factor φ is modeled as a Rayleigh
random variable. In such a case, we can write the CIR at the
MS, in more general form as follows:

(
C

I

)
= K Rs

−εΨsφs∑∞
i=1 K Ri

−εΨiφi
(2)

where subscript s denotes the serving BS and subscript i
indexes the co-channel interferers and {RS}∪{Ri }∞i=1, where
Rs ≤ R1 ≤ R2 ≤ R3 ≤ · · · , {ΨS} ∪ {Ψi }∞i=1, and {φS} ∪
{φi }∞i=1 are the separations, the shadow fading factors, and
the Rayleigh fading factors between the corresponding BS
to MS pairs, respectively.
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First, we calculate a generalized expression for the distri-
bution of reverse CIR on the τ -D SCS over channels with
only path-loss. As mentioned in Eqs. 1 and 2, we define

x = ∑M
i=1

(
Ri
Rs

)−ε

, where M is the number of interferer

BSs, and is a Poisson random variable. In the SCS, the dis-
tances between BSs are exponential random variables. The
random variable gi is defined as a function of random vari-
ables Ri and Rs as gi = ( Ri

Rs

)−ε. Now, we can calculate the
distribution of gi .

In the τ -D homogenous SCS, the random variables
Ri and Rs are independent exponential with fR(r) =
λbτ r τ−1exp

(−λbτ rτ

τ

)
[23], where fR(r) is pdf of R. To cal-

culate pdf of gi , we use the usual relations for the joint
and marginal distribution functions from [27]. Therefore, we
define mi = Ri

Rs
and u = Ri → RS = u

mi
to use the joint

distribution. Then, we write:

	(Ri , Rs) =
∣∣∣∣∣
∂mi
∂Ri

∂mi
∂Rs

∂u
∂Ri

∂u
∂Rs

∣∣∣∣∣ = Ri

Rs
2 = mi

2

u
(3)

where	(., .) denotes the Jacobian matrix. According to [27],
the joint density function of random variables mi and u is
written as:

fmi ,u(mi , u) = fRi ,Rs (u, u
mi

)∣∣	(Ri , Rs)
∣∣

=
(

u

m2
i

) (
λbτuτ−1

)2
mi

τ−1

exp

{
− uτ

(
λbτ

τ
+ λbτ

τmτ
i

)}

=
(
λbτ

)2
u2τ−1

mi
τ+1 exp

{
− uτ

(
λbτ

τ
+ λbτ

τmτ
i

)}

(4)

Therefore the distribution of randomvariablemi is calculated
as:

fmi (mi ) =
∫ ∞

0
fmi ,u(mi , u)du =

(
λ2b2τ
mi

τ+1

)

τ

(
λbτ

τ
+ λbτ

τmτ
i

)2 (5)

By considering gi =
(
Ri
Rs

)−ε = m−ε
i , the distribution of gi

is calculated as:

fgi (gi ) = τλ2b2τ

εg
τ
ε
+1

i

(
λbτ g

− τ
ε

i + λbτ

)2 = n

εg
1+ n

ε

i

(
1 + g

− n
ε

i

)2

(6)

Then, to calculate the pdf of random variable x with respect
to M , we write:

fx |M (x) = fg1(x) ∗ · · · ∗ fgM (x) (7)

where ∗ denotes convolution. Now, we write the expression
for the pdf of x as:

fx (x) =
∞∑

η=1

f(x |M)(x).p{M = η} (8)

whereM is a Poisson random variable with parameter λτ (r).
Therefore, we write:

p{M = η} = e−λτ (r)

(
λτ (r)

)η

η! (9)

For example, when ε = 1 and λτ (r) = λ, we can write the
expression for the pdf of x as:

fx (x) =
∞∑

η=1

e−λ (2πλ)η

η!
η∑

n=0

(
η

n

) n∑
i=0

gi (δ(x))

dxi
(10)

where δ(x) is deltaDirac function of randomvariable x. In the
following, we review the results that have been concluded in
previous papers about the performance of an SCS over only
shadow fading channels. Brown [7] compared performance
of anSCSwith hexagonal cellular systemover shadow fading
channels , andwas shown that SCS is useful for this channels,
because its performance over very shadowed environments
is close to hexagonal systems performance. Madhusudhanan
et al. [23] studied the performance of a 1-D SCS over shadow
fading channels , that have been modeled by i.i.d Lognormal
random variables and a semi-analytical expression for the
CIR, and the tail probability of CIR, that means probability
that the CIR level is over a threshold level γ , γ ≥ 1, has been
concluded as:

prob

{
C

I
> γ

}
=

∫ ∞

ω=−∞
Φ(

C
I

)−1(ω)

(
1 − e

(−iω
γ

)

iω

)
dω

2π
(11)

In which for characteristic function of reverse CIR, we
have:

Φ(
C
I

)−1 (ω) = ERS

[
exp

(
RS

∫ ∞

u=1

(
exp(iωu−ε) − 1

)
λ(uRS)du

)]

(12)
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Then, the pdf of RS is modeled as exponential random
variable [23], with the following distribution:

fRS (rS) = λ(rS). exp

( ∫ rS

s=0
λ(s)ds

)
,∀ rS ≥ 0 (13)

and also ERS [.] denotes the static expectation with respect
to RS random variable. Madhusudhanan et al. [23,26] shown
that an SCS affected by Lognormal random shadow fading is
equivalent to another SCS without shadow fading and a dif-
ferent BS density function. According to [23], we shown that
when shadow fading in the form of i.i.d non-negative random
factors {ΨS} ∪ {Ψi }∞i=1 are introduced to a τ -D SCS with BS
density function λτ (r), such that the random variables are
independent of the BSs replacing, with Poisson point pro-
cess, the resulting system is equivalent to another τ -D SCS
with a different BS density:

λ̄τ (r) = EΨ

[
Ψ

τ
ε λτ

(
rΨ

τ
ε

)]
(14)

Such an equivalence is valid as long as EΨ

[
Ψ ( τ

ε
)λτ

(
rΨ ( τ

ε
)
)]

< ∞, where EΨ [.] denotes statistical expectation with
respect to Ψ random variable with the following distribu-
tion:

fΨ (Ψ ) = 1

Ψ
√
2πσ

e
−

(
ln (Ψ )

σ

)2

2 (15)

By entering Eq. 15 in Eq. 14, BS density function of τ -D

SCS is equal to λ̄ = λe
(

τσ2

ε2

)
. Also, the authors in [23] were

shown that in a homogenous τ -D SCS, shadow fading does
not affect the performance at the MS and in noisy shadowed
channels this term is completely captured in the noise power.
Previous works introduced only tail probability of distribu-
tion of performance over shadow fading and additive white
Gaussian noise (AWGN) channels, and distribution of per-
formance was not calculated. Also, multi-path fading has not
been studied in the CIR performance of SCS. In this paper,
we calculate the performance of an SCS over shadow fad-
ing and Rayleigh fading channels and calculate the reverse
CIR distribution and tail probability of this random variable,
too. Now, we just assume a τ -D, non-noisy, and fading chan-
nels SCS. Also, in this case, we do not consider path-loss.
First, equivalent system is introduced , then the distribution of
reverse CIR and tail probability for the CIR in such a system
are calculated. The effect of multi-path fading on the CIR in
expression Eq. 2 can be expressed by multi-path fading fac-
tor φ, which is modeled as a Rayleigh random variable. The
Rayleigh fading model is characterized by a single parame-
ter, i.e., σ . The pdf of the channel fading amplitude φ in a
Rayleigh fading environment is given by:

fφ(φ) = φ

σ 2 e
−

(
φ
σ

)2

2 (16)

In the presence of fading, the amplitude of the received signal
is attenuated by the fading amplitude φ, which is a random
variable with meansquare value σ . Such that we can write:

(
C

I

)
= Rs

−εφs∑∞
i=1 Ri

−εφi
(17)

where {φS} ∪ {φi }∞i=1 are the nonnegative random Rayleigh
fading factors with parameter σ . Due to the complexity of
the sentences in the direct calculation of the CIR, for the
simplicity of the calculus, we use its reverse and calculate
the following distribution:

(
C

I

)−1

=
∞∑
i=1

(
Ri

−ε

Rs
−ε

)(
φi

φs

)
(18)

According to [23], related to shadow fading, when multi-
path fading in the form of i.i.d nonnegative random factors
{φS}∪{φi }∞i=1 are introduced to the τ -D SCSwith BS density
function λτ (r), we calculate BS density for a τ -D SCS over
Rayleigh fading in the following.

The expression for the CIR can equivalently be written as:

(
C

I

)
= R̄s

−ε

∑∞
i=1 R̄i

−ε
(19)

where R̄s = Rsφ
−τ
ε

s and R̄i = Riφ
−τ
ε

i , that subscripts s and i
denote server and interferer, respectively, andR is the random
variable representing the radial distance from theMS to a BS
in the non-uniformSCSwith aBSdensity functionλτ (r), and
φi is the multi-path fading factor corresponding to the BS,
and R̄ is the corresponding equivalent radial distance. R̄ also
follows a Poisson process with a BS density function derived
in the following paragraph. For each non-homogeneous Pois-
son process, E[N (t + s) − N (t)], the expected number of
occurrences in the interval (t, t + s) is called the mean func-
tion and can be written in terms of the BS density function
as follows:

E[N (t + S) − N (t)] = Eφ

[ ∫ (r+s)φ
τ
ε

rφ
τ
ε

λτ (k)dk

]
(20)

where λτ (k) is the density function of the Poisson process.
Consider E[Number of BSs wi th R̄ ∈ (r , r + s)] =
E[N (r + s) − N (r)].

Thus, we can write k → kφ
−τ
ε and obtain the following

equation:
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E[N (r + S) − N (r)] a= Eφ

[ ∫ (r+s)φ
τ
ε

rφ
τ
ε

λτ (k)dk

]

b=
∫ r+s

r
Eφ

[
φ

τ
ε λτ

(
kφ

τ
ε

)]
dk (21)

where (a) is obtained by rewriting the expectation with
respect to every realization of the Rayleigh fading factor and
R is generated from a non-homogeneous Poisson process
with a density function λτ (r) and (b) follows easily. Hence,
R̄s are generated from another non-homogeneous Poisson

process with a density function Eφ

[
φ( τ

ε
)λτ

(
rφ( τ

ε
)
)]

< ∞.

When multi-path fading in the form of i.i.d nonnegative
random factors {φS}∪{φi }∞i=1 are introduced to the τ -D SCS
with a BS density function λτ (r), the resulting system is
equivalent to another τ -D SCS with a different BS density:

λ̄τ (r) = Eφ

[
φ

τ
ε λτ

(
rφ

τ
ε

)]
(22)

where Eφ[.] denotes statistical expectation with respect to φ.

Such an equivalence is valid as long as Eφ

[
φ( τ

ε
)λτ

(
rφ( τ

ε
)
)]

< ∞.
Now, by entering Eq. 22 in Eq. 1 and using Eq. 8, we

can find the distribution function of reverse CIR, and then
calculate the tail probability of CIR for an SCS over Rayleigh
fading channels, by using the result in Eq. 11.

In the following, we calculate the distribution of reverse
CIR over this channel. To calculate the performance of a τ -D

SCS over fading channel, we can write
(
C
I

)
= R−ε

s φs∑∞
i=1 R

−ε
i φi

.

Due to the complexity of the sentences in the direct cal-
culation of the CIR, for the simplicity of the calculus, we

use its reverse and calculate the distribution
(
C
I

)−1 =
∑M

i=1

(
R−ε
i

R−ε
s

)(
φi
φs

)
, where {φS} ∪ {φi }∞i=1 are i.i.d Rayleigh

random variables. Then we can use symbol mi for changing
the variables as follows:

mi =
(

φi

φs

)
(23)

First, we obtain the distribution of mi and then calculate the
reverse CIR distribution by using the results. In first step, by
using Jacobian matrix, we can calculate the distribution of
mi , therefore define random variable u to use joint distribu-
tion as u = φi → φs = u

mi
and we can write:

	(φi , φs) =
∣∣∣∣∣
∂mi
∂φi

∂mi
∂φs

∂u
∂φi

∂u
∂φs

∣∣∣∣∣ = − φi

φs
2 = −mi

2

u
(24)

According to [27], the joint density function of random vari-
ables mi and u is written as:

fmi ,u(mi , u) = fφi ,φs (u, u
mi

)∣∣	(φi , φs)
∣∣

= 1
m2
i
u

f(φi )(u) f(φs )

(
u

mi

)

= u

m2
i

(
u

σ 2 e
−
(
u
σ

)2
2

)(( u
mi

)

σ 2 e
−
((

u
mi

)
σ

)2

2

)

= u3

m3
i σ

4
e

(
−
(
u
σ

)2
2 +

−
((

u
mi

)
σ

)2

2

)

= u3

m3
i σ

4
e
−u2

(
1

2σ2
+ 1

2σ2m2
i

)
(25)

Therefore the distribution of mi can be calculated by:

fmi (mi ) =
∫ ∞

0
fmi ,u(mi , u)du =

∫ ∞

0
Au3e(−Bu2)du

= A
∫ ∞

0
u3e(−Bu2)du (26)

where the parameters A and B are defined: A = 1
m3
i σ

4 and

B =
(

1
2σ 2 + 1

2m2
i σ

2

)
, and by using the following equation,

i.e., Eq. 27, we obtain Eq. 28.

∫ ∞

0
une−au2du = K !

2aK+1 (27)

n = 2K + 1 and a > 0.

fmi (mi ) = A

2B2 =
1

mi
3σ 4

2
(

1
2σ 2 + 1

2σ 2mi
2

)2

=
1

mi
3σ 4

2
(

1
4σ 4 + 1

4σ 4mi
4 + 2

4σ 4mi
2

) = 2mi(
1 + mi

2
)2

(28)

and by using the results, we can calculate an expression for
the reverse CIR as follows:

(
C

I

)−1

=
M∑
i=1

(
R−ε
i

R−ε
s

)(
φi

φs

)

=
M∑
i=1

(
Ri

Rs

)−ε

mi =
M∑
1

gimi =
M∑
1

Qi (29)
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Now, by having the pdf for mi , in Eq. 28, and the pdf for gi ,
in Eq. 6, and use of Jacobian matrix, we can determine the
distribution of Qi . Therefore, we define random variable u
to use the joint distribution as u = gi → mi = Qi

u and we
can write:

	(gi ,mi ) =
∣∣∣∣∣
∂Qi
∂mi

∂Qi
∂gi

∂u
∂mi

∂u
∂gi

∣∣∣∣∣ = gi = u (30)

Then according to [27], the joint density function of random
variables Qi and u is written as:

fQi ,u(Qi , u) = fmi ,gi (
Qi
u , u)∣∣	(gi ,mi )

∣∣ = 1

u
fmi

(Qi

u

)
fgi (u)

= 1

u

(
2
( Qi

u

)
(
1 + ( Qi

u

)2)2
)(

fgi (gi )
)

= 1

u

⎛
⎝ 2

( Qi
u

)

1 + Qi
4

u4
+ 2Qi

2

u2

⎞
⎠ (

fgi (gi )
)

= 2Qiu2(
u2 + Qi

2
)2

(
fgi (gi )

)
(31)

The distribution of Qi is calculated as follows:

fQi (Qi ) =
∫ ∞

gi=0
fQi ,gi (Qi , gi )dgi

=
∫ ∞

gi=0

(
2Qi gi 2(

gi 2 + Qi
2
)2

)(
fgi (gi )

)
dgi

= 2Qi

∫ ∞

gi=0

gi 2(
gi 2 + Qi

2
)2

(
fgi (gi )

)
dgi (32)

By comparingEq. 32 and statistical expectation definition,
we can write:

fQi (Qi ) = 2Qi Egi

[
gi 2(

gi 2 + Qi
2
)2

]
(33)

The distribution of y with respect to M can be written as
follows:

fy|M (y) = fQ1(y) ∗ · · · ∗ fQM (y) (34)

where M was showed in Eq. 9. Now, the expression for dis-
tribution of y can be calculated as follows:

fy(y) =
∞∑

η=1

fy|(M=η)(y).p{M = η}

=
∞∑

η=1

(
fQ1(y) ∗ · · · ∗ fQM (y)

)
.p{M = η}

=
∞∑

η=1

2ηe−λτ (r) λτ (r)η

η!

×
(
yEg1

[
g12(

g12 + y2
)2

]
∗ · · · ∗

yEgη

[
gη

2

(
gη

2 + y2
)2

])
(35)

Then we can calculate the tail probability of CIR for a τ -D
SCS over multi-path fading channels as follows:

p

{(
C

I

)
≥ γ

}
= K ε

τ
γ

−τ
ε

= p

{(
C

I

)−1

≤ 1

γ

}
=

∫ 1
γ

0
fy(y)dy (36)

where K ε
τ
is a constant parameterized by ε

τ
and ε is the path-

loss exponent. Therefore the tail probability of reverse CIR,
by using fy(y), is given by:

p

{(
C

I

)−1

≤ 1

γ

}
=

∫ 1
γ

0

∞∑
η=1

fy|(M=η)(y).p{M = η}dy

=
∞∑

η=1

2ηe−λτ (r) λτ (r)η

η!
∫ 1

γ

0

(
yEg1

[
g12(

g12 + y2
)2

]

∗ · · · ∗ yEgη

[
gη

2

(
gη

2 + y2
)2

])
dy

(37)

Now, we will show the effect of shadow fading and
Rayleigh fading on the τ -D SCS and an expression for pdf of
the reverse CIR in this system would be introduced. More-
over, the tail probability for this random variable, by using
the results, would be calculated. The effect of shadow fad-
ing on a uniform 2-D SCS was studied in [15,21,22,26]. It
was shown that the performance of the uniform 2-D SCS is
independent of the BS density, the performance of such a
cellular system is the same as the performance of any other
uniform 2-D SCS. Furthermore, in [23] it has been proved
that when shadow fading in the form of i.i.d non-negative
random factors {ΨS} ∪ {Ψi }∞i=1 are introduced to the 1-D
SCS with BS density function λ(r), the resulting system is
equivalent to another 1-D SCS with a different BS density

λ̄(r) = EΨ

[
Ψ ( 1

ε
)λ

(
rΨ ( 1

ε
)
)]
. Now, by using this equivalent,

Eqs. 8 and14,we can calculate the pdf of reverseCIRaffected
by shadow fading and hence we can conclude that:
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fy(y) =
{ ∞∑

η=1

fy|(M=η)(y).p{M = η}∣∣λ̄τ (r)

}
(38)

and

p

{(
C

I

)−1

≤ 1

γ

}

=
{{∫ 1

γ

0

∞∑
η=1

fy|(M=η)(y).p{M = η}dy
}∣∣λ̄τ (r)

}

=
{{ ∞∑

η=1

2ηe−λτ (r) λτ (r)η

η!
∫ 1

γ

0

(
yEg1

[
g12

(g12 + y2)2

]
∗ · · · ∗

yEgη

[
gη

2

(gη
2 + y2)2

])
dy

}∣∣λ̄τ (r)

}
(39)

According to [23,26] and our results inEq. 14, shadow fading
affects on the BS density function, so, the distributions ofM
in Eq. 9 is changedwith respect to previous assumed channels
modelled without shadow fading. Therefore, we have:

p{M = η
∣∣λ̄τ (r)} = e−λ̄τ (r) λ̄τ (r)η

η! (40)

By entering Eq. 40 in Eq. 39, the tail probability of reverse
CIR in the τ -D SCS over composite Rayleigh–Lognormal
fading is:

p

{(
C

I

)−1

≤ 1

γ

}

=
{ ∞∑

η=1

2ηe−λ̄τ (r) λ̄τ (r)η

η!
∫ 1

γ

0

(
yEg1

[
g1

2

(g12 + y2)2

]
∗ · · · ∗

yEgη

[
gη

2

(gη
2 + y2)2

])
dy

}
(41)

4.2 Method 2

In this subsection, we analyze effect of both shadow fad-
ing and multi-path fading on the τ -D SCS by considering
composite Rayleigh–Lognormal distribution as the most
employed composite distribution [3,11,19,28] and determine
expressions for the distribution of inverse CIR and the pdf
of CIR is calculated in an analytical form and obtain the tail
probability of CIR.Atapattu et al. [3] introduced a simple and
new form of distribution which can accurately represent both
the Rayleigh fading and Lognormal shadow fading effects.
The pdf of the composite Rayleigh–Lognormal fading chan-
nel 
 is given by:

f
(
) ≈ 2
√
π

N∑
i=1

wi h(pi ) (42)

In this equation, p = lnΨ√
2σ

and h(p) = e−
(√

2σ p+
2e−(
√
2σ p)

)
,

where Ψ is Lognormal shadow fading with mean and vari-
ance 0 andσ , respectively. pi andwi are abscissas andweight
factors for the Gaussian-Hermite integration [3]. pi and wi

for different N values are available in [3] or can be calculated
by a simple MATLAB program.

By considering
, in the SCS, we can write the CIR at the
MS, in more general form as follows:

(
C

I

)
= K Rs

−ε
s∑∞
i=1 K Ri

−ε
i
(43)

Due to the simplicity of the calculus we use reverse CIR

and calculate the distribution
(
C
I

)−1 = ∑M
i=1

(
R−ε
i

R−ε
s

)(
i
s

)
,

where {
S} ∪ {
i }∞i=1 are composite Rayleigh–Lognormal
fading variables. Then, we can use symbol mi for changing
the variables as follows:

mi =
(
i


s

)
(44)

First, we obtain the distribution of mi and then calculate
the reverse CIR distribution by using the result. In first step,
by using Jacobian matrix, we can calculate the distribution
of mi , therefore we define random variable u to use joint
distribution as u = 
i → 
s = u

mi
and we can write:

	(
i ,
s) =
∣∣∣∣∣
∂mi
∂
i

∂mi
∂
s

∂u
∂
i

∂u
∂
s

∣∣∣∣∣ = − 
i


s
2 = −mi

2

u
(45)

Then according to [27], the joint density function of random
variables mi and u is written as:

fmi ,u(mi , u) = f
i ,
s (u, u
mi

)∣∣	(
i , 
s)
∣∣

= 1(
m2
i
u

) f(
i )(u) f(
s )

(
u

mi

)

=
(

u

m2
i

)(
2u√
π

N∑
j=1

w j h(p j )

) (
2
( u
mi

)
√

π

N∑
k=1

wkh(pk)

)

(
4u3

πm3
i

) N∑
j=1

N∑
k=1

w jwkh(p j )h(pk) (46)

where h(p j ) = e−
(√

2σ p j+u2e−(
√
2σ p j )

)
and h(pk) =

e
−
(√

2σ pk+( u
mi

)2e−(
√
2σ pk )

)
.
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Therefore

fmi ,u(mi , u) =
(

4u3

πm3
i

)

N∑
j=1

N∑
k=1

w jwke
−
(√

2σ(p j+pk )+u2
(
e(−√

2σ p j )+m−2
i e(−√

2σ pk )
))

(47)

Therefore, the distribution of random variable mi can be
calculated by:

fmi (mi ) =
∫ ∞

0
fmi ,u(mi , u)du

=
(

4

πm3
i

) N∑
j=1

N∑
k=1

w jwke
−
(√

2σ(p j+pk )
)

∫ ∞

0
u3e−u2

(
e(−√

2σ p j )+m−2
i e(−√

2σ pk )
)
du (48)

By using Eq. 27, we have:

fmi (mi ) =
(

2

πm3
i

) N∑
j=1

N∑
k=1

w jwk
e−

(√
2σ(p j+pk )

)
(
e(−√

2σ p j ) + m−2
i e(−√

2σ pk )
)2
(49)

and by using the results, we can calculate an expression for
reverse CIR as follows:

(
C

I

)−1

=
M∑
i=1

(
R−ε
i

R−ε
s

)(
i


s

)

=
M∑
i=1

(
Ri

Rs

)−ε

mi =
M∑
i=1

gimi =
M∑
i=1

Qi (50)

Now, by having the Eqs. 6 and 49 and by using Eq. 30 we can
determine the distribution of Qi . By using Eq. 30 and accord-
ing to [27], the joint density function of random variables Qi

and u is written as:

fQi ,u(Qi , u) = fmi ,gi (
Qi
u , u)∣∣	(gi ,mi )

∣∣

= 1

u

(
2

π
( Qi

u

)3
) N∑

j=1

N∑
k=1

w jwk

e−
(√

2σ(p j+pk )
)

(
e(−√

2σ p j ) + ( Qi
u

)−2
e(−√

2σ pk )
)2 fgi (u)

(51)

The distribution of Qi is calculated as follows:

fQi (Qi ) =
∫ ∞

gi=0
fQi ,gi (Qi , gi )dgi

=
∫ ∞

gi=0

1

u

(
2

π
( Qi

u

)3
) N∑

j=1

N∑
k=1

w jwk

e−
(√

2σ(p j+pk )
)

(
e(−√

2σ p j ) + ( Qi
u

)−2
e(−√

2σ pk )
)2

(
fgi (gi )

)
dgi

= 2

πQ3
i

N∑
j=1

N∑
k=1

w jwke
−
(√

2σ(p j+pk )
)

∫ ∞

gi=0

g2i(
e(−√

2σ p j ) + ( gi
Qi

)2
e(−√

2σ pk )
)2

(
fgi (gi )

)
dgi

(52)

By comparingEq. 52 and statistical expectation definition,
we can write:

fQi (Qi ) = 2

πQ3
i

N∑
j=1

N∑
k=1

w jwk

e−
(√

2σ(p j+pk )
)
Egi

[
g2i(

e(−√
2σ p j ) + ( gi

Qi

)2
e(−√

2σ pk )
)2

]

(53)

The distribution of y with respect toM can be written as Eq.
34, then we can calculate the tail probability of CIR for a τ -
DSCSover compositeRayleigh–Lognormal fading channels
as Eq. 36. Therefore the tail probability of reverse CIR, by
using fy(y), is given by:

p

{(
C

I

)−1

≤ 1

γ

}
=

∫ 1
γ

0

∞∑
η=1

fy|(M=η)(y).p{M = η}dy

=
∞∑

η=1

( 2

π

)η

e−λτ (r) λτ (r)η

η!
N∑
j=1

N∑
k=1

w jwk

∫ 1
γ

0

((
y−3e−

(√
2σ(p j+pk )

)
Eg1

[
g21(

e(−√
2σ p j ) + ( g1

y

)2
e(−√

2σ pk )
)2

])

∗ · · · ∗
(
y−3e−

(√
2σ(p j+pk )

)
Egη

[
g2η(

e(−√
2σ p j ) + ( gη

y

)2
e(−√

2σ pk )
)2

]))
dy

(54)

5 Simulation results

In this section, the details of simulating the τ -D SCS are
presented. In every single trial a random number M ∼
Poisson(λτ (r)) is generated, and then the BSs are placed
over our region. The received power at the MS for each
BS is computed by considering the path-loss exponent ε,
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Fig. 2 The comparison of the tail probability of CIR for homogeneous
τ -D SCS on the BS density in τ = 1, 2, and 3 dimensions. (ε = 4)

Fig. 3 The tail probability of CIR at different BS densities, in a τ -D
SCS over different channel models. (ε = 4, τ = 2)

the shadow fading, multi-path fading, and composite fad-
ing, in the τ -D SCS. For calculating the numerical results,
in every trial, the received power at the MS from each BS is
computed by generating random variables for shadow fad-
ing, multi-path fading, and composite fading according to the
Log − N (0, σ 2

Ψ ), Rayleigh fading and composite Rayleigh–
Lognormal (Susuki) fading, respectively. Finally, the CIR
random variable is generated according to Eqs. 2 and 43.
The trial is repeated 10,000 times and the tail probability of{(

C
I

)
> 1

}
according to Eqs. 41 and 54 is simulated. For

simulation fy(y), we use central limit theorem for approxi-
mation of it as a normal randomvariable.Mont-Carlomethod
is used with number of iteration 10,000 times.

In Fig. 2, we compare the tail probability of CIR as a
function of BS density for τ -D SCS with τ = 1, 2, and 3,

Fig. 4 The comparison of the approximate distributions of reverse CIR
for three different BS densities in τ -D SCS by considering the shadow
fading and Rayleigh fading. (ε = 4, τ = 2)

and it shows the 1-D SCS has a better CIR tail probability
than the 2-D and 3-D SCS. Also, it shows that a 2-D and 3-D
SCS is same as of a 1-D SCS with path-loss exponents ε

2 and
ε
3 , respectively.

In Fig. 3, the tail probability of CIR for a τ -D SCS, over
different channel models, at different BS densities is com-
pared. By considering of shadow fading and Rayleigh fading
together, the tail probability will be increased, as was con-
cluded in [22] with shadow fading effect. Also, increasing
the BS density, reduces the tail probability for all channel
models; that it is because of increasing the interferer BSs.
But when the number of BSs goes up, the tail probability
gets approximately fixed, because the ratios of interferer dis-
tances to server distance get very high; hence the path-loss
gets approximately fix. It is the same as calculated results
for path-loss channels in [22,26]. The pdf of reverse CIR, for
different BS densities, is shown in Fig. 4. We can conclude
that, when λ is grown the variance and mean of reverse CIR
are increased. It means that the variance and mean of CIR
decreases with growing BS density.

In Fig. 5, the tail probability of CIR for a τ -D SCS over
composite fading by using methods 1 and 2, at different BS
densities, are compared.

In Fig. 6, the approximate distributions of y =
(

C
I

)−1

by

using methods 1 and 2 for two different BS densities in τ -D
SCS over composite fading are compared. Also, in this figure
we compare the approximate distribution of reverse CIR and
the numerical result which is calculated from Monte Carlo
method for two different BS densities. This plot shows the
ability of the approximation which obtains results close to
the numerical results. Figures 5 and 6 show that analysing
τ -D SCS over composite fading, by using methods 1 and 2,
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Fig. 5 The comparison of the tail probability of CIR at different BS
densities, in a τ -D SCS over composite fading by using methods 1 and
2. (ε = 4, τ = 2)

Fig. 6 The comparison of the approximate distributions of reverse CIR
by using methods 1 and 2, and numerical result which is calculated
from Monte Carlo method, for two different BS densities in τ -D SCS
by considering the composite fading. (ε = 4, τ = 2)

are very similar. Therefore, we can use methods 1 or 2 to
analyze τ -D SCS over composite fading.

6 Conclusion

In this paper, we studied the generalized downlink CIR
performance for an SCS in multiple dimensions (1, 2,
and 3 dimensions). We considered path-loss, Lognormal
shadow fading, Rayleigh fading, and composite Rayleigh–
Lognormal (Suzuki) fading tomodel theBSs toMSchannels.
The generalized distribution of downlink CIR performance

was calculated and then the performance of composite fading
channels by using two methods was calculated and the tail
probability of CIR was obtained. We compared the approx-
imate and the exact distributions, which were obtained by
using methods 1 and 2, and also exploited the Monte Carlo
results by simulations, in order to show the ability of approx-
imation and correctness of the analytical expression. The
comparisons showed the effectiveness of the approximations.
Also, the simulations illustrated that the Rayleigh fading and
the composite Rayleigh–Lognormal fading both provide bet-
ter metric performances, i.e., it increases the tail probability
in the τ -D SCSs.
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