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Abstract
Internet of Things (IoT) is helping to create a smart world by connecting sensors in a seamless fashion. With the forthcoming
fifth generation (5G) wireless communication systems, IoT is becoming increasingly important since 5G will be an important
enabler for the IoT. Sensor networks for IoT are increasingly used in diverse areas, e.g., in situational and location awareness,
leading to proliferation of sensors at the edge of physical world. There exist several variable step-size strategies in literature to
improve the performance of diffusion-based Least Mean Square (LMS) algorithm for estimation in wireless sensor networks.
However, a major drawback is the complexity in the theoretical analysis of the resultant algorithms. Researchers use several
assumptions to find closed-form analytical solutions. Thiswork presents a unified analytical framework for distributed variable
step-size LMS algorithms. This analysis is then extended to the case of diffusion basedwireless sensor networks for estimating
a compressible system and steady state analysis is carried out. The approach is applied to several variable step-size strategies
for compressible systems. Theoretical and simulation results are presented and compared with the existing algorithms to show
the superiority of proposed work.
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1 Introduction

The Internet of Things (IoT) has grown immensely during
the last decadewithmany emerging applications built around
different types of sensors. With issues at device and protocol
levels, there is a growing trend in integration of sensors and
sensor based systems with cyber physical systems as well
as device-to-device (D2D) communications [1–3]. Recently,
research directions has been shifted towards 5G networks
and one current active area of research in 5G is IoT [4].
One of the most important component of the IoT paradigm
is wireless sensor networks (WSNs). WSNs can sense the
environment, process the sensed data, and communicate for
monitoring and diagnostics [6]. The sensor data originat-
ing from the future IoT is expected to be diverse and also
grow manifold with each passing year. During the last few
years, multi sensor data fusion attracted a lot of attention in

4 Department of Electrical, Computer, Software, and Systems
Engineering, Embry-Riddle Aeronautical University, Daytona
Beach, FL 32114, USA

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s11235-018-0447-z&domain=pdf
http://orcid.org/0000-0003-2631-9223


448 M. O. Bin Saeed et al.

many applications (such as radar and target detection, tar-
get tracking, smart grid, intelligent transportation systems,
robot networks, smart cities, etc.) as they provide a cost-
effective solution. Unknown parameters or phenomenon of
interest can be estimated using centralized and distributed
estimation systems. For centralized estimation systems, the
sensor nodes collect data and transmit it to a central proces-
sor for signal processing. The central node is also responsible
for communication with the individual nodes. The resulting
estimate is as accurate as if each sensor had access to the com-
plete information available across the network. However, this
centralized system has several disadvantages including cost
of communication overhead, power consumption, and sin-
gle point of failure. In order to overcome these issues, the
distributed estimation systems have been proposed in the lit-
erature. Each sensor node senses data and collaborates with
its neighboring nodes in order to arrive at an estimate of the
unknown parameter instead of transmitting the entire data
to a central node. This approach offers less communication
overhead and low processing load at the cost of added com-
plexity at the nodes [7–11].

Various algorithms have been proposed in the literature for
distributed estimation over WSNs [9–21]. Further, a detailed
survey of distributed algorithms is available in [22]. The
focus is primarily on least mean-square (LMS)-based algo-
rithms due to simplicity and effectiveness [23]. However, an
important limiting factor of LMS is the trade-off between
convergence speed and steady-state miss-adjustment. One of
the most popular and fully distributed algorithm is diffusion
LMS [12]. To overcome the problem with LMS-based algo-
rithms, several variable step-size (VSS) strategies have been
proposed, which provide fast convergence speed initially
while reducing the step-size with time in order to achieve
a low error performance [24–30].

1.1 VSS strategies in literature

The work in [24] introduces a normalization factor to over-
come the problem of slow convergence in the case high
auto-correlation for the input data, thus making the step-
size variable. A novel VSS algorithm is introduced in [25],
which has become the most popular VSS algorithm in liter-
ature due to its low complexity and excellent performance.
The algorithm uses the energy of the instantaneous error to
update the step-size. However, the algorithm may suffer in
performance if the noise power is high. To overcome this
problem, another VSS strategy is proposed in [26], which
uses the cross-correlation between the current and previous
error values to update the step-size.Thework in [27] proposes
an improved version of [26] by incorporating the cross-
correlation of the input signal in the update equation as well.
However, despite these improvements, the VSS strategy of
[25] generally outperforms the twoalgorithms aswell asmost

other VSS algorithms. A noise-constrained VSS algorithm is
proposed in [28]. The algorithm uses Lagrange multipliers
with the constraint that the noise variance is known. The
work in [29] proposes a VSS normalized LMS algorithm
that provided a VSS strategy to the algorithm of [24]. The
authors in [30] propose a sparsity-aware VSS strategy, which
updates the step-size using the absolute value of the instanta-
neous error instead of the energy. The algorithm is shown to
perform better for sparse systems compared with other VSS
strategies.

1.2 VSS strategies forWSNs

The idea of varying the step-size has been extended to esti-
mation inWSNs. In some cases, the authors have proposed to
simply incorporate existing VSS strategies within the WSN
framework [13–16]. The work in [13,14] incorporates the
VSS strategy proposed in [25] directly into the distributed
estimation framework. The sameVSS strategy has been used
to transform domain distributed estimation by the authors in
[15]. The authors in [16] use a recently proposed sparse VSS
technique of [30] for distributed estimation of compressible
systems. While others have used the setup of the network to
specifically derive new VSS strategies [17–21]. The work in
[17] improves the strategy introduced in [13] by diffusing
the error values into the network as well. The work in [18]
proposes a noise constrained distributed algorithm, derived
using Lagrangian multipliers. The authors in [19–21] derive
VSS strategies from mean square deviation calculations.

1.3 Analysis for VSS strategies

In general, eachVSS algorithm aims to improve performance
at the cost of computational complexity. Generally, this is
an acceptable trade-off as the improvement in performance
is considerable. The drawback is that the additional com-
plexity results in the analysis of the algorithm becoming
tedious. This complexity is further increased for the case of
WSNs as different sensor nodes collaborate with each other
to improve performance. Authors have used various assump-
tions in order to perform the analysis of these algorithms.
However, each algorithm has been dealt with independently
in order to find a closed-form solution. An exact method of
analysis has been recently proposed in [31,32]. Although the
results are accurate, this method is mathematically complex
as well as algorithm specific and cannot be generalized for all
algorithms. A generic treatment of VSS algorithms has been
presented in [33] but without taking into account a WSN. In
a WSN, the data is shared between nodes and this fact needs
to be taken into account while performing the analysis. Due
to this very important factor, the analysis of [33] cannot be
extended to the WSN scenario.
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Table 1 Distributed VSS algorithms and analysis in literature

Ref. M.A.a M.S.A.b S.S.A.c Gen.d

[13] ✓

[14] ✓ ✓ ✓

[15]

[16] ✓ ✓

[17]

[18] ✓ ✓ ✓

[19]

[20]

[21] ✓ ✓ ✓

Proposed ✓ ✓ ✓ ✓

aMean analysis
bMean-square analysis
cSteady-state analysis
dGeneric analysis

Table 1 lists which analysis has been performed for the
VSS algorithms of [13–21] and compares them with the pro-
posed work. As can be seen, most of the work includes either
no analysis or only a part of the analysis. None of the authors
have, however, performed the analysis in a generic way.

1.4 Contributions

Thiswork presents a generalized analysis approach for LMS-
based VSS techniques that have been applied to WSNs. The
proposed generalized analysis can be applied tomost existing
as well as any forthcoming VSS approaches. Following are
the main contributions of this work:

• Derivation of the step-size limit for stability of distributed
VSSLMS algorithms in WSNs.

• Generalized transient analysis for distributed VSSLMS
algorithms in WSNs, including derivation of iterative
equations for mean square deviation (MSD) and excess
mean square error (EMSE).

• Derivation of steady-state equations for MSD and EMSE
for distributed VSSLMS algorithms in WSNs.

• Derivationof steady-state step-size terms for theVSSLMS
algorithms being used as case study in this work.

• Validation of theoretical analysis through experimenta-
tion.

A list of the acronyms being used within the paper are
given below:

The rest of the paper is organized as follows. Section 2
presents a working system model and problem statement.
Section 3 details the complete theoretical analysis for
diffusion-based distributed VSS LMS algorithms. Simula-

Table 2 Description of the acronyms used in this paper

Acronym Description

IoT Internet of Things

VSS Variable step-size

LMS Least mean square

WSN Wireless sensor network

MSD Mean square deviation

EMSE Excess mean square error

ATC Adapt-then-combine

DLMS Diffusion LMS

VSSDLMS Variable step-size diffusion LMS

SNR Signal-to-noise ratio

KJ Algorithm proposed in [25] and used in [14]

NC Algorithm proposed in [28] and used in [18]

Sp Algorithm proposed in [30] and used in [16]

Node 1
{d1(i), u1,i }

Node 2
{d2(i), u2,i }

Node k
{dk(i), uk,i}

Node N
{dN(i), uN,i}

Fig. 1 An illustration of adaptive network of N nodes

tion results are presented in Sect. 4. Section 5 concludes the
paper (Table 2).

2 Systemmodel

We consider an adaptive network consisting of N sen-
sor nodes, as shown in Fig. reffigspsans, deployed over a
geographical area to estimate an M dimensional unknown
parameter vector, whose optimum value is denoted by wo ∈
RM . We denote the neighborhood of any node k by Nk and
number of neighbors of node k by nk . The neighborhood of
a node k is a set of nodes in close vicinity such that they
have a single-hop communication link with node k, i.e., for
l = 1, 2, . . . , N and l �= k, nodes l and k have single-hop
communication between them if l ∈ Nk .

Each node k has access to a time realization of a known
regressor row vector uk(i) of length M and a scalar measure-
ment dk(i), which are related by

dk(i) = uk(i)wo + vk(i), (1)
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where k = 1, . . . , N , vk(i) is zero-mean additive white
Gaussian noise with variance σ 2

vk
, which is spatially uncor-

related, and i is the time index. At each node, these mea-
surements are used to generate an estimate of the unknown
vector wo, denoted by wk(i).

The fully distributed Adapt-Then-Combine (ATC) DLMS
algorithm proposed in [12] is summarized below.

ek(i) = dk(i) − uk(i)wk(i) (2)

�k(i) = wk(i) + μkuTk (i)ek(i) (3)

wk (i + 1) =
∑

l∈Nk

clk�l (i), (4)

where �k(i) is the intermediate update, ek(i) is the instan-
taneous error and clk are the combination weights [12].

The step-size μk can be varied using any one of several
available strategies [13–21]. Thus, the generic VSSDLMS
algorithm is described by (2), (4) and the following set of
equations

�k(i) = wk(i) + μk(i)uTk (i)ek(i) (5)

μk(i + 1) = f {μk(i)}, (6)

where f {μk(i)} is a function that defines the update equation
for the step-size and varies for each VSS strategy.

While performing the analysis of the LMS algorithm,
the input regressor vector is assumed to be independent of
the estimated vector. For the VSS algorithms, it is gener-
ally assumed that control parameters are chosen such that
the step-size and the input regressor vector are asymptoti-
cally independent of each other, resulting in a closed-form
steady-state solution that closely matches with the simula-
tion results. For some VSS algorithms, the analytical and
simulation results are closely matched during the transition
stage as well but this is not always the case. The results are
still acceptable for all algorithms as a closed-form solution
is obtained.

The main objective of this work is to provide a gener-
alized analysis for diffusion-based VSSLMS algorithms, in
lieuwith the assumptionsmentioned above. A list of symbols
used in this paper is presented in Table 3.

3 Proposed unified analysis framework

In a distributed network, the nodes exchange data, as can be
seen from (4). As a result, there is going to exist a correla-
tion between the data of the entire network. To account for
this inter-node dependence, the performance of the whole
network needs to be studied. Some new variables are intro-
duced, transforming the local ones into global variables as
follows:

Table 3 Description of the symbols used in the model

Symbol Description

N Number of nodes in the network

M Length of the unknown parameter vector

k Denotes Node number

i Denotes time instant

dk Scalar measurement for node k

uk Input regressor row vector for node k

wo Unknown vector of length M

vk Additive random noise for node k

σ 2
v Noise power

ek Measurement error for node k

�k Intermediate estimate vector for node k

wk Final estimate vector for node k

μk Step-size for node k

clk Combination weight, node l to node k

f {μk(i)} Step-size update function

d Vector of measurements for the network

U Input regressor matrix for the network

v Additive random noise vector for the network

e Measurement error vector for the network

� Intermediate estimate vector for the network

w Final estimate vector for the network

D Step-size matrix for the network

C Combination weight matrix, size N × N

w(o) Unknown vector of length MN

G Combination weight matrix, size MN × MN

f {D(i)} Step-size update function matrix

Q MN × M sized matrix of N identity matrices of size M

IM Identity matrix of size M

w̃ Weight-error matrix for the network

RU Autocorrelation matrix for U

Ru,k Autocorrelation matrix for uk
λ Eigenvalue for Ru,k

� Weighting matrix

T Eigenvector matrix for RU

� Diagonal eigenvalue matrix for RU

Rv Autocorrelation matrix for network noise

ss Denotes steady-state values

w(i) = col {w1(i), . . . ,wN (i)} ,

�(i) = col {�1(i), . . . ,�N (i)} ,

U(i) = diag {u1(i), . . . ,uN (i)} ,

D(i) = diag {μ1(i)IM , . . . , μN (i)IM } ,

d(i) = col {d1(i), . . . , dN (i)} ,

v(i) = col {v1(i), . . . , vN (i)} .

Using the new variables, the set of equations representing the
entire network is given by
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d(i) = U(i)w(o) + v(i),

� (i + 1) = w(i) + D(i)UT (i) (d(i) − U(i)w(i)) ,

w (i + 1) = G9 (i + 1) ,

D (i + 1) = f {D(i)}, (7)

wherew(o) = Qwo,Q = col {IM, IM, . . . , IM} is aMN×M
matrix, G = C ⊗ IM ,C is an N × N weighting matrix,
{C}lk = clk and ⊗ is the Kronecker product.

3.1 Mean analysis

The analysis is nowcarried out using the new set of equations.
The global weight-error vector is given by

w̃(i) = w(o) − w(i). (8)

Since Gw(o) �= w(o), by incorporating the global weight-
error vector into (7), we get

w̃ (i + 1) = G�̃ (i + 1)

= Gw̃(i) − GD(i)UT (i) (U(i)w̃(i) + v(i))

= G
(
IMN − D(i)UT (i)U(i)

)
w̃(i)

−GD(i)UT (i)v(i). (9)

Using the assumption that the step-size matrix D(i) is inde-
pendent of the regressor matrix U(i) [14,16,18,25–29], the
following relation holds true asymptotically

E
[
D(i)UT (i)U(i)

]
≈ E [D(i)]E

[
UT (i)U(i)

]
, (10)

where E
[
UT (i)U(i)

] = RU is the auto-correlation matrix
ofU(i). Now, taking the expectation on both sides of (9) and
simplifying gives

E
[
w̃ (i + 1)

] = G (IMN − E [D(i)]RU)E
[
w̃(i)

]
. (11)

The expectation of the second term of the right-hand side of
(9) is zero due to the measurement noise being zero-mean as
well as spatially uncorrelated with the input regressor.

It can be seen from (11) that the term defining the stability
of the algorithm is (IMN − E [D(i)]RU). As the matrixD(i)
is diagonal, this term can be further simplified to the node-
level as

(
I − E [μk(i)]Ru,k

)
. Thus, the stability condition is

given by

n∏

i=0

(
I − E [μk(i)]Ru,k

) → 0, as n → ∞ (12)

which holds true if the mean of the step-size is governed by

0 < E [μk(i)] <
2

λmax
(
Ru,k

) , 1 ≤ k ≤ N , (13)

where λmax
(
Ru,k

)
is the maximum eigenvalue of the auto-

correlation matrix Ru,k .

3.2 Mean-square analysis

Following the analysis procedure of [23], we take the
weighted normof (9) and then apply the expectation operator.
After simplifying we get

E
[
‖w̃ (i + 1)‖2�

]
= E

[
‖w̃(i)‖2

�̂

]

+E
[
vT (i)YT (i)�Y(i)v(i)

]
, (14)

where

Y(i) = GD(i)UT (i) (15)

�̂ = GT�G − GT�Y(i)U(i)

−UT (i)YT (i)�G + UT (i)YT (i)�Y(i)U(i). (16)

The analysis becomes quite tedious for non-Gaussian data.
Therefore, the data is assumed to be Gaussian, without loss
of generality [23]. The auto-correlation matrix is decom-
posed as RU = T�TT , where � is an eigenvalues diagonal
matrix andT is a matrix of eigenvectors corresponding to the
eigenvalues, such that TTT = I. Using T, the variables are
redefined as

w̄(i) = TT w̃(i) Ū(i) = U(i)T

Ḡ = TTGT �̄ = TT�T

�̄
′ = TT�′T D̄(i) = TTD(i)T = D(i),

where the input regressors are considered independent for
each node and the step-size matrix D(i) is block-diagonal so
it remains the same.

Using the data independence assumption [23] and simpli-
fying, we arrive at the final recursive update equation

E
[
‖w̄(i + 1)‖2σ̄

]
= E

[
‖w̄(i)‖2σ̄

]
+ bT (i)σ̄

+
∥∥∥w̄(o)

∥∥∥
2

A(i)
[
F(i)−IM2N2

]
σ̄

+B(i)
[
F(i) − IM2N2

]
σ̄ , (17)

where

F(i) = [
IM2N2 − (IMN � �E [D(i)])

− (�E [D(i)] � IMN ) + (E [D(i) � D(i)])A]
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.
(
GT � GT

)
. (18)

A(i + 1) = A(i)F(i). (19)

B(i + 1) = B(i)F(i) + bT (i)IM2N2 . (20)

Finally, taking the weighting matrix � = IM2N2 gives
the mean-square-deviation (MSD) while � = � gives the
EMSE. The detailed analysis and description of the variables
are given in Appendix A.

3.3 Steady-state analysis

At steady-state, (31) and (18) become

E
[
‖w̄ss‖2σ

]
= E

[
‖w̄ss‖2Fssσ

]
+ bTssσ , (21)

Fss = [
IM2N2 − (IMN � �E [Dss])

− (�E [Dss] � IMN )

+ (E [Dss � Dss])A]

.
(
GT � GT

)
, (22)

where Dss = diag
{
μss,kIM

}
,bss = RvD2

ss� and D2
ss =

diag
{
μ2
ss,kIM

}
. Simplifying (21), we get

E
[
‖w̄ss‖2σ

]
= bTss

[
IM2N2 − Fss

]−1
σ . (23)

This equation gives the steady-state performance measure
for the entire network. In order to solve for the steady-state
values of MSD and EMSE, we take σ̄ = bvec{IM2N2} and
σ̄ = bvec{�}, respectively.

3.4 Steady-state step-size analysis

The analysis presented in the above section has been generic
for any VSS algorithm. In this section, 3 different VSS algo-
rithms are chosen to present the steady-state analysis for the
step-size. These steady-state step-size values are then directly
inserted into (23) and (22). The 3 different VSS algorithms
and their step-size update equations are given in Table 4.
The first algorithm, denoted KJ is the work of Kwong and
Johnston [25], as used in [14]. The NC algorithm refers to
the noise-constrained LMS algorithm [28], as used in [18].
Finally, Sp refers to the Sparse VSSLMS algorithm of [30],
as used in [16]. It should be noted that the step-size matrix
for the network, D, is diagonal. Therefore, the step-size for
each node can be studied independently.

Applying the expectation operator and simplifying results
in the equations presented in Table 5, where ζk(i) is the value
of the EMSE for node k.

At steady-state, the step-size is given by μk,ss and the
approximate steady-state equations are given in Table 6.

Table 4 Step-size update equations for the VSSLMS algorithms

Algo. Step-size update equation

KJ [14] μk (i + 1) = αk jμk(i) + γk j e2k (i)

NC [18] θk,nc(i + 1) = (1 − αnc)θk,nc(i) + αnc
2

(
e2k (i) − σ 2

v,k

)

μk (i + 1) = μ0
(
1 + γncθk,nc(i + 1)

)

Sp [16] μk (i + 1) = αspμk(i) + γsp |ek(i)|

Table 5 Expectations of the update equations from Table 4

Algo. Expectation of update equation

KJ [14] E [μk (i + 1)] = αk jE [μk(i)] + γk j

[
ζk(i) + σ 2

v,k

]

NC [18] E
[
θk,nc(i + 1)

] = (1 − αnc)E
[
θk,nc(i)

] + αnc
2 ζk(i)

E [μk (i + 1)] = μ0
(
1 + γncE

[
θk,nc(i + 1)

)]

Sp [16] E [μk (i + 1)] = αspE [μk(i)] + γsp

√
2σ 2

v,k/π

Table 6 Steady-state step-size values for equations from Table 4

Algo. Steady-state step-size value

KJ [14] μk,ss ≈ γk j
1−αk j

σ 2
v,k .

NC [18] μk,ss ≈ μ0.

Sp [16] μk,ss ≈ γsp
1−αsp

√
2σ 2

v,k/π.

It should be noted that the steady-state EMSE values are
assumed small enough to be ignored.

4 Results and discussion

In this section, the analysis presented above will be tested
upon three VSS algorithms listed in Table 4 when they
are incorporated within the DLMS framework. The analy-
sis is verified through three different experiments. The first
experiment plots the theoretical transient MSD using (17)
and compares with simulation results. Further, steady-state
results are tabulated to see the effects of the assumptions.
Simulation steady-state results are compared to theoretical
results attained using (17) aswell as (23). In the second exper-
iment, steady-state MSD results are compared for different
network sizes while the signal-to-noise ratio (SNR) is varied.
Finally, a tabular comparison has been shown to ascertain the
difference between the results obtained from (23) with those
from [14,18] and [16].

4.1 Experiment 1

For the first experiment, the network size, N = 10, the size of
the unknown parameter vector, M = 4 and the SNR is varied
between 0, 10 and 20 dB. The step-size control parameters
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Table 7 Step-size control parameters for experiment 1

Algo. SNR (dB) Parameters

KJ [14] All μ0 = 0.01, γk j = 1e − 3

0 αk j = 0.95

10 αk j = 0.98

20 αk j = 0.99

NC [18] All μ0 = 0.01, γnc = 1, αnc = 1e − 4

Sp [16] All μ0 = 0.01, γsp = 1e − 3

0 αsp = 0.97

10 αsp = 0.98

20 αsp = 0.99

0 200 400 600 800 1000
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−5

0

iterations
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S
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d
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)
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Simulation
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10 dB 20 dB

Fig. 2 Theory (17) v simulationMSD comparison for theKJ algorithm
[14]

chosen for this experiment are given inTable 7. Thevalues are
slightly different in some cases in order to maintain similar
convergence speed. The results are shown in Figs. 2, 3, 4.

The comparison for the KJ algorithm are shown in Fig.
2. There is a slight discrepancy due to the assumptions that
have been made. However, this discrepancy is acceptable as
the steady-state results match very closely. The results for the
NC algorithm are shown in Fig. 3. There is a mismatch in the
transient stage in this case as well but the results match very
closely at steady-state again. Finally, the comparison for the
Sp algorithm is shown in Fig. 4. The mismatch during the
transient stage is greater for this algorithm comparedwith the
previous two cases. However, since the step-size is assumed
to be asymptotically independent of the regressor data and
there is an excellent match at steady-state, these results are
completely acceptable. The steady-state results are tabulated
in Table 8. Due to the assumption that the EMSE is small
enough to be ignored at steady-state, there exists a slight
mismatch between the results of (17) and (23). However,

0 200 400 600 800 1000
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)
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Fig. 3 Theory (17) v simulationMSDcomparison for theNC algorithm
[18]
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0

iterations
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S

D
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d
B

)

Theory
Simulation
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10 dB 20 dB

Fig. 4 Theory (17) v simulation MSD comparison for the Sp algorithm
[16]

the results are overall closely matched and the results are
acceptable.

4.2 Experiment 2

For the second experiment, the SNR is varied from 0 dB
to 40 dB and the steady-state results are plotted. These are
comparedwith the theoretical results obtained from (23). The
network size is varied between N = 10 and N = 20. The
step-size controlling parameters used for this experiment are
given in Table 9. The initial step-size is kept small for theNC
algorithm as the initial step-size effects the steady-state value
as shown inTable 6.However, there is no relation between the
steady-state step-size value and the initial step-size value for
the other algorithms. This has also been shown for the case
of the KJ algorithm in [14]. The results are shown in Fig. 5
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Table 8 Theory versus simulation comparison for steady-state MSD
for the different VSS algorithms

Algo. SNR MSD eq. (17) MSD eq. (23) MSD sim.

KJ [14] 0 −19.53 −19.59 − 19.95

10 −25.80 −25.85 − 26.15

20 −33.20 −33.20 − 33.55

NC [18] 0 −23.19 −23.20 23.29

10 −28.19 −28.20 − 28.31

20 −33.19 −33.20 − 33.31

Sp [16] 0 −18.01 −18.01 − 17.97

10 −23.96 −23.96 − 23.92

20 −28.30 −28.30 − 28.25

Table 9 Step-size control parameters for experiment 2

Algo. SNR Parameters

KJ [14] All μ0 = 0.01, γk j = 1e − 3

0 αk j = 0.95

10 αk j = 0.97

20 αk j = 0.99

30 αk j = 0.99

40 αk j = 0.995

NC [18] All μ0 = 0.003, γnc = 1, αnc = 1e − 4

Sp [16] All μ0 = 0.01, γsp = 1e − 3

0 αsp = 0.95

10 αsp = 0.97

20 αsp = 0.99

30 αsp = 0.99

40 αsp = 0.995

for the KJ algorithm. There is a close match and a steady
downward trend with increase in SNR. The results for the
NC algorithm are shown in Fig. 6. There is a slight mismatch
but this is not significant and can be ignored. Finally, the
results for the Sp algorithm are shown in Fig. 7. There is an
excellent match and a steady improvement in performance
with increase in SNR.

4.3 Experiment 3

In this final experiment, the steady-state MSD theoretical
results from [14,18] and [16] are compared with the results
obtained from (23). The analysis performed in [14,18] and
[16] gives exact expressions for μk,ss as well as μ2

k,ss for
evaluating steady-state MSD. In the present work, a generic
expression has been proposed. This experiment shows that
the results from the exact analysis and those obtained from
(23) match closely. The unknown vector length is varied
between M = 2, M = 4 and M = 6. The SNR is varied
between 0, 10 and 20 dB. The step-size control parameters
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Fig. 5 Theory (23) v simulationMSD comparison for theKJ algorithm
[14] for different network sizes and varying SNR
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Fig. 6 Theory (23) v simulationMSDcomparison for theNC algorithm
[18] for different network sizes and varying SNR

are given in Table 10. The results are shown in Table 10.
As can be seen, there are slight mismatches among certain
values. However, the values are very closely matched for all
cases. Thus, the proposed analysis procedure has been veri-
fied as generic and applicable to different VSS strategies in
WSNs (Table 11).

5 Conclusion

Parameter estimation is an important aspect for WSNs that
form an integral part of the IoT paradigm. This work presents
a generalized approach for the theoretical analysis of LMS-
based VSS algorithms being employed for estimation in
diffusion-basedWSNs. The analysis provided here can prove
to be an excellent tool for the analysis of any VSS approach
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Table 10 Step-size control parameters for experiment 3

Algo. Parameters

KJ μ0 = 0.01, α = 0.95, γk j = 1e − 4

NC μ0 = 0.001, γnc = 1, αnc = 1e − 4

Sp μ0 = 0.01, α = 0.97, γsp = 1e − 4

applied to the WSN framework in future. Various existing
algorithms have been tested thoroughly to verify the results
of the presented work under different conditions. Simula-
tion results confirm the generic behavior for the proposed
analysis for both the transient state as well as steady-state.
Furthermore, a comparison has been performed between the
proposed analysis results and results obtained from the anal-
ysis that already exists in the literature. Results were found
to be closely matched. further strengthening our claim that
the proposed analysis is generic for VSS strategies applied
to WSNs.

Appendix A

Here, we present the detailed mean-square analysis. Apply-
ing the expectation operator to the weighting matrix of (14)
gives

E
[
�̂

]
= GT�G − GT�E [Y(i)U(i)]

−E
[
UT (i)YT (i)

]
�G

+E
[
UT (i)YT (i)�Y(i)U(i)

]

= GT�G − GT�GE [D(i)]E
[
UT (i)U(i)

]

Table 11 Comparison between proposed and existing analyses

SNR(db) Algo. Ref. MSD
M = 2 M = 4 M = 6

0 KJ Eq. (23) −33.81 −30.80 −29.03

[14] −33.80 −30.78 −29.00

NC Eq. (23) −36.90 −33.89 −32.13

[18] −36.87 −33.83 −32.03

Sp Eq. (23) −32.52 −29.50 −27.74

[16] −32.48 −29.47 −27.70

10 KJ Eq. (23) −43.92 −40.91 −39.15

[14] −43.92 −40.91 −39.14

NC Eq. (23) −41.90 −38.89 −37.13

[18] −41.90 −38.88 −37.10

Sp Eq. (23) −40.11 −37.10 −35.34

[16] −40.08 −37.06 −35.30

20 KJ Eq. (23) −53.96 −50.95 −49.19

[14] −53.96 −50.95 −49.19

NC Eq. (23) −46.90 −43.89 −42.13

[18] −46.90 −43.89 −42.12

Sp Eq. (23) −47.67 −44.66 −42.89

[16] −47.63 −44.62 −42.86

−E
[
UT (i)U(i)

]
E [D(i)]GT�G

+E
[
UT (i)YT (i)�Y(i)U(i)

]
, (24)

For ease of notation, we denote E
[
�̂

]
= �′ for the remain-

ing analysis.
Next, using the Gaussian transformed variables as gives

in Sect. 3.2, (14) and (24) are rewritten, respectively, as

E
[
‖w̄ (i + 1)‖2

�̄

]
= E

[
‖w̄(i)‖2

�̄
′
]

+E
[
vT (i)ȲT (i)�̄Ȳ(i)v(i)

]
, (25)

and

�̄
′ = ḠT �̄Ḡ − ḠT �̄ḠE [D(i)]E

[
ŪT (i)Ū(i)

]

−E
[
ŪT (i)Ū(i)

]
E [D(i)] ḠT �̄Ḡ

+E
[
ŪT (i)Ȳ(i)�̄Ȳ(i)Ū(i)

]

= ḠT �̄Ḡ − ḠT �̄ḠE [D(i)]�

−�E [D(i)] ḠT �̄Ḡ

+E
[
ŪT (i)Ȳ(i)�̄Ȳ(i)Ū(i)

]
, (26)

where Ȳ(i) = ḠD(i)ŪT (i) and E
[
ŪT (i)Ū(i)

] = �.
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The two terms that need to be solved areE
[
vT (i)ȲT (i)�̄

Ȳ(i)v(i)
]
and E

[
ŪT (i)Ȳ(i)�̄Ȳ(i)Ū(i)

]
. Using the bvec{.}

operator and the block Kronecker product, denoted by �
[34], the two terms are simplified as

E
[
vT (i)ȲT (i)�̄Ȳ(i)v(i)

]
= bT (i)σ̄ , (27)

and

bvec
{
E

[
ŪT (i)ȲT (i)�̄Ȳ(i)Ū(i)

]}

= (E [D(i) � D(i)])A
(
GT � GT

)
σ̄ , (28)

where σ̄ = bvec
{
�̄

}
,b(i) = bvec

{
RvE

[
D2(i)

]
�

}
,Rv =

�v � IM ,�v is a diagonal noise variance matrix for the net-
work andA = diag {A1,A2, . . . ,AN } [10], with eachmatrix
Ak defined as

Ak = diag
{
�1 ⊗ �k, . . . ,λkλ

T
k

+ 2�k ⊗ �k, . . . ,�N ⊗ �k} , (29)

where �k is the diagonal eigenvalue matrix and λk is the
corresponding eigenvalue vector for node k. Applying the
bvec{.} operator to (26) and simplifying gives

bvec
{
�̄

′} = σ̄ ′ = F(i)σ̄ , (30)

where F(i) is given by (18). Thus, (14) is rewritten as

E
[
‖w̄ (i + 1)‖2σ̄

]
= E

[
‖w̄(i)‖2F(i)σ̄

]
+ bT (i)σ̄ , (31)

which characterizes the transient behavior of the network.
Although not explicitly visible from (31), (18) clearly shows
the effect of the VSS algorithm on the performance of the
algorithm through the presence of the diagonal step-size
matrix D(i).

Now, using (31) and (18), the analysis iterates as

E
[
‖w̄ (0)‖2σ̄

]
=

∥∥∥w̄(o)
∥∥∥
2

σ̄
,

F(0) = [
IM2N2 − (IMN � �E [D(0)])

− (�E [D(0)] � IMN )

+ (E [D(0) � D(0)])A]

.
(
GT � GT

)
,

where E [D(0)] = diag {μ1(0)IM , . . . , μN (0)IM } as these
are the initial step-size values. The first iterative update is
given by

E
[
‖w̄(1)‖2σ̄

]
= E

[
‖w̄(0)‖2F(0)σ̄

]
+ bT (0)σ̄

=
∥∥∥w̄(o)

∥∥∥
2

F(0)σ̄
+ bT (0)σ̄

F(1) = [
IM2N2 − (IMN � �E [D(1)])

− (�E [D(1)] � IMN )

+ (E [D (1) � D(1)])A]

.
(
GT � GT

)
,

where b(0) = bvec
{
RvE

[
D2(0)

]
�

}
,E [D(1)] is the first

step-size update. The matrix F(i) is updated with (18) using
the i th update for the step-size matrix E [D(i)], which is
updated using the VSS approach that is being applied to the
algorithm. The second iterative update is given by

E
[
‖w̄(2)‖2σ̄

]
= E

[
‖w̄(1)‖2F(1)σ̄

]
+ bT (1)σ̄

=
∥∥∥w̄(o)

∥∥∥
2

F(0)F(1)σ̄

+bT (0)F(1)σ̄

+bT (1)σ̄ .

Continuing, the third iterative update is given by

E
[
‖w̄(3)‖2σ̄

]
= E

[
‖w̄(2)‖2F(2)σ̄

]
+ bT (2) σ̄

=
∥∥∥w̄(o)

∥∥∥
2

F(0)F(1)F(2)σ̄
+ bT (2) σ̄

+bT (0)F(1)F(2)σ̄ + bT (1)F(2)σ̄

=
∥∥∥w̄(o)

∥∥∥
2

A(2)F(2)σ̄
+ bT (2) σ̄

+
[

1∑

k=0

{
bT (k)

2∏

m=k+1

F(m)

}]
σ ,

where the weighting matrixA(2) = F(0)F(1). Similarly, the
fourth iterative update is given by

E
[
‖w̄(4)‖2σ̄

]
=

∥∥∥w̄(o)
∥∥∥
2

A(3)F(3)σ̄
+ bT (3) σ̄

+
[

2∑

k=0

{
bT (k)

3∏

m=k+1

F(m)

}]
σ ,

where the weighting matrix A(3) = A(2)F(2). Now, from
the third and fourth iterative updates, we generalize the recur-
sion for the i th update as

E
[
‖w̄(i)‖2σ̄

]
=

∥∥∥w̄(o)
∥∥∥
2

A(i−1)F(i−1)σ̄
+ bT (i − 1) σ̄

+
[
i−2∑

k=0

{
bT (k)

i−1∏

m=k+1

F(m)

}]
σ . (32)
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where A(i − 1) = A(i − 2)F(i − 2). The recursion for the
(i + 1)th update is given by

E
[
‖w̄(i + 1)‖2σ̄

]
=

∥∥∥w̄(o)
∥∥∥
2

A(i)F(i)σ̄
+ bT (i)σ̄

+
[
i−1∑

k=0

{
bT (k)

i∏

m=k+1

F(m)

}]
σ , (33)

whereA(i) = A(i − 1)F(i − 1). Subtracting (32) from (33)
and simplifying gives the overall recursive update equation

E
[
‖w̄(i + 1)‖2σ̄

]
= E

[
‖w̄(i)‖2σ̄

]

+
∥∥∥w̄(o)

∥∥∥
2

A(i)F(i)σ̄

−
∥∥∥w̄(o)

∥∥∥
2

A(i−1)F(i−1)σ̄

+bT (i)σ̄ − bT (i − 1) σ̄

+
[
i−1∑

k=0

{
bT (k)

i∏

m=k+1

F(m)

}]
σ̄

−
[
i−2∑

k=0

{
bT (k)

i−1∏

m=k+1

F(m)

}]
σ̄ ,

(34)

Simplifying (34) and rearranging the terms gives the final
recursive update equation (17), where

B(i) =
i−2∑

k=0

{
bT (k)

i−1∏

m=k+1

F(m)

}

+bT (i − 1)IM2N2 . (35)

The final set of iterative equations for the mean-square
learning curve are given by (17), (18), (19) and (20).
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