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Abstract
Network topology specifies the interconnections of nodes and is essential in defining the qualitative network behaviour which
is known to be universal with the similar phenomena appearing in many complex networks in diverse application fields.
Topology information may be uncertain, or several pieces of inconsistent topology information may exist. This paper studies
a method for estimating the network topology directly from node data, and is motivated by mobile telecommunications
networks (MTNs). Mutual information based dependency measure is first used to quantify the statistical node dependencies,
and the topology estimate is then constructed with multidimensional scaling and distance thresholding. The topology estimate
defines the graph structure of a Markov random field (MRF) model, and after model parameter identification, the MRF model
can then be used e.g. in analyzing the effect of disturbances to the overall network state of MTN. The method is evaluated with
MCMC generated data and is found to work in qualitative network behaviour situations that are practical from the application
perspective of MTNs. With the same data, the method yields at least as good results as a typical constrained-based graph
estimation method.

Keywords Topology estimation · Graph estimation · Markov random field model · Ising model · Multidimensional scaling
(MDS) · Telecommunications networks

1 Introduction

Networked systems exist in great diversity of application
fields such as human social networks, business relation-
ship networks, neural networks, the Internet, and many
technical networks, from power grids and supply chains
to mobile telecommunications networks (MTNs). Through
co-operative interaction of the nodes, networks performoper-
ations such as delivering goods (e.g. supply chains), or
exchanging (e.g. MTNs, Internet, social networks) and pro-
cessing (e.g. neural networks, social networks) information.
The performance of such coherent networked systems may
be extremely effective and robust, but on the other hand, may
be vulnerable for failures even in single nodes.

Topology of the network defines the node-to-node interac-
tions, from which the complex behaviour and the properties
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of the network emerge. Complex network behaviour may
arise as spontaneous organisation [60] leading to coherence
in node states, as hysteresis with discontinuous transitions
of the overall network state, or as scale invariant coherence
in state fluctuations [57]. These qualitative phenomena are
known to be similar, universal, for many complex networks
[3,42] in diverse application fields.

Information of topology in many networks is usually
uncertain, or there may exist several pieces of topology
information, perhaps inconsistent and overlapping. As an
example, in MTNs there exist topologies both due to the
physical locations and the logical relations of the nodes. In
such cases one would have to know which topology infor-
mation to exploit. However, topology estimated from data
directly captures the best combination of the domain-based
topologies. On the other hand, mobile ad hoc networks are
an example of MTNs that does not have a fixed topology at
all, instead the topology may change dynamically and hence
can be tracked by estimating from data.

In the literature, methods exist for estimating the topology
from data for both directed and undirected graphs. Directed
graphs define the structure of a Bayesian networkwhile undi-
rected graphs define the structure of a Markov random field
(MRF). One of the most straightforward approaches for con-
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structing a graph is simply to threshold node dependencies
modelled e.g. with mutual information; see e.g. [14]. Score-
based methods are used mainly to estimate directed graphs
[19,22] but have also been applied for undirected graphs [32].
Constrained-basedmethods are generally used for both types
of graphs [34] and are based on performing a set of condi-
tional independence tests for nodes [51]. Examples include
the Grow-Shrink (GS) [38] methods and the algorithm for
undirected graphs is called the Grow-Shrink Markov Net-
work (GSMN) [10]. Also some other topology estimation
methods exist, mainly aimed for some specific application
(see, e.g. [9,43]).

In this paper, we will consider a rather simple and
straightforward topology estimation scheme, aiming for the
identification of the topology of MTNs. The method is based
on an assumption that the states of two nodes depend sta-
tistically on their interaction which is the weaker the further
apart the nodes are.Mutual information (MI) [17] basedmea-
sure is first employed to quantify the statistical dependencies
between the network nodes and then multidimensional scal-
ing [21] is applied to transform the node dependencies into
a 2D map of node locations. Finally, the node location map
is thresholded into a graph representation, which describes
the node neighbourhoods, and also defines the structure of a
MRF model [8]. In this paper, we apply a binary state Ising
model [27,33].

The proposed topology estimation scheme is validated
with Markov Chain Monte Carlo (MCMC) [36] generated
data under a wide range of network parameters leading to a
varying coherence in the overall network state. In particular,
the test cases are selected according to their relevance for the
MTNs. We will study how the performance of the method
is affected by the sizes of the network, the node neighbour-
hoods, the generated data set, and the type of node loadings
used. Finally, the proposed topology estimation method is
compared to the GSMN method, and we will also discuss
the advantages and limitations of our topology estimation
approach.

The method we are considering in this paper was first
proposed in [47,49], where we introduced the basic concept
of the method but without any extensive tests with data in
varying situations which is the focus of this paper. In [49] we
have shown the qualitative phenomena the underlying Ising
model is capable of describing. All the results presented here
are previously published in the dissertation thesis of one of
the author of this paper [46], where we have also applied the
method to real telecommunications network data.

The rest of this paper is organised as follows. In Sect. 2
we introduce the general topology estimation scheme for net-
worked systems. Section 3 discusses MRFs as models for
networked systems, represents the Ising model, and shortly
reviews MCMC for data generation purposes. Methods to
quantify the goodness of a topology estimate are represented

in Sect. 4. In Sect. 5 the topology estimation scheme is ana-
lyzed and validated with synthetic data. Section 6 concludes
the paper.

2 Graph structure estimation

This section presents general algorithms for estimating graph
structure of a networked system based on the state and load
data of the network nodes. First the statistical dependen-
cies of nodes are measured with an information theoretic
dependency measure. Then a node location map is obtained
by employing multidimensional scaling, and finally, a graph
structure estimate is formed by thresholding the node dis-
tances in the node location map.

2.1 State and load data of network nodes

Let us assume that the nodes of a networked system con-
sidered are known but the graph structure is unknown. Each
node has a state which is a random variable assuming either
discrete or continuous values and an external load assum-
ing continuous values. Node state as a random variable is
denoted by Sm , its value by sm , the external load by hm

and the location coordinate vector by xm . Subscript m labels
the nodes; m = 1, . . ., M , where M is the total number of
nodes.

Network observations are labelled with superscript l (l =
1, . . . , L):

{
sl

m, hl
m

}M
m=1. We assume that the graph structure

of the network and the network parameters are not varied
within the data set and that node states and loads are observed
without measurement uncertainty. In real network data the
load variation is dictated by external conditions.

2.2 Node dependencymeasures

Mutual information (MI) is based on the concept of entropy
and is a measure of the amount of information one ran-
dom variable contains about another random variable [17].
In this paper, MI is used for measuring the statistical depen-
dencies (similarities) of node pairs. In the literature MI is
used as a similarity measure in many applications, including
biomedical image registration [15], statistical language trans-
lation [13] and in research of networked systems interactions
[20].

MI is defined for two random variables Si and S j as [17]:

I
(
Si ; S j

) = H (Si ) − H
(
Si |S j

)

=
∑

si

∑

s j

p
(
si , s j

)
log

p
(
si , s j

)

p (si ) p
(
s j

) . (1)
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Here pi , p j , and pi j denote themarginal and joint probability
distributions of the variables. H (Si ) is the entropy of Si and
H(Si |S j ) is the conditional entropy of Si given S j .

MI is uncertain when estimated from a finite set of obser-
vations. Furthermore, the uncertainty depends on the number
of observations. Therefore, we use a dependency measure
which is less sensitive to the amount of data, the statistical
significance of MI (SSMI). SSMI is thus more appropriate
in comparing node pair dependencies when the data set size
varies.

SSMI is defined through a null hypothesis that Si and
S j , are statistically independent: p(0)

i j = p(obs)
i p(obs)

j . We

obtain p(obs)
i and p(obs)

j from p(obs)
i j which is the observed

joint distribution. Under the null hypothesis, MI estimated
from any finite data set of L observations is always positive.
Its distribution, f (0)(I |L) can be described as a histogram
estimate of N MI values. The values for the histogram are
obtained by generating N sets of L state pairs according to
p(0)

i j , and calculating MI estimate for each set. Denoting the

observed MI by I (Si ; S j |L), the SSMI, σMI
(
Si , S j

)
, is now

obtained as

σMI
(
Si , S j

) = int
I (Si ;S j |L)

0 f (0)(I |L)d I , (2)

where 0 < σMI < 1. The probability that the null hypothesis
is erroneously discarded is 1 − σMI

(
Si , S j

)
.

As SSMI is calculated from simulated random observa-
tions, it is itself a random variable, the uncertainty of which
depends both on N and L . However, this uncertainty can be
reduced at fixed L by increasing N , whereas uncertainty in
MI is determined by L .

We have previously studied another measure called the
statistical significance of χ2-statistics (SSCSS), where the
χ2-statistics is an approximation of MI [40,45]. The advan-
tage of SSCSS over SSMI is that, in the case of the null
hypothesis, the analytical form of its distribution is always
known, and it is thus much less computationally demanding
than the SSMI. We have also found SSCSS to give results
very similar to SSMI [47], and hence it may be more suit-
able for practical applications; for more details on SSCSS,
see e.g. [46]. However, in this paper we will only use the
exact measure, the SSMI, for not to introduce any additional
uncertainty to the results.

2.3 Multidimensional scaling

Multidimensional scaling (MDS) is a method to transfer
dissimilarity measures of variables into a low dimensional
location map, where the distances between the nodes (vari-
ables) represent dissimilarities of the variables. In the lit-
erature MDS has been applied e.g. to visualize genes [29]

and databases [4], and for estimating position and velocity
of mobile stations [25]; see also [61]. MI and MDS have
also been used together for searching a spatial configuration
to model dependencies in speech and music data [1] and to
analyse word relations [39].

Let us consider a set of variables V with any symmetric
dissimilarity: δi j = δ j i (here: δi j = δ j i = 1 − σi j ), defined
for each pair of variables (i, j) ∈ V . Our goal is to find
a 2-dimensional location map in which the node distances
optimally describe the dissimilarities of the variables. On the
location map, we denote the coordinate vectors of Si and
S j by xi and x j and their Euclidean distance by di j (xi ,x j ).
To construct the node location map, we minimize Kruskal’s
stress-1 criterion [30,31]:

K1 =

√√√√√
∑

(i, j)∈V

[
di j

(
xi , x j

) − d̂i j

]2

∑
(i, j)∈V di j

(
xi , x j

)2 , (3)

where disparities (or target distances) d̂i j are monotonically
related to the observed similarities δi j : d̂i j < d̂kl ⇐⇒ δi j <

δkl . While metric MDS utilizes the absolute values of the
dissimilarities, non-metric MDS uses only the rank infor-
mation of the dissimilarities and is thus more robust and
more practical than the metric MDS for real observed dis-
similarity values containing measurement uncertainties and
distortions.

Iterative Shepard-Kruskal scaling algorithm can be used
for minimizing K1 [30,31]. In this iterative algorithm first
the node coordinates in the location map are initialised ran-
domly and the corresponding node distances are determined.
Secondly, monotone regression is employed to relate the cur-
rent distances to the original dissimilarities, producing a new
set of dissimilarities, called disparities. Thirdly, the coordi-
nates are revised byminimising K1 for the distances to better
match the disparities. Steps 2 and 3 are repeated until the fit
is satisfying.

2.4 Graph structure estimationmethod

Agraph structure estimate is obtained by defining a threshold
value dthr for the node distances, uniform through the esti-
mated location map. Then if di j

(
xi , x j

)
< dthr for nodes i

and j , i ∈ N ( j) and j ∈ N (i), where N denotes the set of
neighbours. For convenience, we will abbreviate this graph
structure estimation method as the MGMN method (MDS-
based Graph estimation for Markov Networks). Sketch of
this algorithm is presented as Algorithm 1.
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The uncertainty of the graph estimate is related mainly
to the size of the data set, but also to the low-dimensional
approximation of the original node dissimilarities with the
node location map. Furthermore, the smaller the value∣∣dthr − di j

(
xi , x j

)∣∣, the more uncertain the corresponding
graph link.

If dthr is selected too small for a coherent system,
coherence may be lost because of the lost connections in
the network model. Selecting dthr too large for a system
of almost independent nodes can result in false coherent
behaviour.

If available, partial information of graph structure can be
helpful when choosing the threshold. For example, if the total
number of node connections is known dthr can be chosen
accordingly. If some of the nodes are known to be connected,
these connections can be verified in the estimated graph, and,
ifmissing, added. In this paperwe assume the total number of
network connections known and thus determining the thresh-
old value.

There exist two limiting cases where the location map
cannot be directly obtained with MDS. The first is when the
network node states are highly coherent, resulting in similar-
ity close to 1 for all node pairs.Wemay interpret all the nodes
interacting explicitly and hence define dthr large enough for
all the nodes to be neighbours to one another. The second
is the case when the nodes are statistically independent with
similarity values near 0. Hence, we may choose dthr = 0,
resulting in a set of disconnected nodes.

2.5 Other graph structure estimationmethods

Constrained-based (CB) graph estimation methods are based
on conditional independence tests, where each node at a
time is conditioned on subsets of the other nodes [51]. Node
pairs being conditionally dependent according to the tests are
concluded to be neighbours. MGMNmethod considers con-
ditional independencies implicitly via constructing a spatial
configuration from all the node dependency values.

Themost straightforwardCBmethod is theSGSalgorithm
[55], applied for both Bayes and Markov networks. SGS
algorithm does not scale for large systems because its com-
putation time grows exponentially in the number of nodes.
In PC algorithm (see, e.g. [28]) conditional independence
tests are only conducted for subsets of nodes that have fewer
nodes than some threshold [55]. Hence, the PC algorithm
scales as the network size to the power of maximum subset
size and is suitable for systems consisting of some hundreds
of nodes. There exist some modifications for the PC algo-
rithm [2], and also other CB algorithms are available (see,
e.g., [10,16,28,34,38]).

As an alternative to the MGMN method, we will study
the Grow-Shrink (GS) algorithm [38]. GS algorithm is a CB
method that was originally developed for directed graphs, but
a version called the Grow-Shrink Markov Network (GSMN)
is available for Markov networks [10]. There are some
improvements done to the GSMN algorithm, mostly of com-
putational efficiency but less for accuracy [10,12,23]. Other
methods also include the Particle Filter Markov Network
(PFMN) algorithm [11,37]. However, only the GSMN algo-
rithm is discussed here in detail because of its simplicity, and
because computational efficiency is not crucial. The GSMN
algorithm used here is represented in detail in [10] where
the Pearson’s chi-square test is applied with the test statistics
specified by the χ2-statistics.

In general, CB is suitable only for estimating relatively
sparse graphs, becausewith dense graphs the subsets of nodes
in the conditional dependency tests become large. Pearson’s
chi-square dependency test required the construction of a
frequency table of size q2. Conditioning on a subset of W
nodes, frequencies need to be calculated for qW instances
[10]. This means that the number of conditioning instances
grows exponentially as a function of the number of condition-
ing nodes. Additionally, a large amount of data is required to
get accurate results. For example, one observation for each
table cell requires qW observations when conditioning on W
nodes [10]. However, the more developed versions of this
algorithm [10,12,23], somewhat alleviate these problems by
reducing the number of tests needed. For more details of the
algorithms and their properties, see [51].
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3 MRFmodels for networked systems

Markov Random Fields (MRFs) are stochastic models con-
sisting of interacting components, and hence are ideal for
modelling networked systems. MRF is defined through a
joint probability distribution (JPD) of the network node
states, which are either discrete or continuous. MRF satis-
fies a set of conditional independence properties defined by
a graph structure, and which can thus be estimated with the
methods proposed in Sect. 2.

3.1 General structure of a MRFmodel

The most general form of MRF JPD with a given graph is
defined through a collection of cliques [8]which is a subset of
graph nodes that are all neighbours to one another.Amaximal
clique is a clique which is not a subset of any other clique.
A potential function (PF) of a clique is any positive definite
function of the node states of a clique.

The most general form of JPD can be written as a product
of PFs of maximal cliques. However, we will only consider
exponential PFs of node pair cliques and single node cliques.
Interactions of the nodes are defined by node pair cliques,
whereas the local effects of nodes, e.g., due to external forces,
are defined by the single node cliques.

The global structure of theMRF JPD is defined by a graph
structure as a set of conditional independence properties. If
two nodes are not neighbours on the graph, they are condi-
tionally independent. The local properties are defined by the
potential functions.

Let us denote the set of all node pairs by V , and let sub-
script m = 1,…,M be the index for the nodes. For nodes i
and j ((i, j) ∈ V ) we denote the PF of a node-pair clique
by ψV

(
si , s j

)
, and the PF of a single node clique by ψ (sm).

The MRF JPD for a vector of node state variables s is now
defined as

p (s) = Z−1
∏

(i, j)∈V
ψV

(
si , s j

)∏M

m=1
ψ (sm) , (4)

Z is a normalisation constant, or a partition function, and is
given by

Z =
∑

s

∏

(i, j)∈V
ψV

(
si , s j

)∏M

m=1
ψ (sm) , (5)

where the sum is taken over all combinations of node states.
Varying model types are obtained by altering the potential

functions. Examples of models include the binary state Ising
model [27,33], Potts model [44] which is an extension of
the Ising model to arbitrary number of node states, and a
Gaussian model [50].

General approach for parameter estimation is the maxi-
mum likelihood (ML) method [8]. However, ML requires Z

to be known and Z is extremely difficult to calculate in prac-
tice as the sum in (5) runs over all possible node states [60].
Instead, we apply the pseudolikelihood (PL) [6,7,46] method
based on the likelihoods of conditional node probabilities.

3.2 Binary state Isingmodel

Isingmodel [27,33,41] is a binary statemodel with each node
assuming either state − 1 or + 1. Ising model has its origin
in statistical physics [52], but has also been applied e.g. in
image analysis [5,59], in studying the spread of viruses [54],
and for analyzing stock market crashes [58]. Although at the
node level Ising model is very simple, it is phenomenolog-
ically rich for studying the collective behaviour of complex
networks; see [41,46,48].

By denoting an external load of node m by hm , the JPD
of the Ising model in a form similar to (4) can be written as

p (s) = Z−1
∏

(i, j)∈V
exp

(
Ji j si s j

) ∏M

m=1
exp [Hsm (hm − h0)]

= Z−1exp

[∑

(i, j)∈V
Ji j si s j + H

∑M

m=1
sm (hm − h0)

]
.

(6)

Thefirst of the exponential factors is a product of PFs of node-
pair cliques and the second one is a product of single node
cliques. Here Ji j , H , and h0 are the model parameters. In our
studies we will assume that Ji j = J , uniform throughout the
MRF structure.

3.3 MCMC to generate synthetic data

MarkovChainMonteCarlo (MCMC) [36] is used to generate
synthetic network data to study the accuracy and limitations
of the topology estimation method, and in our other studies
to investigate the behaviour and sensitivity of the network in
various situations.

In the literature MCMC is applied extensively in Ising
model simulations (see e.g. [35,56]). We apply Gibbs sam-
pling [8] to generate node state data distributed according to
the JPD of the Isingmodel of (6). First an initial network state
configuration is chosen randomly. Thenwe randomly select a
single network node while fixing the states of its neighbours
and select state − 1 or + 1 according to their conditional
probabilities. After iterating thisMCMC schememany times
the node states become distributed according to (6); see e.g.
[18].

MCMC needs a “burn in” period at the beginning of the
simulation during which the simulation should converge to
the desired JPD to produce valid data. However, recording
data from a single long simulation is not appropriate for
non-ergodic processes. Although the Ising model with finite
number of states is ergodic, there can be long time constants
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until the entire state space is covered when running a sin-
gle long simulation starting from some initial state. Hence
despite the cost as increased computation time, we use an
ensemble scheme where each simulation run with varying
random initial state and an appropriate “burn in” period only
generates a single sample. In random initialization, each node
state is selected either− 1 or+ 1 independently on the others.
For more details, see [46].

4 Graph estimate evaluationmethods

In order to evaluate a graph estimate we need measures for
comparing its similarity to a true graph structure. Similarity
measures are required also when the true graph structure is
not known, e.g. when analyzing the difference between two
graph candidates.

4.1 Frobenius scaling and procrustes analysis

As a node location map estimate resulting from MDS is
unique up to translation, rotation, reflection, and scaling,
comparing it to another estimate based on a different data set
or to a known true location map is difficult. Procrustes trans-
formation is a combined translation, rotation, reflection, and
scaling operation. Procrustes analysis (see, e.g. [21,24,53])
searches for the best match between two node location maps
byperforming theProcrustes transformation ononemapwith
respect to the other [21]. The final value of the Procrustes cri-
terion is a measure of the similarity of the two maps.

When a network consists of tightly bound node groups,
the node map may be divided into subnetworks, where the
states of nodes inside the same subnetwork are tightly cou-
pled, but nearly independent on nodes belonging to other
subnetworks. There may not exist a good global match to be
found with the Procrustes analysis, even if the subnetworks
were identical. In particular, the scaling component goes to
zero as the translation, rotation, and reflection operations are
unable to provide a satisfying solution. Hence, we exclude
the Procrustes scaling component and instead first scale the
node coordinates of both maps with their Frobenius matrix
norms [26].

We denote byV andQ the node coordinates (M ×2matri-
ces) of two 2-dimensional location maps, and by size 1 × 2
vectors vm and qm the x- and y-coordinates of a node m.
The notation for the respective Frobenius scaled node coor-
dinates is as follows: VF , QF , vF,m and qF,m . The mean
coordinates are denoted by size 1× 2 vectors v̄ and q̄. After
subtracting the mean coordinate values from the coordinates
of each node, the respective location maps are denoted by
V0 and Q0. The Frobenius scaled node coordinates are now
obtained as

{VF,QF} =
{

V0

[∑M

m=1
(vm − v̄) (vm − v̄)T

]− 1
2

,

Q0

[∑M

m=1
(qm − q̄) (qm − q̄)T

]− 1
2
}

.

(7)

As the node coordinates are scaled and translated to the ori-
gin, Procrustes analysis reduced to finding the minimimum
of the sum of squared residuals (SSR) criterion [21]:

R2
1 = minY∈R(θ)x�

∑M

m=1

[
vF,m − Y (θ, ϕ)T qF,m

]T
,

[
vF,m − Y (θ, ϕ)T qF,m

]
(8)

where matrix Y is a size 2 × 2 orthogonal matrix defining
rotation R and a possible reflection ϕ ∈ � (� is the set of all
possible reflections). The optimal value of SSR is obtained
from a singular value decomposition of QF

T VF [21], and
acts as a similarity measure of the two maps.

4.2 Node and graph distance correlation

As weak dependencies are difficult to estimate, it is highly
improbable that Procrustes analysis yields a good global
match between two location maps based on different data.
Hence we apply a local similarity measure by comparing
internode distances between matching nodes on two loca-
tion maps. Let us denote by d A

i j

(
xi , x j

)
and d B

i j

(
xi , x j

)
the

internode distances on two maps, A and B, with mean values
d̄ A and d̄ B . The linear (Pearson) correlation coefficient of
the distances is defined as

Cd (A, B)

=
∑

(i, j)∈V

[
d A

i j

(
xi , x j

) − d̄ A
] [

d B
i j

(
xi , x j

) − d̄ B
]

√
∑

(i, j)∈V

[
d A

i j

(
xi , x j

) − d̄ A
]2 ∑

(i, j)∈V

[
d B

i j

(
xi , x j

) − d̄ B
]2

,

(9)

where the internode distances need not be Frobenius-scaled.
We call Cd (A, B) as the node distance correlation (NDC).
Graph distance correlation (GC) is obtained by replacing the
node distances with their respective node graph distances
d A

g,i j and d B
g,i j .

5 Evaluation with synthetic data

In this section, theMGMNtopology estimationmethod using
non-metricMDSandSSMI is testedwith data generated from
the Ising model. In particular, we will study the accuracy
and limitations of the method when the qualitative network
behaviour is varied by changing the Ising model parame-
ters. The effect of data characteristics on topology estimation
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is studied by analysing the effects of the number of net-
work observations, network size, node neighbourhood size,
and node loading distribution. Finally the MGMNmethod is
compared to the GSMN method.

5.1 MCMC generated synthetic data

To generate synthetic data, we will consider the reference
network of 30 nodes shown in Fig. 1. The respective graph
structure is obtained by first generating a node location map
on a 2D plane with the x- and y-coordinates of the nodes
drawn independently from a Uni[0,1]-distribution and then
applying a uniform threshold for the internode distances cho-
sen so that the average number of nodes per node, A, equals
8.8. As the topology affects the qualitative properties ofMRF
models, the synthetic topology tries to mimic anMTN topol-
ogy. However, this is difficult as in MTNs both the logical
topology and that of the physical node locations are expected
to affect the MTN behaviour, and hence such a combined
topology is unknown.

As the interaction parameter J of the Ising model largely
determines the qualitative model behaviour, in the validation
tests J is varied between 0 and 0.2 with 0.01 interval, result-
ing in 21model parameterisations. The other two Isingmodel
parameters are kept constant; H = 0.6 and h0 = 0.7. With
each parameterization, a set of L = 270 network observa-
tions is generated. Here A and L are chosen such that they are
similar to the corresponding values of a realMTN considered
in our other studies; see [46].

The synthetic node state data
{

s(l)
m

}M

m=1
for each obser-

vation l (l = 1, . . . , L) is then generated with the Gibbs
sampling method from the random-field Ising model. The
set of node loadings is the same for each parameterization;
h(l)

m is i.i.d. according to Uni[0,1]. Each ensemble observa-
tion is then generated with a burn-in period of 500 updates
to node states (in each, each node is updated once).

Fig. 1 Synthetic network of 30 nodes [46]

To reduce variation in the results due to the sample set
and the stochastic aspects of SSMI estimation, in all studies
three generated data sets are used and the results are given
in medians over the three sets, unless stated otherwise. In
addition, to avoid local minima, MDS is always run 20 times
from varying initial node coordinates, and the node location
map giving the smallest stress-1 value is chosen.

5.2 Coherence in network data

Although with the Ising model coherence is largely deter-
mined by J , also other coherence measures must be consid-
ered because various network connectivities affect the level
of coherence. One overall coherence measure, abbreviated
here as ASSMI is the average of the SSMI values over all
node pairs. For the Ising model we can define a more spe-
cificmeasure for a given data set as the ratio of the interaction
and the external load terms:

R =
∑K

k=1

∣∣∣
∑

n∈N (k)sn

∣∣∣
∑K

k=1 |hk − h0|
, (10)

where k = 1, . . . , K (K = L × M) enumerates all M nodes
in all L observations. Loading of node k is denoted by hk ,
and N (k) denotes the estimated neighbourhoods. When we
use an estimated parameter value, such that h0 = h′

0, the
coherence measure is denoted by R′.

Figure 2 shows the relationship of the various coherence
measures as a function of J , and the mean andmedian values
of SSMI as a functions of the true graph distance of nodes.
The functional relationships of the coherence measures are
similar to each other; non-linear and nearly monotonic. Also
the mean and median SSMI values are similar.

5.3 Locationmap and graph structure estimates

In all 21 model parameterisations, the estimated node loca-
tion map is first scaled with the Frobenius norm and then
Procrustes-transformed without the scaling component with
respect to the true location map shown in Fig. 1. Node
location maps can then be compared visually and analysed
quantitativelywith theSSRcriterion. Locationmap estimates
are shown in Fig. 3 with selected parameterisations.

Graph estimates are obtained by thresholding the node
location map estimates so that A = 8.8. The final Procrustes
SSR criterion, the node distance (NDC) and graph correla-
tion (GC) measures with each J are given in Fig. 4. All these
measures give similar information, which is that for MGMN
to perform well, nodes cannot act as a group of independent
nodes (very small R′), or as a single network entity (very
large R′). However, the MGMN is at its best with the prac-
tical situation when the network acts coherently but not as a
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Fig. 2 Network coherence in the reference case. Top-left plot shows R′
(circles) and RN (squares) as functions of J ; the top-right plot shows
ASSMI as a function of J . Mean (bottom-left) and median (bottom-
right) SSMI values are given as functions of graph distance of nodes
with six J values: 0.02 (asterisks), 0.04 (circles), 0.08 (diamonds), 0.12

(squares), 0.16 (plus signs), and 0.20 (triangles). Mean and median
SSMI values are obtained by first taking the median SSMI over the
three ensembles for each node pair with that graph distance and then
taking the mean and median over those node pair SSMI values [46]

single unit. To compare the results to Fig. 2, topology esti-
mation is most successful when the coherence of true graph
neighbours most distinctly differs from coherence between
non-neighbours. This is the case when the SSMI is the steep-
est function of the graph distance.

We have also compared the distributions of internode dis-
tances in estimated node location maps between the true
graph neighbours and of all nodes, and have also studied the
histograms of true graph distances of estimated graph neigh-
bours. In both studies we have found the results to support
our conclusions; see [46].

5.4 Effect of data characteristics

Here we examine the effect of data characteristics to the
topology identification, in particular, the type of the node
load distribution, the node neighbourhood size, the data set

size, and the network size. First, however, the quality of the
synthetic data needs to be checked by changing the number
of steps in the burn-in period of the MCMC. With the 30-
node network the number of MCMC steps was varied from
the reference case’s 500× 30 to 250× 30 and to 1000× 30.
In all three cases the results were similar, and hence the sam-
ples of the reference case are generated from the stationary
distribution.

Figure 5 represents the results when three node load distri-
bution types are studied: uniform distribution with Uni [0, 1]
(the reference case), normal distributionwith N

(
0.5, 0.252

)
,

and exponential distribution with Exp (0.58). With the expo-
nentially distributed loadings, the functional form of ASSMI
is a bit different to others and also R′ values are smaller. One
explanation for the differences can be the smaller median
value (0.4) with the Exp (0.58) distribution. The distribution
type does not seem to affect the performance of the MGMN
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Fig. 3 Estimated node location
maps. From top-left to
bottom-right, the maps
correspond to the following J
values: 0.04, 0.08, 0.16, and
0.20 [46]

Fig. 4 Similarity measures between estimated and true node location maps and their respective graph structures. NDC, GC, and SSR are shown as
functions of R′ (top row) and J (bottom row) [46]

method, indicated by the large and similar graph correlation
values in all cases.

The following neighbourhood sizes are tested: A = 6.8,
A = 8.8 (reference), and A = 10.8. In the resulting fig-

ure, the range for R′ is a bit different from other figures.
The larger the network connectivity is, the larger the coher-
ence is, indicated by the large values of R′ and ASSMI. With
A = 10.8 and a few largest J values, the network acts nearly
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Fig. 5 Effect of load distribution type (top row), node neighbourhood
size (middle row), and data set size (bottom row) on topology iden-
tification. R′ (left column) and ASSMI (centre column) are shown as
functions of J , and GC (right column) as a function of R′. Top row:

exponential (squares), uniform (circles), and normal (triangles) node
load distributions. Middle row: A = 6.8 (squares), A = 8.8 (circles),
and A = 10.8 (triangles). Bottom row: L = 270 (circles), L = 540
(squares), and L = 1080 (triangles) [46]

as a single entity with nearly all nodes appearing simultane-
ously in equal states in the generated data, causing problems
to the topology estimation. For example, having A = 10.8
and J > 0.16, only one case at J = 0.19 produces a topol-
ogy estimate, with the corresponding GC value at R′ ≈ 33
being clearly distinct from other values. Otherwise, topol-
ogy identification is successful and small A yields somewhat
better results.

The following data sizes are studied: L = 270 (reference)
L = 540, and L = 1080. Both ASSMI and GC values are
affected, but R′ remains practically unchanged as changing
L does not change average node states or loadings. As large
data sets aremore informative about node dependencies, both
the ASSMI and GC increase with L; the change in GC from
L = 270 to L = 540 is particularly large. As a conclusion,
the smallest data set seems too small to estimate SSMI and
thereby the topology accurately.

Testing the effect of larger network sizes needs to be cou-
pled with a simultaneous increase in the size of the data. The
following network sizes are studied: M = 30 (reference),

M = 60, and M = 120. Three tests are done: L is constant
for each M , L is increased linearly, and finally quadratically
in M . The last case is tested because the number of node
pairs grows quadratically in M . For the quality of the data
to be the same for each network size, steps in the MCMC
burn-in period are increased linearly in M (500 × M). The
neighborhood size is fixed to A = 8.8.

The results are represented in Fig. 6. With constant data
size, L = 270, both theASSMI andGCassume clearly larger
valueswith the smallest M thanwith the two larger M values,
but R′ is nearly unaffected. Hence, L needs to be increased
to have reasonable data quality. As L is increased linearly
in M , coherence measures behave like in the previous case,
but GC values are similar for all the network sizes, which
indicates that the linear increase is proper.

Due to computational reasons with the case of L increas-
ing quadratically in M , only the network with M = 60 is
tested. Worst results are obtained when L = 270, however,
ignoring the rather heavy fluctuations, GC is similar to results
with the two larger data sets and nearly similar to the results
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Fig. 6 Effect of network size on topology identification. R′ (left col-
umn) and ASSMI (centre column) are shown as functions of J , and
GC (right column) as a function of R′. Top row: M = 30 (circles),
M = 60 (squares), and M = 120 (triangles), each with L = 270.
Middle row: M = 30, L = 270 (circles), M = 60, L = 540 (squares),

and M = 120, L = 1080 (triangles). Bottom row: L = 270 (circles),
L = 540 (squares), and L = 1080 (triangles), each with M = 60. For
the other network sizes than M = 30, measures are calculated from a
single ensemble [46]

with the reference case. R′ is again nearly constant in all
cases, which means that the data is similar in all the cases.
This is not surprising, as both the graph and the parameters
of the Ising model are unaltered.

ASSMI values are similar between the two larger data
sizes, but smaller with L = 270. ASSMI seems to depend
on the network size, or at least it is very different between
the two larger networks with M = 30. The reason may be in
the particular properties of the randomly generated network.
Furthermore, as the network is small, even a few highly con-
nected nodesmay have large effect on the network properties.

5.5 Comparison to other methods

In this section, the MGMN method is compared to other
graph estimation methods, in particular the GSMN method.
As our main interest in graph estimation is the estimation
of the MTN topology, the methods are tested with graphs
derived from two-dimensional spatial configurations.

As ameasure for comparing the graph estimates, we apply
the percentage of properly recovered links (PRL) in an esti-
mated graph. PRL is independent of Awhen A is the same for
the compared graphs. PRL is a more exact measure than GC
to compare two graphs, because GC can yield large values
also in cases when graph distances, but not necessarily exact
neighbourhoods, are similar. However, GC is well suited for
measuring the overall fitness of an estimated graph.

Figure 7 represents the results when the MGMN method
is compared to direct thresholding of MI and SSMI when
varying L , A, and M ; L is here increased linearly in M .
For M = 30, the results are similar, but with larger net-
works (M = 60 and M = 120), MGMN is clearly better
than the other two methods as only MGMN uses the con-
ditional dependency relations in estimation. Apparently, in
this particular case with binary-state nodes, node probability
distributions are so similar that the MI values between node
pairs are nearly comparable, and therefore MI yields result
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Fig. 7 Comparison of the MGMNmethod (circles) to direct threshold-
ing of MI (squares) and SSMI values (triangles). Performance of the
methods is tested with several data set sizes (L), neighbourhood sizes
(A), and network sizes (M). In each case, results are given in percent-

ages of estimated graph links that match the true links among all true
links. Results are shown for J values: 0.08, 0.10, 0.11, 0.12, 0.13, 0.14.
The values with the two largest networks are based on a single ensemble
[46]

similar to SSMI which represents absolute values that are
comparable among different node pairs.

In the GSMN algorithm, the parameter α defines the
neighbourhood size on a graph. Similar to many other
constrained-based algorithms, GSMN is poor in estimating
dense graphs. With the reference case having A = 8.8 the
graph already becomes rather dense. Therefore, GSMNalgo-
rithm is also studied with α values corresponding to A = 2.8
and A = 5.8. We use mostly L = 540, as it yields better
results than L = 270 as concluded previously. Figure 8 rep-
resents the results: for large α values larger intervals are used
due to increased computation time.

GSMNmethod indeed has some difficulties in estimation
of the denser graphs, which is seen as missing data points in
Fig. 8.With J = 0.08 the results are only obtainedwith small
A′ values.With all tested J values, almost all of the estimated
links are true links when A′ is small, however, there are quite
many true links that are missing. The rate of correct links
drops with denser graphs and at A′ ∼ 8.8, MGMN clearly
outperforms the GSMN method.

When varying A (2.8, 8.8, 5.8), the smaller the A′, the
smaller the probability that an estimated link corresponds to
a true link. However, even with the case of A′ ≈ A, GSMN
gives similar but poorer results than MGMN. When varying
L (270, 540, 1080), the best results are clearly obtained with
the two largest data sets. With L = 1080, graph estimates
are only obtained in a narrow range of A′ values. At A′ ≈ A
and with each L , the GSMN results are not as good as with
the MGMN.

Finally, M is varied and L is increased linearly in M .
The following cases for (M , L) are considered: (60, 540; 30,
270; 120, 1080). With the two larger M , the estimation is
only successful in a narrow range of A′ values. The graph
estimates are better with larger network sizes, which was not
expected. This is also true for MGMN, but the variations are
quite small.Overall, in the relevant cases from the application
perspective of MTNs, MGMNmethod seems to be better for
graph estimation than the GSMN method.
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Fig. 8 Performance of the GSMN algorithm. The figure shows A′ as a
function of α (left column), the proportion of correctly estimated links
among all true links (centre column), and the proportion of true links
among all estimated links (right column). From the top to bottom row,
results are given (squares; circles; triangles) for J (0.08; 0.1; 0.12), A
(2.8; 8.8; 5.8), L (270; 540; 1080), and M , L (60, 540; 30, 270; 120,
1080). Results are shown with the following α values: from 0.02 to 0.2

at intervals of 0.02, and from 0.25 to 0.9 at intervals of 0.05. The two
rightmost columns also show the results with the MGMN method as
vertical lines in the case when A′ = A with the colours matching the
respective cases. In the first three rows, a reference case (circles) is used
(J = 0.1, A = 8.8, L = 540, M = 30). The results with M = 60 and
M = 120 are obtained from a single ensemble [46]

6 Conclusions

In this paper we proposed a method for estimating graph
structure of a networked system aimed at defining the
structure of a MRF model and motivated by the mobile
telecommunications networks (MTNs). The proposed esti-
mation method was studied with several synthetic network
cases corresponding to diverse network behaviour situations
that are practical from the application perspective of MTNs.

The particular difficulty with MTNs is that both the logical
topology and that of the physical node locations are expected
to affect the behaviour of an MTN, and hence such a com-
bined topology is unknown.

The proposed graph estimationmethodwas found to work
increasingly better as the level of coherence in the network
node states was increased, except with very large coherence
values when all the nodes appear in equal states and the
network acts as a single entity. The type of the node load dis-
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tribution was found to have only a minor effect to the graph
structure estimation. The size of the data set was found essen-
tial and should be increased at least linearly as a function
of the network size. In networks with large neighbourhood
sizes, the estimation may be difficult since the complex node
dependencies are not that well exposed in the data. Overall,
the proposed graph structure estimation method works well
under slightly limited, though practical, network behaviour
situations and have some robustness against changing the
type of node loadings, and the sizes of the network, the data
set, and the node neighbourhoods.

The proposed method was compared to a constrained
based graph estimation method, namely the GSMN method,
and to a straightforward method based on simply threshold-
ing the node dependency values into node neighbours. In all
relevant cases from our application perspective, the proposed
graph estimation method was found to give at least as good
results as the GSMNmethod, and outperformed the straight-
forward method as by utilizing the conditional dependencies
of the nodes when forming the graph estimate.

In our other studies the graph structure estimation method
is applied together with MRF model parameter estimation
methods for estimating the Ising model from a real MTN
data. Identified Ising model can then be used in studying the
effect of local and global node disturbance situations to the
behaviour of the MTNs.
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