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Abstract In this paper, we propose a novel intrusion detec-
tion technique with a fully automatic attack signatures
generation capability. The proposed approach exploits a
honeypot traffic data analysis to build an attack scenarios
database, used to detect potential intrusions. Furthermore,
for an effective and efficient intrusion detection mechanism,
we introduce several new or adapted algorithms for signa-
ture generation, signature comparison, etc. Finally, we use
DARPA’99 and UNSW-NB15 traffic to evaluate the proposed
approach. The results indicate that the generated attack sig-
natures are of high quality with low rates of false negatives
and false positives.

Keywords Intrusion detection · Honeypots · Fuzzy hashing ·
DARPA’99 dataset · UNSW-NB15 dataset

1 Introduction

During the last decade, the hacker’s community has changed
substantially, due to the development of the Internet. Indeed,
it is now, very easy for anyone to get access to very sophis-
ticated security attack techniques without the need to have a
wide or specialized knowledge. Consequently, critical data
that are hosted in multitude of computer systems have never
been as vulnerable to security attacks and remote intru-
sions. In order to cope with these threats, many security
solutions have been proposed, such as anti-virus software,
firewalls, access control systems, intrusion detection systems
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and encryption techniques. However, all these solutions offer
limited protection against all types of attacks, especially zero-
day attacks. In this context, the intrusion detection seems to
have much more potential for better security systems and sev-
eral recent research works highlights the growing interest for
this technology. Traditional methods for network intrusions
detection are mainly based on signatures of known attacks.
They detect network attacks by comparing patterns of active
connections to the attack patterns provided by human experts.
Unfortunately, the major drawback for this technique is the
offset, often important, between the appearance of a new
attack and the updating of the attack signature database.
To address this issue many nowadays research activities are
directed to the automation of the generation of attack signa-
tures for misuse based intrusion detection systems [8,20,22].

In this paper, we propose a novel approach for automati-
cally generating signatures and attack scenarios for a network
intrusion detection system. In this approach, the generation
of attack scenarios is based on the inbound and outbound
traffic collected from a honeypot system. The suspected traf-
fic captured from the honeypot system is first pre-processed
by filtering and formatting the traffic content. Then, a novel
hashing technique is used to generate fingerprints (signa-
tures) of the formatted traffic. The generated signatures are
then used to construct attack scenarios. To detect intrusions,
we use the longest common subsequence (LCS) algorithm
to calculate the similarity between the actual analysed traffic
and the attack scenarios generated from the honeypot traffic.
Finally, to evaluate our approach, we conduct experiments
on DARPA’99 and UNSW-NB15 traffic. The experimental
results show that the performance of our proposed approach
outperforms many other similar approaches proposed in the
literature.

The rest of this paper is organized as follows: Sect. 2
presents an overview of the related works. In Sect. 3, we
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present the architecture of our proposed approach. In Sect.
4, we present the generation of signatures from messages
using our novel hashing technique. In Sect. 5, we introduce
the longest common subsequence (LCS) algorithm and show
how the later is used to calculate similarities between differ-
ent attack scenarios. Our experimental study and practical
results are discussed in Sect. 6. Finally, Sect. 7 concludes
this paper.

2 Related works

In the last years, automatic signature generation for intrusion
detection systems has been an active subject and a number of
techniques have been proposed in the literature. One of the
first tentative to automate the generation of attack signatures
is described in [10]. The system, called Honeycomb, gen-
erates signatures by using a pattern-detection technique and
a packet header conformance tests on honeypots traffic. To
detect attack patterns in flow content, Honeycomb applies
the longest common subsequences algorithm [2] to binary
strings corresponding to the exchanged messages. Two years
later, Li et al. [11] proposed Hamsa, an automated signa-
ture generation system for polymorphic worms. Based on
a worm flow classifier, Hamsa separates the captured traf-
fic flows into suspicious one, sent to suspicious traffic pool
and normal one saved in a normal traffic reservoir. Part of
the normal traffic reservoir is, then, selected to construct a
normal traffic pool. Finally, the suspicious and normal traf-
fic pools are given as input to generate a worm signature.
Mohammed et al. [12] propose an automated signature gen-
eration system called Honeycyber. The proposed system is
based on a double honeynet architecture, in which worm’s
outbound connections made from the first honeynet (a net-
work of honeypots) are redirected to the second honeynet,
and those made from de second honeynet are redirected to
the first honeynet. From the traffic of these two honeynets,
distinct tokens which appear in every worm traffic instance
are extracted to generate a worm signature. Griffin et al. [5]
propose the “Hancock” system that automatically generates
string signatures for the Symantec antivirus software. The
generated signature consists of a contiguous byte sequence
that can match many variants in a malware family. The sys-
tem generates and tests a set of signature candidates based on
three types of heuristics: probability based and disassembly
based heuristics to filter candidate signatures and diversity
based heuristics to select good signatures among these can-
didates. Tahan et al. [20] propose Auto-Sign, an automatic
method for extracting unique signatures of malware executa-
bles. The method was designed to operate in two phases:
setup phase and signature generation phase. In the setup
phase, it creates common function library (CFL) and com-
mon threat library (CTL). Then in the signature generation

phase, good candidate signatures are generated and ranked
in order to select the best one. The minimization of false pos-
itives rate is provided by disregarding signature candidates
which appear in benign executables. Tang et al. [21] pro-
pose PolyTree, a new Network-based signature generation
system to defend against polymorphic worms. The proposed
system is composed of two components: signature tree gen-
erator and signature selector. The signature tree generator is
mainly designed to incrementally construct a signature tree,
whereas, the signature selector is designed to select a set
of accurate signatures which are used to detect new worm
attacks. Wang et al. [22] propose a novel automatic signature
generation approach based on regular expression formalism
with a certain subset of standard syntactic rules. The approach
involves four procedures: (1) pre-processing, used to extract
application session payload, (2) tokenization, used to find
common substrings and incorporate position constraints, (3)
multiple sequence alignment, used to find common subse-
quences, and (4) signature construction, used to transform
the results into regular expressions. Jain et al. [8] proposed
an hybrid approach that combines honeypots with both signa-
ture based and anomaly based detection. In this architecture,
three levels of defense are described. In the first level, a sig-
nature based detection system is used to detect and block
known worm attacks. In the second level, an anomaly based
detection system is used to detect deviations from the normal
behavior, and in the third level, honeypots are used to detect
zero day attacks. In this last level, a controller is implemented
to redirect traffic among various honeypots deployed in the
honeyfarm, and the longest common subsequence algorithm
is used to generate attack signatures.

Compared to previous related works, the present work
goes beyond the simple detection of malicious code signa-
tures and can also detect malicious behaviours. We do this by
automatically generating an attack scenario for each attack
type. The advantage of such an approach is its ability to
provide a consistent and detailed description of malicious
attacks, which makes the network administrator task even
easier. Note that the considered attack scenarios are low-level
scenarios (packets-level scenarios), and they are different
from high-level attack scenarios addressed in the literature.
The advantage of such an approach is a finer, description
granularity and a more precise detection. Another difference
between our scenarios based system and other systems is
that, most of the previous approaches focus on worm-related
malware attacks, where a signature is extracted from the
traffic that the malware creates when it attempts to spread
through the network. However, since our approach tries to
capture attacker’s behaviours through attack scenarios, it can
ensure protection against various types of attacks including
reconnaissance attacks, denial of service (DoS) attacks, SQL
injection attacks, malware attacks, etc. Note that, the pro-
posed architecture favors the detection of zero-day attacks.
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Fig. 1 Proposed intrusion detection architecture

Indeed, in such an architecture the likelihood that the zero day
attack falls soon into the honeypot trap becomes very high,
especially when the later is placed in a strategic location and
is well configured (simulate enough services while avoiding
too much exposure so as not be detected as a honeypot). Now,
since all attack scenarios are built from the honeypot traffic,
the system has a good chance to be aware of the attacks before
they reached production servers. Moreover, in most previous
approaches, the generation of signatures is often based on
the extraction of tokens that are common to all the flows
in the suspicious pool (traffic). However, in these, tokens-
based methods, finding good tokens from unknown flows
is known to be an NP-hard problem [11], especially when
tokens are extracted from noisy suspicious pools which may
contain some normal flows. The presence of such noise will
increase the complexity of signature generation algorithms
and reduce the quality of the generated signatures [11]. To
avoid this problem, we propose in this work a novel technique
to generate attack signatures based on similarity-preserving
hashing approach instead of the tokens extraction technique.
We also use the longest common subsequence algorithm to
compute the similarity between different attack scenarios.

3 Proposed intrusion detection architecture

The proposed architecture of our intrusion detection system is
presented in Fig. 1. This architecture is composed of two main
parts; intended to be distributed on two separate domains with
different access policies. Indeed, the honeypot part should be
implemented in a least restricted domain (i.e.: DMZ domain)
to be fully functional. The first part of the architecture is the
automatic attack scenarios generation system and the second
part is the intrusion detection system.

The automatic attack scenarios generation part is designed
to be executed beside a honeypot system; its main task is to
sniff the inbound and outbound honeypot traffic and build
attack scenarios. These scenarios are then exported, in real

Fig. 2 Architecture of the attack scenarios generation part

Fig. 3 Architecture of the intrusion detection part

time, towards the intrusion detection system. The architec-
tures of the automatic attack scenarios generation part and
that of the intrusion detection part are depicted in Figs. 2
and 3 respectively. There is four principal components: pre-
processing module, scenarios extraction module, scenarios
validation module and intrusion detection module.

3.1 Pre-processing module

The pre-processing module is mainly designed to work in the
same way as in the TCP/IP protocol stack. It captures pack-
ets from a honeypot network, and tracks them into sessions
(bidirectional flows of packets). Each packet is identified by
a 5-tuple (source IP address, destination IP address, source
port number, destination port number, IP protocol number).
The module has, also, the task to analyse and filter the traf-
fic by eliminating unnecessary packets such as network flow
control packets. Indeed, high-level protocol messages can be
transmitted in one or more TCP segments. Therefore, the pre-
processing module must reassemble all these TCP segments
to rebuild the original messages as sent by the high-level pro-
tocol. The obtained messages are called atomic messages.
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3.2 Scenarios extraction module

The scenarios extraction module is used to build elementary
actions and attack scenarios, which are saved into two sepa-
rate files, namelyElementaryActionFile andAttack Scenario
File. In our approach, an attack scenario is built as an ordered
sequence of elementary actions exchanged during a commu-
nication session. An elementary action represents a set of
information and features that characterize an atomic message
sent from/to an attacker. In this paper, we define an elemen-
tary action by four features or fields, namely the action code,
the action description, the action actor and the action signa-
ture. The action code (ActCode) is an incremental numeric or
alphanumeric string that uniquely identifies each elementary
action. So, if an elementary action is captured, the scenarios
extraction module will first check whether it is already saved
in the Elementary Action File. If so, the corresponding action
code is returned; otherwise, a new action code is incremen-
tally generated, assigned to the new elementary action and
the whole is stored in the Elementary Action File. The action
description (ActDesc) provides information and features on
an elementary action. Its value is composed of two parts sep-
arated by the ‘:’ character. The first part contains the last pro-
tocol used in the action (ARP, RARP, ICMP, TCP or UDP),
whereas the second part contains a short description for the
operation performed by the elementary action, its value is
automatically set by analyzing and interpreting some specific
fields of the last protocol header of the packets composing
the elementary action. The protocol header fields interpreted
here can be the operation field for the ARP header (Request
or Reply), the type and code fields for the ICMP header
(Echo Reply, Destination Unreachable, etc.), the flags field
for the TCP header (SYN, ACK, PSH, SYN + ACK, ACK +
PSH, etc.), etc. The action actor (ActActor) determines the
actor which has performed the elementary action: attacker or
victim. Finally, the action signature (ActSig) contains a sig-
nature (hash) of the atomic Message. Our technique, based on
hashing, allows us to overcame the problem of storage space
while offering a highly efficient message similarity detec-
tion. A detailed description of this novel technique is given
in Sect. 4. An example of an elementary action and an attack
scenario generated by this module is shown in Figs. 4 and 5.

Fig. 4 Example of an elementary action

Fig. 5 Example of an attack scenario

3.3 Scenarios validation module

Honeypots [19] are servers with no production value, so legit-
imate users have nothing to do with them. Consequently, each
attempt to contact these systems via the network is consid-
ered suspect by default. However, this does not mean that all
interactions with honeypots are true attacks. Indeed, normal
traffic is sometimes redirected towards honeypots by mistake,
or by the normal interaction of some network protocols, such
as the NetBIOS protocols which periodically send packets to
discover their network neighborhood. In fact, the normal traf-
fic redirected towards honeypots by mistake is very rare in
practice; their impact on the quality of the generated attack
scenarios will, thus, be negligible. However, for the traffic
corresponding to the normal interaction of legitimate net-
work protocols, such as NetBIOS protocol, its appearance
in the honeypot systems is frequent. This could negatively
affect the quality of the generated attack scenarios and then
should be filtered. Fortunately, this kind of normal traffic is
very common and regularly received by regular machines.
As a result, the corresponding attack scenario will necessar-
ily generate a tremendous volume of false alarms, contrary to
those corresponding to real attacks. It is therefore very easy to
distinguish between malicious and legitimate traffic of hon-
eypot systems. This can be done by detecting the presence
of the generated attack scenarios on the traffic of a safe net-
work (free of attacks) for a sufficient period of time, then just
count the number of alarms generated to determine whether
the scenario corresponds to malicious or legitimate traffic.
Hence, to prevent the generation of false attack scenarios, a
scenarios validation module is implemented. In this module,
a newly generated scenario is first tested on a normal traffic
dataset that must contain sufficient amount of normal traffic,
in our case it contains more than 100,000 normal commu-
nications (redundant traffic must not be removed from this
normal dataset). If the test is positive (the scenario is found in
this traffic), this corresponds to an IDS false positive. Then,
if the number of false positives generated exceeds a certain
threshold value, this scenario is ignored; otherwise it is saved
in the attack’s scenarios base. Furthermore, in some cases
an attack scenario can be close enough to some frequent
normal scenarios to trigger often the IDS on normal traffic,
generating, then, a lot of false alarms. In this case, a good
security strategy is to ignore this attack scenario instead of
managing a considerable amount of false alarms. Accord-
ingly, our validation module can help to eliminate the attack
scenarios corresponding to real attacks that generate a lot
of false alarms. This can happen because the detection of
intrusion activities in the proposed approach is based on a
partial matching between the scenario corresponding to the
captured traffic and those of the malicious activities saved in
the attack scenarios base. A generated attack scenario may
thus wrongly detect all “very” similar normal activities as
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attacks. Hence, in our validation module when a generated
scenario is positively detected on the normal traffic base, then
it either corresponds to a normal scenario or an attack sce-
nario very close to frequent normal traffic. In the both cases
the scenario should be ignored.

3.4 Intrusion detection module

The intrusion detection module is used to detect intrusions by
using the LCS algorithm to compute the similarity between
the generated scenario and those of the attack scenarios base.
A detailed description of the functioning principle of this
module is given in Sect. 5.

4 Generation of elementary action signature

In this section, we introduce a new technique for building
compact signatures from brut atomic messages produced by
the analysed traffic. Note that, the use of brut atomic mes-
sages to build attack scenarios is ineffective in practice. This
is mainly due to the required memory space and the ineffi-
ciency induced in the attack scenarios comparison process.
To implement our solution, we use a hashing technique. How-
ever, due to properties of traditional hashing techniques, in
which a single bit modification will significantly alter its
cryptographic hash, these techniques can not be used to han-
dle similarity between attack scenarios. A potential solution
is, then, to apply a hashing function that preserves similarity.

Over the last years, many similarity preserving hash func-
tions have been proposed. The most widely known are the
Context-Triggered Piecewise Hashing (CTPH) [9] and the
Similarity Digests Hashing (SDHash) [16,17], which are
implemented in the tools sdeep and sdhash respectively. In
the CTPH technique, the input data is divided into many parts
based on a pseudo random function, and a hash of each piece
is produced and finally concatenated to produce the finger-
print. In SDHash technique, the improbable byte sequences
are statically identified, afterward, the hash of each sequence
is produced and inserted into a bloom filter. Unfortunately,
these techniques are primarily designed for large messages
(10,000 bytes and above), therefore, if we use them with small
message sizes like those of our atomic messages (97% are
below 10,000 bytes) the quality of the produced hashs would
be significantly reduced. This is, mainly due to the fact that
the feature selection for the hash algorithm is done at the
bit level, and this selection can not be realized on smaller
messages since it contains fewer bytes. In other words, small
messages do not contain enough information at the bit level
to produce good quality hash. To solve this problem, we pro-
pose a novel approach based on the crossword frequencies
of the input data.

Fig. 6 Example of our signature generation

The basic idea of our similarity preserving hash tech-
nique is to generate a vector of crossword frequency for each
input data and instead of comparing original input data, we
only need to compare their hashes by computing their vector
distances. The generation of crossword frequency vector is
based on a sliding windows chain technique, in which the
input bit stream is split into a windows chain as shown in
Fig. 6. Now, and before going into further details, let us first
define some notations.

Input data is processed in the bit stream level, it is denoted
by DIN and its size is denoted by

∣
∣DIN

∣
∣. For the sliding win-

dows chain technique, the size of the windows is a constant
for all input data and it is denoted by WSize; whereas, their
number, denoted byWNbr , is different for different input data,
depending on the size of data: WNbr = ∣

∣DIN
∣
∣/WSize. Where

“/” represents the integer division operator. Furthermore, for
each hash generation step, the windows chain is shifted by n
bits; this number of bits is called sliding step size, denoted
by SSize. The number of shifting (sliding number) is equal
to the number of sliding steps, and is denoted by SNbr . For
each sliding step, an intermediate frequency vector, denoted
by Vtmp, is created. At the last step, the previous interme-
diate frequency vectors are concatenated to produce a final
frequency vector denoted by VSig . In the frequency vectors,
indexes represent the windows values, whereas, the vector
cells content represents the frequencies of windows values.
The size of an intermediate vector should be large enough to
contain all possible values that a window can contain, i.e.:
∣
∣Vtmp

∣
∣ = 2(WSize).

Hereafter, we present the algorithm implementing the sim-
ilarity preserving hash technique (FSCHash), which involves
five steps:

Step 1. Initialization:
SSize ← sliding step size,
SNbr ← sliding number,
WSize ← window size,
Note: SNbr ×SSize must always be lower than WSize.

Step 2. The input bit stream (input data) is split into a
windows chain, then the frequencies of words (bits
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sequences) appearing in the windows chain are cal-
culated and stored in the intermediate frequency
vector Vtmp.

Step 3. The windows chain is shifted by SSize bits, and the
frequencies of the new windows values are calcu-
lated and stored in a new intermediate frequency
vector Vtmp.

Step 4. Repeat step 3 until the sliding number (SNbr ) is com-
pleted.

Step 5. Concatenate all intermediate frequency vectors to
construct a final frequency vector VSig .

Now, due to the vectorial structure of the produced
hashing, several techniques can be used to calculate simi-
larity between two signatures of elementary actions, such
as Minkowski Distance, Manhattan Distance, Mahalanobis
Distance, etc. The most widely used is the euclidean distance
(Eq. 1).

d(S1, S2) =
√
√
√
√

n
∑

i=1

(S1i − S2i )2 (1)

However in the present work, we choose to use the Bhat-
tacharya distance (Eq. 2) because it gives better practical
results in our analysed dataset.

d(S1, S2) =
n

∑

i=1

√

(S1i × S2i ) (2)

5 Sequence-based similarity measurement

In practice, a perfect matching between two scenarios of the
same attack is rare. This is due to the network characteristics
and the behavior of attackers that, often, introduce cosmetic
changes on their attack scenarios to avoid their detection.
However, in most cases, a partial matching could be sufficient
to detect similarity between two attack scenarios.

A variety of different techniques have been introduced to
measure partial matching between two given sequences. In
our approach, we use Longest Common Subsequences (LCS)
[2,6] technique which measures the longest subsequence
of symbols that appears in both input sequences. The LCS
algorithm was designed primarily to compute similarities
between strings [4,7], but today it is one of the most well-
known and the most commonly used solution for many prob-
lems of different areas, such as pattern recognition, data min-
ing, file comparison, biological sequence comparisons, etc.

Definition 1 Given a sequence S, any sequence obtained by
deleting some of the characters from S is said to be a subse-
quence of S.

Definition 2 The longest common subsequence (LCS) of
two sequences X = 〈x1, x2, . . . , xN 〉 and Y = 〈y1, y2, . . . ,

yM 〉 is a sequence Z = 〈z1, z2, . . . , zK 〉 such that Z is a
subsequence of X and Y and if T is a subsequence of X and
Y then |Z | > |T |

For example, let X = 〈abcdgh〉 and Y = 〈aed f hr〉, then
Z = 〈acg〉 is a subsequence of X, Z = 〈ad〉 is a common
subsequence of X andY and Z = 〈adh〉 is a longest common
subsequence of X and Y .

To compute the LCS between two attack scenarios S1 =
〈x1, x2, . . . , xn〉 and S2 = 〈y1, y2, . . . , ym〉, we use an algo-
rithm based on the basic dynamic programming [3,7]. S1 and
S2 are mapped to a matrix L of n+1 rows andm+1 columns.

L =
⎛

⎜
⎝

e1,1 · · · e1,m+1
...

. . .
...

en+1,1 · · · en+1,m+1

⎞

⎟
⎠ (3)

where, rows 2 to n + 1 correspond to the elements of attack
scenario S1, while columns 2 to m + 1 correspond to the
elements of attack scenario S2. The first row and column,
with index 1, do not correspond to any specific element and
they are initialized to 0. Entry L[i, j] represents the LCS
between the first i characters of S1 and the first j characters
of S2, and can be incrementally computed from L[i − 1, j],
L[i − 1, j − 1] and L[i, j − 1] using the following recursive
equation:

L[i, j]

=
⎧

⎨

⎩

0 if i=1 or j =1
L[i − 1, j − 1]+1 if xi = y j and i, j >1
max{L[i − 1, j], L[i, j − 1]} otherwise.

(4)

The last element L[n + 1,m + 1] = en+1,m+1 holds the
length of the longest common subsequence between S1 and
S2, which is denoted by

∣
∣LCS(S1, S2)

∣
∣.

For example, if we have two attack scenarios S1 =<

A,C, B, D, A, D, B,C > and S2 =< A, D,C, B, A, B,

D >, by running this recursive equation, the visualization of
the LCS computing process is shown in Table 1 and Fig. 7.

In the the present work, we use normalized similarity val-
ues given by the formula (5).

Sim(S1, S2) = 2 ×
∣
∣LCS(S1, S2)

∣
∣

∣
∣S1

∣
∣ + ∣

∣S2
∣
∣

(5)

6 System implementation and performance
analysis

We used a C# language to implement the software prototype,
the later is composed by six main modules. Three of them
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Table 1 Evaluation process for the longest common subsequence
between S1 and S2

A C B D A D B C

0 0 0 0 0 0 0 0 0

A 0 ↖1 ←1 ←1 ←1 ↖1 ←1 ←1 ←1

D 0 ↑1 ↑1 ↑1 ↖2 ←2 ↖2 ←2 ←2

C 0 ↑1 ↖2 ←2 ↑2 ↑2 ↑2 ↑2 ↖3

B 0 ↑1 ↑2 ↖3 ←3 ←3 ←3 ↖3 ↑3

A 0 ↖1 ↑2 ↑3 ↑3 ↖4 ←4 ←4 ←4

B 0 ↑1 ↑2 ↖3 ↑3 ↑4 ↑4 ↖5 ←5

D 0 ↑1 ↑2 ↑3 ↖4 ↑4 ↖5 ↑5 ↑5

Fig. 7 Example of calculating the LCS of two attack scenarios

form the attack signature generation part. The three others
form the detection part. The performance analysis has been
performed with a 3.06 GHz Intel Core i3 CPU and 4 GB
RAM computer, running Windows 7 Professional operating
system.

We conduct three experiments for the evaluation of our
proposed model. In the first experiment, we demonstrate the
efficiency of our similarity preserving hash technique, pro-
posed in Sect. 4. In the second experiment, we investigate
the practical quality of the, automatically generated, attack
scenarios by testing their ability to detect attacks on two dif-
ferent datasets. While the third experiment is mainly devoted
to evaluate the practical performance of the generated sce-
narios in terms of their matching time.

6.1 Data for the experiment

We used the raw network traffic of two different datasets,
namely, the DARPA’99 dataset and the UNSW-NB15 dataset.

6.1.1 DARPA’99 dataset

This first dataset was developed by the MIT Lincoln labo-
ratory and Air Force Research Laboratory [1]. It contains
training data formed by a 3 weeks (weeks 1–3) of captured
network traffic in the form of TCP dump and audit data
containing approximately 5 million connections. The first

and third week of the training dataset are free of attacks,
whereas the second week includes 43 instances of 18 labeled
attacks and each instance is, in general, formed by more
than one connection. The DARPA’99 dataset has, also, a
separate testing data. It includes 2 weeks of captured traffic
(weeks 4 and 5), with approximately 2 million connections of
normal/malicious traffic. The malicious traffic includes 201
instances of 58 attack types, where 40 types are new attack
types that don’t exist in the training dataset. In addition to
tcpdump and audit data, DARPA’99 dataset provides some
additional information about the captured attacks: attack flow
identifiers, date of the attacks, the time of the arrival of the
first packet in the flow, attacks durations, source port, des-
tination port, source IP address, destination IP address, etc.
Attacks provided in this dataset belong into one of the follow-
ing five categories: denial of service (dos), remote to local
(r2l), user to root (u2r), probe and data compromise. The
dos attack is an unauthorized attempt to disrupt the normal
functioning of a victim host or network (e.g., mail bomb
attacks); The r2l attack is an unauthorized access from a
remote machine (e.g., ssh trojan attacks); The u2r attack is
an unauthorized access to local superuser privileges by a
local unprivileged user (e.g., buffer overflow attacks); The
probe attack is an unauthorized host and port scans to gather
information or to find known vulnerabilities (e.g., port scan-
ning attacks). Finally, data attack is an unauthorized access
or modification of data on local or remote host (e.g., frame
spoofer attacks).

We used the DARPA’99 dataset to evaluate the proposed
approach, because it is well-studied, well-documented and
publicly available trace in the area of intrusion detection,
and is still the most widely used dataset for testing intrusion
detection systems. Especially for signature based intrusion
detection, where a whole set of attack and normal raw net-
work traffic is available with detailed information about each
attack traffic (source and destination IP addresses, source
and destination ports, attack starting time, attack duration,
etc.). Unfortunately, this is not the case for most of recent
datasets despite the importance of such information to extract
the attack traffic content and generate the appropriate signa-
tures. However, in spite of these incentives, DARPA dataset
is decade-old and is therefore not enough to evaluate recent
intrusion detection approaches. For this reason, the proposed
approach is also evaluated using UNSW-NB15 dataset.

6.1.2 UNSW-NB15 dataset

The UNSW-NB15 is a very recent dataset which is created
by the cyber security research group at the Australian Centre
for Cyber Security (ACCS) [13]. It contains about 100 GB
of raw network traffic, captured during two simulation peri-
ods of 16 and 15 h and proceeded on January 22, 2015 and
February 17, 2015 respectively. The raw data includes both
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real modern normal activities and synthetic contemporary
attack behaviors. Synthetic contemporary attacks provided
in this dataset can be classified into one of the following
nine categories: Fuzzers, Analysis, Backdoor, DoS, Exploits,
Generic, Reconnaissance, Shellcode and Worms [14]. The
Fuzzers attack is an unauthorized attempt to discover security
loopholes in the victim system by feeding it with a massive
inputting of random data. The Analysis attack is an unau-
thorized attempt to penetrate the web applications via ports
(e.g. port scans), emails (e.g. spam) and web scripts (e.g.
HTML files). The Backdoor attack is an unauthorized access
from a remote machine. The DoS attack is an unauthorized
attempt to disrupt the normal functioning of a victim host
or a network. The Exploit attack is a sequence of instruc-
tions that takes advantage of a glitch, bug or vulnerability
on the victim system. The Generic attack is an attempt to
cause a collision on the victim system without respecting
the configuration of the block-cipher. The Reconnaissance
attack is an unauthorized attempt to gather information about
a victim system to evade its security controls. The Shell-
code attack is an unauthorized attempt to penetrate a slight
piece of code starting from a shell to control the com-
promised machine. Finally, the Worms attack is an attack
in which the attacker replicates itself to spread on other
computers.

6.2 First experiment

The aim of this first experiment is to verify the efficiency of
our similarity preserving hash technique, in which the age
of the used attack data is less important, so only one dataset
is used here. In this evaluation, we performed the following
steps:

1. We produced a dataset containing original atomic mes-
sages (that we callOAMD) extracted from the DARPA’99
test dataset attacks. This dataset contains about 100,250
atomic messages.

2. We generated four other datasets called Changed Atomic
Message Datasets (CAMDi , i = 1, . . . 4). The CAMD1

(CAMD2,CAMD3,CAMD4 respectively) is generated by
randomly modifying 5% (20, 50, and 80% respectively)
of each atomic message in the original OAMD.

3. For each of CAMDi , i = 1 . . . 4, we compared the
signature of each modified atomic message with the sig-
nature of the corresponding original atomic message.
The generation and the comparison of these signatures
are performed by using our FSCHash technique (as
explained in Sect. 4) with the following parameters:
WSize = 8 (window size), SNbr= 1 (sliding number),
SSize = 4 (sliding step size) and Bhattacharya Distance
to calculate similarity between two signatures. By gradu-
ally increasing the similarity threshold, we calculated the

Fig. 8 Detection rates for our FSCHash technique

number of modified atomic messages which were cor-
rectly associated to their original atomic messages, i.e.:
when the similarity value with the associated original
atomic messages exceeds the similarity threshold value.
Results are shown in Fig. 8. For example, in this fig-
ure, the comparison of the CAMD2 and the OAMD with
a threshold of 0.85 (pink color) show that 79% of the
atomic messages are correctly assigned.

As shown in Fig. 8, we can clearly see the efficiency of
the proposed technique when the change rate of the atomic
messages is set to 5% (CAMD1) or 20% (CAMD2). In both
cases, the detection rate is near-perfect (nearly 100%) when
the detection threshold is 0.95 and 0.80 for CAMD1 and
CAMD2 respectively. The detection rate falls to near zero
percent when the threshold is more than 0.95 and 0.80 respec-
tively. As for the 50 and 80% change rates corresponding to
CAMD3 and CAMD4 respectively, the detection rate is rela-
tively stable around 0.72% when the similarity threshold is
less than 0.5 and 0.2 for the CAMD3 and CAMD4 respec-
tively.

However, the behavior on CAMD3 and CAMD4 does not
affect the efficiency of our technique. In practice, two signa-
tures are generally qualified as similar when the difference
rate between their content is up to 20%. FSCHash demon-
strates a good detection rate in these cases. From these results,
we can easily deduce that the best value of the similarity
threshold is 0.8. With this value, the probability of report-
ing that two signatures are different, while their difference
of content is up to 20%, should be near zero.

The same experiment was repeated over the same OAMD
and CAMDi , i = 1, . . . 4, using CTPHash and SDHash tech-
niques. The results depicted in Figs. 9 and 10 respectively
show the drawbacks of these techniques for network traffic
data that have the particularity to range from small to medium
size.
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Fig. 9 Detection rates for CTPHash technique (ssdeep tool)

Fig. 10 Detection rates for SDHash technique

Figure 9 clearly shows that the CTPHash technique does
not make distinction between CAMD1 to CAMD4 in terms
of detection rate. Likewise, the maximum detection rate of
SDHash technique is less than 22% regardless of the change
rate applied to datasets as shown in Fig. 10.

In order to evaluate the time cost of our similarity pre-
serving hash technique (FSCHash), we calculate the time
required for signature generation by using eight atomic mes-
sages of different sizes ranging from 100 to 500,000 bytes.
Knowing that all the generated signatures have the same size,
we then calculate the time needed for pairwise signature
comparison. The same experiment is conducted using the
CTPHash and SDHash approaches.

Figure 11 shows the superiority of the FSCHash tech-
nique over the two other techniques in terms of signature
generation time cost as long as the atomic message size is
up to 100,000 bytes. Fortunately, atomic messages having
a size over 100,000 bytes are rarely met in practice. From
the 100,250 atomic messages of DARPA’99 testing attacks,

Fig. 11 Signatures generation time

Fig. 12 Signatures comparison time

there is only 17 atomic messages with sizes over than 100,000
bytes.

Likewise, the proposed technique outperforms their coun-
terparts in terms of signature comparison time cost as clearly
shown in Fig. 12. Indeed, with the FSCHash technique, the
average time is about 0.6 ms which is much better than that
required when using the two other techniques (more than 8
ms). This can be explained by the efficiency of the vector-
based distance used in our technique over the string-based
distance used in the two other techniques.

6.3 Second experiment

6.3.1 Data preparation

As stated above, two datasets were used to evaluate the
efficiency of the generated attack scenarios, which are
DRPPA’99 dataset and UNSW-NB15 dataset. In both
datasets, the raw network traffic composing them is first pre-
processed in order to extract the three data subsets required
for such evaluation. The three subsets concerned here are:
Training Attack Subset (TrAS) that is mainly used to gener-
ate the attack scenarios base, Testing Attack Subset (TsAS)
that is mainly used to test the generated attack scenarios base
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in terms of its detection rate (Sensitivity), i.e: the ability of the
generated attack scenarios to detect real attacks, and Testing
Normal Subset (TsNS) that is mainly used to test the gener-
ated attack scenarios base in terms of its specificity, i.e: the
ability of the generated attack scenarios base to avoid identi-
fying normal traffic as attack. To extract these three subsets,
we performed the following data preprocessing on the two
datasets.

a. Data preprocessing on the DARPPA’99 dataset For the
DARPA’99 dataset, the testing normal subset TsNS (noted
here DARPA-TsNS) is generated by randomly selecting
about 110,000 connections from the first and the third weeks
of the training data (these 2 weeks are attack-free). Whilst
TrAS and TsAS (noted here DARPA-TrAS and DARPA-
TsAS respectively) are extracted from the attack traffic of
the DARPA’99 testing data (weeks 4 and 5) by the following
two steps:

Step 1. All attack connections of the DARPA’99 testing data
(weeks 4 and 5) are first extracted by exploiting the
additional information provided with the raw tcp-
dump files of the dataset. The later include details
about the location of the attack instances in the data
of weeks 4 and 5.

Step 2. The extracted attack connections are randomly
divided into training connections (DARPA-TrAS)
and testing connections (DARPA-TsAS) so that the
number of the training connections is always lower
than or equal to that of the testing ones for all types
of attack.

In this dataset, the two subsets (DARPA-TrAS and
DARPA-TsAS) are generated from the DARPA testing data
and not from the DARPA training data for two reasons: first,
the additional information provided for the DARPA training
subset (week-2) does not contain sufficient details to dis-
tinguish between the flows of different attacks unlike the
DARPA testing data that provide more details. For example,
the DARPA training data does not contain any information
about the attack source IP address, the attack duration, the
attacked port, etc. Thus, it is very difficult for us to extract and
dissociate attack packets from the compressed tcpdump files,
especially for overlapping attacks. The second reason is that
our proposed system is a misuse-based intrusion detection
system with an auto-learning ability. In such a system, the
performance evaluation must demonstrate the efficiency of
the generated signatures for various attack types. In this case,
it is better to rely on the DARPA testing dataset that contains
more attack types (58 attack types) than the DARPA training
dataset (18 attack types). Moreover, all attacks of the DARPA
training dataset are included in the DARPA testing dataset.
Therefore, the use of the attacks extracted from the 2 weeks

DARPA’99 Test 
(weeks 4 & 5)

Loca�on
Info 

A�acks Extrac�on 

DARPA’99 
Attack traffic

Traffic splitting Subset selection

DARPA-TrAS DARPA-TsAS DARPA-TsNS 

DARPA’99 Train 
(weeks 1 & 3)

Fig. 13 DARPA-TrAS, DARPA-TsAS and DARPA-TsNS extraction
process

of the DARPA testing data is good enough to evaluate the
performance of our proposed model.

The overall data preprocessing on the DARPA dataset is
illustrated in Fig. 13. In the Table 2 we describe different
attack types and their corresponding occurrence number in
these two subsets (DARPA-TrAS and DARPA-TsAS).

b. Data preprocessing on the UNSW-NB15 dataset As stated
above, the UNSW-NB15 dataset contains about 100 GB
of raw data. It is nearly five times larger than that of the
DARPA’99 dataset, which contains a total of about 18 GB of
raw data. The use of all the raw data of the UNSW-NB15
dataset is thus a very time and resource consuming task.
To prevent this, only 10% of the raw UNSW-NB15 dataset
(about 10GB) were used in this study. This part of data is
taken from the first ten raw pcap files of the first simulation
period that was proceeded on January 22, 2015.

Unlike the DARPA’99 dataset, the UNSW-NB15 dataset
has provided no further information about where the attack
instances are located in the raw pcap files. Unfortunately,
such information is necessary to separate the normal raw
data from the abnormal one and then to extract and gen-
erate the attack scenarios for the different attack types. To
overcome this problem, we analyzed the tcpdump files of
the dataset using SNORT [15,18] intrusion detection system
and extracted the required information from the alerts log file
generated by this later. As shown in Fig. 14, a Snort alert can
be represented by ten features: generation time (1), signature
ID (2), description (3), classification (4), priority (5), packet
type (6), source IP address (7), source port number (8), desti-
nation IP address (9) and destination port number (10). From
these features, we focused on the first and the last four fea-
tures that are mainly used to identify the location of every
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Table 2 Connection
distribution of different attacks
in our DARPA-TrAS and
DARPA-TsAS subsets

Attacks Attack connections distribution Attacks Attack connections distribution

#Train #Test #Total #Train #Test #Total

smurf 2 2 4 sendmail 2 2 4

land 1 1 2 sshtrojan 2 2 4

mailbomb 40 1881 1921 xsnoop 1 2 3

processtable 20 662 682 guesstelnet 10 57 67

crashiis 1 2 3 guessftp 10 70 80

warezmaster 1 1 2 ftpwrite 4 4 8

dosnuke 3 4 7 httptunnel 10 15 25

sshprocesstable 20 481 501 phf 5 6 11

pod 2 2 4 sqlattack 1 2 3

warezclient 3 3 6 netcat 10 18 28

apache2 40 1703 1743 imap 1 1 2

syslogd 2 2 4 ppmarcro 10 22 32

neptune 40 72,040 72,080 ncftp 10 37 47

selfping 1 1 2 named 3 3 6

back 20 144 164 guest 10 17 27

ps 7 7 14 snmpget 20 263 283

yaga 9 9 18 netbus 5 5 10

loadmodule 2 2 4 xlock 2 3 5

sechole 9 9 18 guesspop 10 20 30

ffbconfig 1 1 2 dict 10 76 86

casesen 10 14 24 portsweep 20 263 283

eject 5 6 11 satan 40 11,303 11,343

perl 1 2 3 ntinfoscan 10 43 53

fdformat 4 5 9 ipsweep 40 4469 4509

xterm 5 6 11 ls 1 1 2

secret 6 7 13 queso 10 11 21

framespoofer 3 4 7 resetscan 1 1 2

01/22-14:02:04.186666  [**] [1:1394:12] SHELLCODE x86 inc ecx NOOP 
[**] [Classification: Executable code was detected] [Priority: 1] {TCP} 
175.45.176.3:50028 -> 149.171.126.14:80

1 2 3 

4 5 6 

7 8 9 10 

Fig. 14 Example of a Snort alert

attack packets, and the second and the third features that are
used to give a unique name for the concerned attack. The
later is given by concatenating the first word of the descrip-
tion feature (3) and the signature ID (2) that will be enclosed
in brackets (see attack names in Table 3). For instance, the
name given for the attack corresponding to the alert of the
Fig. 14 is: SHELLCODE (1394).

Once the required information about the attack location on
the UNSW-NB15 dataset is extracted, the three substs TrAS,
TsAS and TsNS (noted here UNSW-TrAS, UNSW-TsAS and
UNSW-TsNS respectively) are generated as follow:

Step 1. The normal and malicious data are first separated
into two different datasets, namely normal dataset
and malicious dataset, using the information gener-
ated from the Snort alerts log file.

Step 2. UNSW-TsNS is generated by randomly selecting
about 20,000 connections from the normal dataset.

Step 3. The connections of the malicious dataset are ran-
domly divided into training connections (UNSW-
TrAS) and testing connections (UNSW-TsAS) so
that the number of the training connections is always
lower than or equal to that of the testing ones for all
types of attack.

The overall data preprocessing on the UNSW-NB15
dataset is illustrated in Fig. 15. Furthermore, we describe
in Table 3 different attack types1 and their corresponding

1 For more detailed information on any of the attacks listed in the Table
3, just enter the signature ID (the number in brackets of the attack name)
in the search area of the web site: https://www.snort.org/search?query=.
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UNSW-NB15 
dataset (10%) 

Snort 
Analysis

Alerts
Log

Traffic separa�on 

UNSW-NB15 
Attack traffic 

UNSW-NB15 
Normal traffic 

Traffic splitting Subset selection

UNSW-TrAS UNSW-TsAS UNSW-TsNS 

Fig. 15 UNSW-TrAS, UNSW-TsAS and UNSW-TsNS extraction
process

occurrence number in these two subsets (UNSW-TrAS and
UNSW-TsAS).

6.3.2 Performance metrics

The efficiency of an intrusion detection system is often eval-
uated by computing the number of true positives (TP), true
negatives (TN), false positives (FP), and false negatives (FN),
with TP being the number of attacks correctly detected as
attacks, TN the number of normal traffic correctly judged
as normal traffic, FP the number of normal traffic falsely
detected as attacks, and FN the number of attacks wrongly
judged as normal traffic. In fact, a good intrusion detection
system must minimize both FP and FN together while maxi-
mizing TP and TN rates. A high FP rate will seriously affect
the credibility of the proposed system while a high FN rate
will leave the system vulnerable to intrusions. However, test-
ing the efficiency of an intrusion detection system by using
these metrics only is not sufficient and many other metrics
are also, often, required, such as accuracy, detection rate,
false alarm rate, precision, recall, F-Score, etc. Therefore,
the proposed approach is evaluated in terms of true positive
rate (also known as the detection rate or the sensitivity or
the recall), true negative rate (also known as the specificity),
false positive rate, false negative rate, accuracy, precision and
f-score, which are mainly computed on the basis of the four
previous metrics (TP, TN, FP and FN) as follows:

True posi tive rate = Recall = T P

T P + FN
× 100%

(6)

True negative rate = T N

T N + FP
× 100% (7)

False posi tive rate = FP

T N + FP
× 100% (8)

False negative rate = FN

T P + FN
× 100% (9)

Accuracy = T P + T N

T P + T N + FP + FN
× 100% (10)

Precision = T P

T P + FP
× 100% (11)

F − Score = (1 + β2) × Precision × Recall

β2 × (Precision + Recall)
× 100%

(12)

β is the relative importance of precision versus recall, it is
usually set to 1.

6.3.3 Experiment description and results

We performed two separate experiments to evaluate the
efficiency of the generated attack scenarios. In the first experi-
ment, the evaluation process is carried out on the DARPA’99
data subset, where the DARPA’99 Training Attack Subset
(DARPA-TrAS) is first used to generate the attack scenarios
base. The generated attack scenarios base is then tested over
the DARPA’99 Testing Attack Subset (DARPA-TsAS) to
compute the number of TP and FN, and over the DARPA’99
Testing Normal Subset (DARPA-NrAS) to compute the num-
ber of TN and FP. Once these values are computed, detection
rate, specificity, false positive rate, false negative rate, accu-
racy, precision and F-score are also calculated. This process
is repeated for many different values of the LCS similarity
threshold (values between 0.8 and 1.0) in order to illustrate
the impact of this threshold value on the performance of our
proposed system and to define the optimal threshold value
which gives the best results. The results of this experiment
are summarized in Figs. 18, 20, and 22.

In the second experiment, the same evaluation process
is repeated on the UNSW-NB15 subsets (UNSW-TrAS,
UNSW-TsAS and UNSW-TsNS). The results of this experi-
ment are summarized in Figs. 19, 21, and 23.

Before analyzing these results, it is very important to note
that the attack scenarios that generate too many false positives
(more than 5% FP) are automatically deleted by the Scenar-
ios Validation Module (see Sect. 3). It should also be noted
that the testing normal subsets (DARPA-TsNS and UNSW-
TsNS) used in the both experiments to compute the number
of TN and FP are the same as those used by the Scenarios
Validation Module to validate the generated attack scenar-
ios. The attack scenarios deleted by the Scenarios Validation
Module for different values of LCS similarity threshold in
the first and the second experiments are indicated in Figs. 16
and 17 respectively.
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Table 3 Connection distribution of different attacks in our UNSW-TrAS and UNSW-TsAS subsets

Attacks Attack connections distribution Attacks Attack connections distribution

#Train #Test #Total #Train #Test #Total

BACKDOOR (7107) 1 1 2 CHAT (542) 1 2 3

EXPLOIT (14769) 1 2 3 FTP (2338) 2 2 4

FTP (2374) 1 1 2 ICMP (399) 2 3 5

ICMP (427) 1 1 2 ICMP (384) 6 6 12

MISC (13839) 1 1 2 MISC (13269) 1 1 2

NETBIOS (2190) 10 13 23 NETBIOS (15930) 1 2 3

NETBIOS (17639) 4 4 8 NETBIOS (7035) 1 1 2

ORACLE (15255) 1 1 2 P2P (2181) 40 3332 3372

POLICY (3825) 10 74 84 POLICY (17668) 2 3 5

POLICY (2044) 20 173 193 POLICY (560) 3 3 6

POP3 (1866) 1 1 2 RPC (1952) 40 6391 6431

RPC (1262) 2 2 4 RPC (575) 3 3 6

RPC (1263) 3 3 6 RPC (576) 3 3 6

RPC (1264) 3 3 6 RPC (577) 3 3 6

RPC (1747) 3 3 6 RPC (1746) 2 3 5

RPC (1265) 3 3 6 RPC (578) 3 4 7

RPC (2005) 2 3 5 RPC (1280) 1 1 2

RPC (579) 40 6417 6457 RPC (11288) 3 3 6

RPC (1960) 2 2 4 RPC (1959) 3 3 6

RPC (1267) 2 2 4 RPC (2080) 3 3 6

RPC (2079) 3 3 6 RPC (1268) 2 3 5

RPC (581) 3 3 6 RPC (1269) 2 3 5

RPC (582) 3 3 6 RPC (1962) 2 2 4

RPC (1961) 2 3 5 RPC (1270) 3 3 6

RPC (583) 3 3 6 RPC (1271) 3 3 6

RPC (584) 2 3 5 RPC (1733) 2 3 5

RPC (1732) 1 1 2 RPC (1272) 1 1 2

RPC (585) 2 2 4 RPC (1273) 2 3 5

RPC (586) 3 3 6 RPC (12458) 1 2 3

RPC (12626) 2 3 5 RPC (2016) 2 3 5

RPC (587) 3 3 6 RPC (12608) 2 2 4

RPC (1275) 2 3 5 RPC (589) 3 3 6

RPC (1276) 2 3 5 RPC (591) 3 3 6

RPC (1277) 3 4 7 SHELLCODE (12798) 5 5 10

SHELLCODE (12799) 3 3 6 SHELLCODE (12801) 1 2 3

SHELLCODE (12802) 3 4 7 SHELLCODE (10504) 10 35 45

SHELLCODE (1390) 2 3 5 SHELLCODE (1394) 20 747 767

SHELLCODE (17324) 2 2 4 SHELLCODE (648) 10 32 42

SHELLCODE (17325) 1 1 2 SHELLCODE (17322) 7 8 15

SHELLCODE (17323) 2 2 4 SHELLCODE (17344) 2 3 5

SHELLCODE (649) 1 1 2 SHELLCODE (17337) 4 4 8

TFTP (1941) 3 3 6

As Fig. 16 shows, the number of attack scenarios deleted
by the Scenarios Validation Module and their false positive
rate decrease while the threshold values increase. For exam-

ple, at a threshold of 0.80, 7 attack scenarios out of 58 (12%)
generate more than 5% of false positives, among them five
attack scenarios generate more than 50% of false positives.
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Fig. 16 The attack scenarios deleted by the Scenarios Validation Module during the experiment on the DARPA’99 dataset for different values of
LCS similarity threshold

They first decreased to six attack scenarios, from which four
scenarios generated more than 50% of false positives at a
threshold of 0.84, then they remained at six attack scenarios,
from which three generated more than 50% of false positives
at threshold 0.88. When the threshold increases to 0.92, only
five attack scenarios out of 58 (0.8%) generated more than
5% of false positives. The httptunnel attack still generated
more than 50% of false positives while the phf, ipsweep,
secret and back attacks generated less than 18% of false pos-
itives. The same remark can be made regarding the results
shown in Fig. 17.

With regard to the efficiency of the remaining attack sce-
narios (those that generate less than 5% of FP), Figs. 18

and 19 show clearly that the true positive and the true nega-
tive rates remain always higher than 95% whatever the value
of the LCS similarity threshold. However, the true positive
rate decreases inversely in proportion to the threshold val-
ues, while the true negative increases proportionately with
the increase of the threshold values. This is due to the fact that
whenever the similarity threshold value is smaller, the num-
ber of similar scenarios become high. On the other hand, for
the testing attack subsets (DARPA-TsAS and UNSW-TsAS),
whenever the number of similar scenarios is higher, the num-
ber of true positives become high, while, for the testing
normal subsets (DARPA-TsNS and UNSW-TsNS), when-
ever the number of similar scenarios is higher, the number
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Fig. 17 The attack scenarios deleted by the Scenarios Validation Module during the experiment on the UNSW-NB15 dataset for different values
of LCS similarity threshold

of true negatives become small. Consequently, the number
of true positives is high at a small LCS similarity threshold
and small at a high LCS similarity threshold, whereas the
number of true negatives is small at a small LCS similarity
threshold and high at a high LCS similarity threshold. The
same explanation may be given for the results of Figs. 20 and
21 because the false negative rate is the inverse of the true
positive rate, and the false positive rate is the inverse of the
true negative rate.

Figures 18 and 19 show some abnormal decrease in the
true negative rate when the LCS similarity threshold is on the

increase, as at the thresholds of 0.84 and 0.92 in Fig. 18 and
the thresholds of 0.84 and 0.86 in Fig. 19. This is due to two
reasons: first, when increasing the LCS similarity threshold,
the size of the attack scenarios base should be increased, and
many new scenarios will be inserted. These new scenarios
may generate some new false positives that may decrease
the true negative rate. The second reason is that before the
threshold of 0.84 in the first experiment (experiment on the
DARPA’99 dataset), the number of attacks filtered by the
Scenarios ValidationModulewas 7, and then at the threshold
0.84, this number fell to 6, and the processtable attack is no
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Fig. 18 True positive rate versus true negative rate for the experiment
on the DARPA’99 dataset
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Fig. 19 True positive rate versus true negative rate for the experiment
on the UNSW-NB15 dataset

Fig. 20 False positive rate versus false negative rate for the experiment
on the DARPA’99 dataset

longer filtered (see Fig. 16). The scenarios of the last attack
may generate some new false positives that may decrease the
true negative rate. The same holds for the threshold of 0.92,
where the ppmarcro attack is no longer filtered. The same
observation and explanation applies for Fig. 19.
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Fig. 21 False positive rate versus false negative rate for the experiment
on the UNSW-NB15 dataset

Fig. 22 Accuracy, precision, recall and f-score values for the experi-
ment on the DARPA’99 dataset

For the other metrics of Figs. 22 and 23, we can see that
accuracy, precision and f-score metrics increase proportion-
ately with the increase of the LCS similarity threshold values,
while the recall metric decreases inversely in proportion to
the threshold values. The figures also show that the four mea-
surements gradually converge so closely that they almost
meet at the threshold 0.90 in Fig. 22 and the threshold 0.92 in
Fig. 23, and then start diverging again. From this last remark,
we can deduce that the optimal threshold value which gives
the best results for our proposed system is a value between
0.9 and 0.94. In this threshold range, accuracy, precision,
recall and f-score all have a value greater than 97.5%.

6.4 Third experiment

To further investigate the performance of the proposed
approach, the matching time was also evaluated. In fact, the
matching time is mainly influenced by the size of the detected
scenario (the number of elementary actions composing the
scenario) and the size of the attack scenarios base (the num-
ber of scenarios in the base). For this reason, we considered
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Fig. 23 Accuracy, precision, recall and f-score values for the experi-
ment on the UNSW-NB15 dataset

Fig. 24 The matching time for some scenarios of different sizes

four different scenarios consisting of 10, 40, 87 and 124 ele-
mentary actions respectively. In order to illustrate the effect
of the size of the attack scenarios base on the matching time,
we used ten attack scenario bases of different sizes (from
50 to 500). The time spent in the detection engine for each
scenario over each attack scenarios base is shown in Fig. 24.
Note here that the considered four scenarios do not belong
to any of the ten attack scenarios bases. Thus, the computed
time is the maximum that we can achieve for each scenario.

As Fig. 24 shows, the matching time for the four scenarios
increases linearly with the number of scenarios in the attack
scenarios base. We can also see that the increase of the match-
ing time relies mainly on the number of elementary actions
in the detected scenario. For example, for the scenario of 124
elementary actions, the matching time increases rapidly with
the increase of the scenario base size, while for the scenario
of 10 elementary actions, the matching time is almost the
same whatever the size of the scenario base is. This high
time consumed for matching the scenarios of large sizes is
mainly due to the preprocessing task performed to generate
the scenario elementary actions (more than 218 packets were

preprocessed and concatenated to generate the 124 elemen-
tary actions of the first scenario) on the one hand, and to the
LCS algorithm complexity which increases linearly with the
increase of the scenario sizes on the other hand. Note that,
in our experiment, we used the dynamic programming tech-
nique to implement the LCS algorithm, in which the running
time for two sequences of n and m elements is O(n × m).
Fortunately, practical experience shows that the number of
scenarios of more than 50 elementary actions is very limited.
For example, in our experiment over the DARPA’99 dataset,
more than 97% of the generated scenarios are less than 50
elementary actions. Hence, among the four matching times
of Fig. 24, those of 10 and 40 elementary actions are the most
important for us. As shown in the figure, the matching time of
these two scenarios is significantly low compared with those
of 87 and 124 elementary actions.

In summary, with reference to the above results, we can
conclude that our proposed intrusion detection system is very
efficient and can detect many different attack types with a
very high accuracy, precision, and with fewer false alarms,
all within a reasonable detection time

7 Conclusion

In this paper, we presented a new effective, pragmatic and
efficient intrusion detection system (IDS). Based on an auto-
matic generation of attack scenarios, our IDS has the ability
to detect new intrusion attacks. For the present work, we
made three significant contributions. The first contribution
is the proposition of a cooperative architecture between a
honeypot system (the automatic attack scenarios generation
part) and an intrusion detection system (intrusion detection
part), which allows an automatic update of the attack scenar-
ios database. The second contribution consists of generating
an attack scenario for each attack type instead of a single
contiguous string signature as is the case for many works
focusing on the development of fully automatic IDSs. This
approach provides more accurate forecasts than those pro-
vided by single signature approaches. The third contribution
is the similarity preserving hash technique that we proposed
to generate the signatures of each attack scenario. Based on
this technique, we operate an effective grouping of atomic
messages for signatures generation while preserving the sim-
ilarity between messages. Furthermore, to detect intrusions,
the longest common subsequence (LCS) algorithm have been
used to calculate the similarity between the new captured
traffic and the attack scenarios generated from the honeypot
traffic. Based on LCS similarity, a threshold partial match-
ing is computed instead of an exact matching. This allows the
detection of attack variants. The experimental results demon-
strate the efficiency of our proposed approach, which detects
attacks with very high detection rates and low false positive
rates.
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