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Abstract We derive novel exact closed-form expressions
for the probability density function (PDF) and cumulative
distribution function (CDF) of the product and ratio of prod-
ucts of an arbitrary number of independent non-identically
distributed (i.n.i.d) extended generalized-K (EGK) variates.
The expressions are given in terms of theMeijer’s G-function
and can be computed easily using commonly available
mathematical software tools. They also subsume those for
arbitrary combinations of other well-known variates and
can be directly utilized in performance evaluation of wire-
less communication systems under different scenarios. We
present various analytical results that are verified via Monte-
Carlo simulations for both the PDF and CDF as well as their
application in multiple practical scenarios.

Keywords EGK variates · Fading channels · Product of
random variables · Ratio of product of random variables

1 Introduction

The product and ratio of products of random variables (RVs)
arise a lot in thewireless communication literature. For exam-
ple, they are usually encountered in performance evaluation
studies over cascaded fading channels [1], in keyhole channel
modeling of multiple-input multiple-output (MIMO) sys-
tems [2], in multi-hop communication systems [3] or when
modeling the statistics of quantities such as the signal-to-
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interference ratio (SIR) in the aforementioned scenarios or
simply over composite fading channels [4].

Lots of works in the literature tackled the previously
mentioned problems assuming various distributions for the
involved RVs. For example, Mekić et al. obtained the distri-
bution of the product of Rayleigh, Weibull and Nakagami-m
RVs and applied their results to multi-hop communication
systems [5]. Also, Rathie et al. obtained the distribution of
the product of generalized shifted gamma RVs and pointed
out some applications in wireless communication and multi-
carrier systems in [6]. They also obtained the distributions
of the product and the ratio of α − μ RVs and utilized their
expressions to analyze the outage, delay-limited as well as
the ergodic capacities over these fading channels in [7]. The
statistics of the ratio of products of α − μ RVs were also
discussed in [8]. The work in [9] investigated the level cross-
ing rate of the SIR, which was represented as the ratio of the
product of two κ − μ RVs and a Nakagami-m one. Also, the
SIR statistics where the desired signal experiences gamma
long-term fading and κ − μ short-term fading while the co-
channel interference is affected by κ − μ fading have been
studied in [10]. Finally, the work in [11] derived the charac-
teristic function for the product of Gaussian RVs and that for
the product of a gamma RV and a zero-mean unity-variance
Gaussian one.

Other recent works in the statistics literature that studied
the product and ratio of products of RVs in a more abstract
formwhile assuming other less-commonly used distributions
include [12–14]. Specifically, in [12], the distribution of the
product of two independent generalized trapezoidal RVs has
been derived in closed form. The results for the product of
two triangular and uniform RVs are then presented as special
cases of the main result. In [13], Nagar et al. obtained the
distributionof the product and the ratio of independent aswell
as correlated Macdonald RVs. Finally, Rathie et al. derived
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the exact probability density function (PDF) and cumulative
distribution function (CDF) of the product and the quotient
of two independent stable Lévy RVs in terms of Fox’s H-
function [14].

The extended generalized-K (EGK) is a general statisti-
cal distribution that was recently used to model fading in
free-space optical (FSO) environments as well as wireless
millimeter wave channels that are candidates for use in 5G
technology [15]. This distribution has five parameters, it has
some good tail properties and includes most of the well-
known fading distributions in the literature as either special
or limiting cases ([15, Table I]). In spite of its importance and
generality, very few works in the open literature have studied
the statistical properties of the product of EGK variates and
none has actually studied the ratio of their products. Specif-
ically, the work in [16] has obtained an expression for PDF
and CDF only for the product of generalized Nakagami-m
variates. These expressions can be used to obtain those for
the product of EGK RVs since an EGK variate is, in fact,
the product of two generalized Nakagami-m ones. However,
these expressions were reported in terms of the Fox’s H-
function, which is not very easy to compute. Motivated by
this, in this work, we propose to use the Mellin transform
to derive novel exact closed-form expressions for both the
PDF and the CDF of the product and ratio of products of an
arbitrary number of independent non-identically distributed
(i.n.i.d.) EGK variates. The obtained expressions are given in
terms of theMeijer’sG-function,which is readily available in
most mathematical and engineering software packages such
asMathematica,MATLABandMaple and can be easily com-
puted. They also subsume those for the product and ratio
of products of arbitrary combinations of other variates that
are special cases of the EGK model. We verify the valid-
ity of the obtained expressions via the use of Monte Carlo
simulations and we present various selected scenarios where
the obtained expressions are applicable. To the best of the
authors’ knowledge, the resulting expressions have never
been reported before in the literature.

2 The EGK statistical model

Let X ≥ 0 be the received signal power in a wireless
communication system. Assuming that X follows the EGK
distribution, the PDF fX (x) can be expressed as [15]

fX (x) = ξκξm xξm−1

�(m)�(ms)
�

(
ms − mξ

ξs
, 0, κξ xξ ,

ξ

ξs

)
(1)

where κ = ββs
γ s

, m ≥ 0.5 is the fading figure, ξ ≥ 0 is
the fading shaping factor, ms ≥ 0.5 represents the shadow-
ing severity, γ s is the average power of the envelope of the
received signal and ξs ≥ 0 represents the shadowing shaping

factor. Furthermore,

β =
�

(
m + 1

ξ

)
� (m)

and βs =
�

(
ms + 1

ξs

)
� (ms)

.

In the previous expressions, � (·) is the gamma function
and � (·, ·, ·, ·) is the extended incomplete gamma func-
tion defined as � (α, x, b, β) = ∫ ∞

x rα−1e−r−br−β
dr where

α, b, β ∈ C and x ∈ R
+.

3 The product of EGK variates

Let X1, X2, . . . , Xn be n independent EGKRVswith param-
eters (mi , ξi , msi , ξsi , γ si

) for i = 1, 2, . . . , n and let Yn be
their product, i.e., Yn = ∏n

i=1 Xi . In this section, we are
interested in finding both the PDF and CDF of Yn .

3.1 Derivation of the PDF

In order to find the PDF fYn (y), we use the fact that Yn =
Yn−1 × Xn in conjunction with the well-known formula for
the PDF of the product of two RVs in [17, Example 7.11] to
recursively define the required PDF as

fYm (y) =
∫ ∞

0

1

t
fYm−1

( y

t

)
fXm (t)dt,

1 < m ≤ n. (2a)

fY1(y) = fX1(y), (2b)

Note that using such a recursive equation to find fYn (y) is
tedious in its current form. However, solving it in the Mellin
domain is much simpler. The Mellin transform is defined as
f̃ (s) = M { f (x)} = ∫ ∞

0 xs−1 f (x)dx [18, Ch. 8]. Hence,
by taking the Mellin transform of the two sides of the recur-
sive relation and using [18, Eq. (8.3.18)], one gets f̃Ym (s) =
f̃Ym−1(s) f̃ Xm (s) and f̃Y1(s) = f̃ X1(s). Consequently, it
is straightforward to see that f̃Yn (s) = ∏n

i=1 f̃Yi (s). The
inverse Mellin transform can then be used to find the PDF,
which, through direct integration, will lead to the CDF. We
start by finding the Mellin transform of �(α, 0, x, β), which
is given as

M {� (α, 0, x, β)} =
∫ ∞

0

∫ ∞

0
rα−1e−r−xr−β

xs−1drdx .

(3)

According to Fubini’s theorem [19], the order of the integra-
tion can be switched. Doing that and using the substitution
u = r−β x along with the definition of the Gamma function,
one directly arrives at

M {� (α, 0, x, β)} = �(s)�(βs + α).
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Finally, using the above result along with the homogeneity
property of the Mellin transform followed by the identities
in [18, Eqs. (8.31), (8.32), (8.33)], we get

f̃ Xi (s) = ki

λs
i
�

(
s

ξi
+ mi − 1

ξi

)
�

(
s

ξsi

+ msi − 1

ξsi

)
, (4)

where ki = λi
�(mi )�

(
msi

) and λi = βli βsli
γ si

. Hence,

f̃Yn (s) = k

λs

n∏
i=1

�

(
s − 1

ξi
+ mi

)
�

(
s − 1

ξsi

+ msi

)
, (5)

where k = ∏n
i=1 ki and λ = ∏n

i=1 λi. Now, taking the
inverse Mellin transform and using the change of variable
s = w − 1, the required PDF is obtained as

fYn (y) = 1

2π i

∫ σ+i∞

σ−i∞
f̃Yn (w)y−w dw

= k

2π iλy

∫ σ−1+i∞

σ−1−i∞
(λy)−s

n∏
i=1

�

(
s

ξi
+ mi

)

�

(
s

ξsi

+ msi

)
ds. (6)

To find fYn (y) in a more tractable form, let ξi and ξsi be
rational numbers for 1 ≤ i ≤ n. Note that such condi-
tion will not affect the generality of the results since any
real number could be approximated by rational numbers
with an arbitrarily small error. As a result, we can write
ξi = ai

bi
and ξsi = asi

bsi
where ai , bi , asi , bsi are positive

integers such that GCD (ai , bi ) = GCD
(
asi , bsi

) = 1,∀i ,
where GCD is the greatest common divisor. Now, letting
z = LCM

(
a1, a2, . . . , an, as1 , as2 , . . . , asn

)
, where LCM is

the least common multiple and by using the change of vari-
able s = zu and setting γ = z(σ − 1), we get

fYn (y) = kz

2π iλy
×

∫ γ+i∞

γ−i∞
(λy)−zu

n∏
i=1

�

(
z

ξi
u + mi

)
�

(
z

ξsi

u + msi

)
du.

(7)

For a more compact notation, we also let Ai = z
ξi

, Asi =
z

ξsi
, Bi = ξi mi

z and Bsi = ξsi msi
z . Noting that Ai and Asi

are positive integers, Gauss’s multiplication formula [20, Eq.
(6.1.20)] can be applied to the integrand in (7) to arrive at

fYn (y) = η

2π iy

∫ γ+i∞

γ−i∞
(λhy)−zu×

n∏
i=1

⎡
⎣Ai −1∏

j=0

�

(
u + Bi + j

Ai

)Asi −1∏
j=0

�

(
u + Bsi + j

Asi

)⎤
⎦ du

(8)

where

η = kzH

λA∗ (2π)n−A, A = 1

2

n∑
i=1

(Ai + Asi ),

A∗ =
√√√√ n∏

i=1

Ai Asi , hi = AAi
i , hsi = A

Asi
si ,

H =
n∏

i=1

hBi
i h

Bsi
si and h−z =

n∏
i=1

hi hsi .

Finally, using the definition of the Meijer’s G-function in
[21, Eq. (07.34.02.0001.01)] and the identity in [21, Eq.
(07.34.17.0011.01)], we get the following result.

fYn (y)

= ηλhG2A,0
0,2A

[
(λhy)z

∣∣∣∣∣
−

�
(

Ai , mi − 1
ξi

)
i=1:n,�

(
Asi , msi − 1

ξsi

)
i=1:n

]
,

(9)

where

�(a, b) = b

a
,

b + 1

a
, . . . ,

b + a − 1

a
.

To the best of the authors’ knowledge, this obtained PDF
expression has never been reported before in the literature
and it is easy to evaluate as it is given in terms of theMeijer’s
G-function.

3.2 Derivation of the CDF

The CDF can be obtained by direct integration of the
expression in (9). Towards that end, we first use [21, Eq.
(07.34.17.0011.01)] to put the Meijer’s G-function in a more
suitable form for integration as follows

fYn (y) = η(λh)z yz−1×
G2A,0

0,2A

[
(λhy)z

∣∣∣∣ −
�(Ai , mi − Ai )i=1:n, �

(
Asi , msi − Asi

)
i=1:n

]
.

(10)

By letting u = (λhy)z , integrating (10) and using [21, Eq.
(07.34.21.0001.01)], the following expression for the CDF
immediately follows:

FYn (y) = η

z
×
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G2A,1
1,2A+1

[
(λhy)z

∣∣∣∣ 1
�(Ai , mi )i=1:n,�

(
Asi , msi

)
i=1:n, 0

]
.

(11)

4 The ratio of products of EGK variates

Now, we switch our attention to find the distribution of
Q = Yn

Wm
, where Yn = ∏n

i=1 Xi and Wm = ∏m
j=1 R j ,

X1, X2, . . . , Xn and R1, R2, . . . , Rm are n and m indepen-
dent EGK RVs with parameters (mi , ξi , msi , ξsi , γ si

) and
(m′

j , ξ
′
j , m′

s j
, ξ ′

s j
, γ ′

s j
), respectively, for i = 1, 2, . . . , n and

j = 1, 2, . . . , m.

4.1 Derivation of the PDF

Using standard analysis, the PDF of the ratio can be obtained
as

fQ(q) =
∫ ∞

0
x fYn (qx) fWm (x)dx . (12)

Clearly, given the nature of the integrand, the integration in
(12) is not easy to deal with. Hence, we again propose to use
Mellin transform to find fQ(q). Taking the Mellin transform
for both sides of (12) and using [18, Eqs. (8.3.2), (8.3.19)],
we get

f̃Q(s) = f̃Yn (s) f̃Wm (2 − s). (13)

Although the Mellin transform of fYn (y) (and consequently
of fWm (w)) is readily available from (5), we opt for an alter-
native expression that will lead to a simpler result as we will
show in the sequel. Before finding these new expressions,
we first note that the result in (9) still holds after replacing z
with any of its multiples. Hence, for convenience, throughout
the following derivation, z will be redefined so that it applies
for both the numerator (Yn) and the denominator (Wm), i.e.,

z = LCM(1,2,3,4) where 1 = a1, . . . , an , 2 =
as1 , . . . , asn ,3 = a′

1, . . . , a′
m and4 = a′

s1 , . . . , a′
sm
. Now,

using the definition of the Meijer’s G-function and (9), one
gets the following result.

f̃Yn (s) = λh

2π i

∫ ∞

0
ys−1

∫ γ+i∞

γ−i∞
η(λh)−zs

n∏
i=1⎡

⎣Ai −1∏
j=0

�

(
s + Bi − 1

z

+ j

Ai

) Asi −1∏
j=0

�

(
s + Bsi − 1

z
+ j

Asi

)⎤
⎦ y−zsdsdy.

(14)

By using the change of variable t = zs and the inverseMellin
transform formula [18, Eq. (8.2.6)], we directly get

f̃Yn (s) = η

z
(λh)1−s

n∏
i=1

[ Ai −1∏
j=0

�

(
s

z
+ Bi − 1

z
+ j

Ai

)
×

Asi −1∏
j=0

�

(
s

z
+ Bsi − 1

z
+ j

Asi

)]
. (15)

Using similar steps while adopting the previous notations,
the Mellin transform of the PDF of Wm can be obtained as

f̃Wm (s) = η′

z

(
λ′h′)1−s

m∏
i=1

[ A′
i −1∏

j=0

�

(
s

z
+ B ′

i − 1

z
+ j

A′
i

)
×

A′
si

−1∏
j=0

�

(
s

z
+ B ′

si
− 1

z
+ j

A′
si

)]
. (16)

Substituting (15) and (16) into (13), rearranging the terms,
taking the inverse Mellin transform and using the change of
variable t = s/z along with [21, Eq. (07.34.17.0011.01)],
we finally arrive at the result in (17) shown below. In this
equation, ηQ = ηη′/z, λQ = λ/λ′ and hQ = h/h′. Like (9),
this PDF expression is also novel and has never been reported
before in the literature.

fQ(q) = ηQ

q

(
λQhQq

)z

G2A,2A′
2A′,2A

[(
λQhQq

)z
∣∣∣∣ �

(−A′
i , m′

i

)
i=1:m,�

(−A′
si
, m′

si

)
i=1:m

�(Ai , mi − Ai )i=1:n,�
(

Asi , msi − Asi

)
i=1:n

]
(17)

FQ(q) = ηQ

z
G2A,2A′+1

2A′+1,2A+1

[(
λQhQq

)z
∣∣∣∣1,�

(−A′
i , m′

i − A′
i

)
i=1:m,�

(−A′
si
, m′

si
− A′

si

)
i=1:m

�(Ai , mi )i=1:n,�
(

Asi , msi

)
i=1:n, 0

]
, (18)

4.2 Derivation of the CDF

Integrating (17) and using [21, Eq. (07.34.21.0001.01)], one
directly arrives at the CDF expression given in (18) shown
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above. In the next section, we present various numerical
results for the PDF and CDF of both the product and ratio of
products along with a selected application.

5 Numerical and simulation results

5.1 Verification of the PDFs and CDFs

In Fig. 1, we first present numerical results for the PDF
of Yn = ∏n

i=1 Xi for two arbitrarily-selected groups of
EGK-distributed RVs whose parameters are summarized in
the table in the figure. We also present results obtained via
Monte-Carlo simulations represented as circles in the same
figure. Clearly, there is a perfect agreement between the two
sets of results thus confirming the validity of the derived PDF
expression. Moreover, the obtained expressions are versatile
enough to give results for any number of EGK variates that
might be of interest.

Figure 2 shows the obtained PDF expression in (17) for
six different ratios of products of EGK RVs whose parame-
ters are summarized as shown in the figure. The figure also
shows results obtained via Monte Carlo simulations. Again,
perfect agreement is observed between the two sets of results.
Results pertaining to the CDF will be discussed in the fol-
lowing subsection within the context of an application.

5.2 Applications

The results introduced in this work can find use in a number
of practical scenarios. In this subsection, we enumerate some

Fig. 1 Analytical (lines) and simulated (markers) PDFs of the product
of two groups of n EGK variates with their parameters summarized in
the table shown

Fig. 2 Analytical (lines) and simulated (markers) PDFs for six differ-
ent ratios of products of EGK RVs whose parameters are summarized
in the shown table

of these examples and validate the obtained analytical results
through simulations.

5.2.1 Outage capacity calculation in multi-hop cognitive
networks

In this scenario, we are interested in calculating the outage
capacity in an amplify-and-forward relay network in a spec-
trum sharing scenario like the one described in [22]. The
outage capacity in this case can be calculated as Cout =
P[G1/G0 < N0(2R0 − 1)/γth], where G0 and G1 are the
secondary-to-primary and primary-to-secondary multi-hop
channel powers, respectively, N0/2 is the additive white
Gaussian noise power spectral density, R0 is the transmis-
sion rate and γth is the peak interference power. Since G0

and G1 represent multihop channels, then these RVs effec-
tively consist of a product of other RVs. Assuming that
these RVs are EGK-distributed, the above expression can
be directly given in terms of the CDF of the ratio of products
as Cout = FQ

(
N0(2R0 − 1)/γth

)
. Assuming N0 = 1 W/Hz

and R0 = 1 bits/Hz, Fig. 3 shows both the analytical and
simulated outage capacity for different combinations of the
EGK RVs used earlier in Fig. 2. Perfect agreement can still
be noticed between the two sets of results thus confirming
the validity of the CDF expression of Q.

5.2.2 Amount of fading of cascaded EGK channels

The amount of fading A f is defined in [23, Eq. (1.27)] as the
ratio of the variance to the mean square of the instantaneous

SNR, i.e., A f := E[γ 2]
E[γ ]2 − 1, where E(·) is the expectation

operator. In other words, A f is the square of the coefficient
of variation of the SNR. In this application, we are interested
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-5 0 5 10 15 20

10-4

10-3

10-2

10-1

100
C

Fig. 3 Analytical (lines) and simulated (markers) outage capacity for
the scenario described in [22] with different combinations of the EGK
RVs

in calculating A f for a series of N cascaded EGK fading
channels inwhich the total SNR γ is the product of the fading
of the individual channels [16, Eq. (18)]. Using the fact that
theMellin transformof γ is related to itsmoments via f̃ (s) =
E[γ s−1] as well as the result obtained in (5) for the Mellin
transform of the PDF of the product of EGK variates, one
can directly arrive at the following result for A f

A f =
N∏

i=1

� (mi ) �
(
msi

)
�

(
mi + 2

ξi

)
�

(
msi + 2

ξsi

)

�
(

mi + 1
ξi

)2
�

(
msi + 1

ξsi

)2 − 1.

(19)

5.2.3 Outage probability over cascaded EGK channels

The outage probability Pout is defined as the probabil-
ity that the instantaneous error rate exceeds a specified
threshold value or equivalently that the instantaneous SNR
γ falls below a certain threshold γth . Hence, Pout :=∫ γth
0 fγ (y)dy = Fγ (γth), where fγ (·) is the PDF of the
SNR γ and Fγ (·) is its CDF. As in the previous subsection,
we assume communication over a group of cascaded EGK
fading channels. In this case, the OP immediately follows by
using the CDF result in (11) for the product of EGK variates.
Figure 4 shows the analytical as well as the simulation results
for the OP of two groups of cascaded EGK fading channels
whose parameters are summarized in the Table in Fig. 1.

5.2.4 Average capacity of cascaded EGK channels

The last application we present here is related to the calcu-
lation of the normalized average capacity Cγ /W (where W

-6 -4 -2 0 2 4 6 8 10

10-2

10-1

100

Group 2

Group 1

1 = X1

Y2 = X1X2

Y3 = X1X2X3

Y4 = X1X2X3X4

Y

Fig. 4 Analytical (lines) and simulated (markers) outage probability
for two groups of cascaded EGK fading channels whose parameters are
summarized in the Table in Fig. 1

-5 -2.5 0 2.5 5 7.5 10
0

2.5

5

7.5

10

12.5

15

Group 2

Group 1

1 = X1

Y2 = X1X2

Y3 = X1X2X3

Y4 = X1X2X3X4

Y

Fig. 5 Analytical (lines) and simulated (markers) normalized average
capacity for twogroups of cascadedEGKfading channelswhose param-
eters are summarized in the Table in Fig. 1

is the transmission bandwidth) of a series of cascaded EGK
fading channels. In order to arrive at such result, we start by
re-writing the Meijer’s G-function in the PDF of the product
of EGK variates in (9) in terms of Fox’s H-function using
[18, Eq. (8.3.3)] to get the expression below.

fYn (y) = ηλh

z

H2A,0
0,2A

[
λhy

∣∣∣∣∣
−

�
(

Ai , mi − 1
ξi

, 1
z

)
i=1:n , �

(
Asi , msi − 1

ξsi
, 1

z

)
i=1:n

]
,

(20)

In (20), �(a, b, c) = ( b
a , c

)
,
( b+1

a , c
)
, . . . ,

( b+a−1
a , c

)
.

Now, using the capacity result for a single EGK channel as a
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special case from [24, Eq. (13)], one arrives at the following
expression.

Cγ /W = η

z ln(2)

H2A+2,1
2,2A+2

[
λh

∣∣∣∣∣
(0, 1), (1, 1)

(0, 1), (0, 1),�
(

Ai , mi ,
1
z

)
i=1:n,�

(
Asi , msi ,

1
z

)
i=1:n

]
,

(21)

This last result can be further expressed in terms of the Mei-
jer’s G function like all the other expressions in this paper by
first going to theMellin domain, then using Gauss’s multipli-

cation theorem and the relation �(s)
�(s+1) = �( 1z s)

z�( 1z s+1)
followed

by the inverseMellin transform in addition to [18, Eq. (8.3.3)]
to yield the following final result.

Cγ /W = (2π)1−zη

z ln(2)

G2A+z+1,z
z+1,2A+z+1

[
(λh)z

∣∣∣∣ �(z, 0) , 1
0, � (z, 0) , �(Ai , mi )i=1:n , �

(
Asi , msi

)
i=1:n

]
,

(22)

Figure 5 shows the analytical results of the normalized aver-
age capacity obtained from (22) for two groups of cascaded
EGK fading channels whose parameters are summarized in
the Table in Fig. 1 as well as results obtained via Monte
Carlo simulations. In this figure, for Group 1, all the channels
have the same average SNR γ̄ while for Group 2, γ̄1 = 3γ̄ ,
γ̄2 = γ̄3 = γ̄4 = γ̄ . As noticed in all other applications, per-
fect agreement between the two sets of results is observed.

6 Conclusion

We derived novel closed-form exact versatile expressions for
the PDF and CDF of the product and ratio of products of any
number of i.n.i.d EGKvariates.We verified the validity of the
obtained expressions through the use of Monte Carlo simu-
lations. We also presented a practical application where the
derived expressions can be used thus showing their applica-
bility in a multitude of wireless communications scenarios.
The Mellin transform approach used in this paper can actu-
ally be used to describe the statistical properties of othermore
generalized RVs, e.g., the Málaga and Fox’s H-function dis-
tributions.
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