Telecommun Syst (2018) 68:67-78
https://doi.org/10.1007/s11235-017-0375-3

@ CrossMark

Reducing false rate packet recognition using Dual Counting

Bloom Filter

Ivica Dodig!® - Vlado Sruk? - Davor Cafuta!

Published online: 24 August 2017
© Springer Science+Business Media, LLC 2017

Abstract Distributed Denial of Service (DDoS) attacks are
a serious threat to Internet security. A lot of research effort
focuses on having detection and prevention methods on the
victim server side or source side. The Bloom filter is a
space-efficient data structure used to support pattern match-
ing problems. The filter is utilised in network applications for
deep packet inspection of headers and contents and also looks
for predefined strings to detect irregularities. In intrusion
detection systems, the accuracy of pattern matching algo-
rithms is crucial for dependable detection of matching pairs,
and its complexity usually poses a critical performance bot-
tleneck. In this paper, we will propose a novel Dual Counting
Bloom Filter (DCBF) data structure to decrease false detec-
tion of matching packets applicable for the SACK? algorithm.
A theoretical evaluation will determine the false rate proba-
bility of detection and requirements for increased memory.
The proposed approach significantly reduces the false rate
compared to previously published results. The results indi-
cate that the increased complexity of the DCBF does not
affect efficient implementation of hardware for embedded
systems that are resource constrained. The experimental eval-
uation was performed using extensive simulations based on
real Internet traces of a wide area network link, and it was sub-
sequently proved that DCBF significantly reduces the false
rate.

Keywords DDoS - SYN flooding - Hash-based detection -
Bloom filter

< Ivica Dodig
ivica.dodig@tvz.hr

Zagreb University of Applied Sciences, Vrbik 8, Zagreb,
Croatia

Faculty of Electrical Engineering and Computing, University
of Zagreb, Unska 3, Zagreb, Croatia

1 Introduction

The Internet has evolved and greatly improved communi-
cation and business. The increase in the number of users
and business enterprises on the Internet also gives rise to
increased illegitimate activity. These activities are known
as security threats. The most common security threats are
network attacks which are used to obstruct normal commu-
nication [1]. The consequences of such attacks are potentially
devastating and may vary from an attack against a single user
to complete network obstruction where the whole network
can be made unusable for a longer period of time. This type
of attack occurs across a wide range of protocols [2].

Network attacks focused on communication disruption are
called Distributed Denial of Service (DDoS) attacks. DDoS
attacks prevent users from communicating with the attacked
computer network because the victim network or servers fail
to provide normal services. DDoS attacks occur when the
system receives too much traffic for the server to buffer,
causing it to slow down and eventually halt operations. The
effectiveness of the attack is proportional to the number of
computers performing the attack. Different mechanisms have
been developed for early detection and prevention of DDoS
attacks at the router level within a network infrastructure [3—
5]. They mostly relate to indications of increasing trends in
such attacks [1,6]. Currently, considerable efforts are under-
way to develop better detection algorithms and to identify
DDoS at the earliest stage of an attack.

Recent research has suggested creating new communica-
tion models. One such example is the information-centric
model where routing is based on packet data as opposed
to router tables on nodes. The underlying nodes and hosts
become more-or-less impartial, possibly to the extent that
there are no longer persistent addresses and names. This new
proposal does resolve some issues (e.g. improved accuracy).

@ Springer

http://crossmark.crossref.org/dialog/?doi=10.1007/s11235-017-0375-3&domain=pdf
http://orcid.org/0000-0002-3005-9949

68

I. Dodig et al.

However, certain vulnerabilities enabling possible DDoS
attacks still remain [7].

DDoS detection schemes can be classified into schemes
based on the router data structure, statistical analysis of
packet flows and use of artificial intelligence [8]. Router
data structure schemes are mostly applicable to detection
concepts for embedded systems. Minimal processing power
and memory requirements are a key factor for successfully
implementing this detection algorithm on an Intrusion Detec-
tion System (IDS) [9]. An IDS can be implemented as a stand
alone embedded system or even as a part of the main network
router [10]. The DDoS attack should be detected as close as
possible to the source to reduce the overall network load. In
the event of a DDoS attack, this is impossible because the
sources are distributed over the Internet. Thus, detection has
to take place at the destination network. There is a possibility
of positioning one IDS node before the destination network.
An example would be an ISP point of entry, where the ISP
manages the local network. Figure 1 shows the position of
an IDS system within a network.

In router data structure schemes, detection is based on
identifying disruption in the ratio of control packets. A DDoS
attack disrupts the normal ratio of control packet types as it
floods the victim with unanswered requests [3]. An example
of a DDoS attack is TCP SYN flooding and is most prevalent
in successful attacks [11,12]. It involves sending SYN pack-
ets to a server that are never confirmed due to receiving the
SYN/ACK from the attacking server. In such cases, the con-
trol ACK packet, establishment packets and four-way finish
control packets are missing.

1.1 Background of TCP/IP protocol

TCP s a core protocol of the Internet protocol suite. TCP pro-
vides reliable, ordered, and error-checked delivery between
applications communicating over the Internet. TCP enables
reliability by using a three-way handshake to establish com-
munication between two hosts and the four-way finish to
terminate a connection. In the three-way handshake, com-
munication is established in three distinctive segments. A
client sends a control SYN packet to a server port to perform
a request for communication. The server port must be in the
listening state to be able to receive the packet. This packet
is referred to as a request for communication. After receiv-
ing the control SYN packet, the server reserve connection
resources to track the TCP state. After that, it responds to
the client with the control SYN/ACK packet. This packet is
referred to as a confirmation request. The client receives the
control SYN/ACK packet and sends a control ACK packet,
confirming it received server acknowledge. This packet is
referred to as confirmation of the established connection.
After a successful three-way handshake, a connection is
established and the data packets can be transferred. The data

@ Springer

Attacker

Attacker

Attacker

NV S

small ISP

N

Victim server

Fig. 1 Position of the IDS system

packets can be sent in both directions, from the client to the
server as a request or, from the server to the client as a reply.
For every data packet that the host receives, a control ACK
packet is used to confirm delivery. The data ACK packet will
be referred to as a DACK or data acknowledgement packet to
distinguish a data control ACK packet from a control ACK
packet.

When the connection is established, a four-way finish is
performed in similar steps. The client initiates closing of the
connection by sending a control FIN packet (graceful shut-
down), or under certain conditions, a control RST packet
which immediately resets the connection. The control FIN
packet can also be initiated by the server. Upon receiving
a control FIN packet, the server responds with a control
ACK packet which acknowledges the connection closure.
The server sends the control FIN packet to finish the con-
nection. The client acknowledges the received control FIN
packet by sending the control ACK packet. Once this packet
has been received, the connection will be closed. In ordinary
TCP behaviour, the number of control packets remains the
same since every connection has its own closure.

Reducing false rate packet recognition using Dual Counting Bloom Filter

69

1.2 Algorithms based on Counting Bloom Filter

DDoS detection should be able to analyse colossal TCP
traffic. Space efficient data structures, known as Bloom
filters are mostly used to efficiently store routing tables
on networked devices. Most schemes use the algorithms
based on the Counting Bloom Filter (CBF) to analyse large
numbers of packets in real time [8,13]. The CBF is a struc-
ture based on the Bloom filter which inserts and deletes
records. It recognizes a matching pair of connection packets
by simplifying real input with hash functions. The match-
ing pair is a control ACK packet correlated to the control
SYN/ACK packet which was received earlier. This mech-
anism enables processing of a large amount of data over
the input link, with minimal processing power and memory
requirements.

Due to simplifying the input, CBF introduces recognition
errors on matching pairs known as a false rate. The false rate
is a data acknowledgement packet or another packet erro-
neously recognized as a control ACK packet. This issue is
present within all algorithms that are based on the Bloom
filter. The false rate can be reduced by tweaking the Bloom
filter parameters. These parameters include the size of the
field, the number of hash functions and a maximum number
of elements used in the field. Enabling false rate reduction
requires increasing the first two parameters. An increase of
the number of hash functions and of field size requires addi-
tional memory and processing power.

In router data structure schemes, the false rate affects
recognition of DDoS attacks. Our objective is to reduce the
false rate by introducing a new structure called the Dual
Counting Bloom Filter (DCBF). This new structure is pro-
posed to be implemented over DDoS detection algorithm
SACK? [14]. In [8], SACK? is presented as an algorithm
that provides advantages for embedded systems implemen-
tation. Furthermore, the false rate is thoroughly analysed in
[14]. These analyses are used to validate DCBF implemen-
tation.

The paper is organised as follows. Section 2 discusses
related work on detection algorithms. Section 3 follows with
the description of the CBF data structure and its false rate
probability as a basis for improvement in proposed DCBF.
In Sect. 4, anew structure to reduce a false rate error of match-
ing pairs is proposed. Here, we will introduce an additional
Bloom filter in the CBF data structure to improve the reliabil-
ity of matching pair detection. The expected theoretical false
rate in CBF and DCBF data structures is presented in Sect. 5.
Using real Internet traces of a wide area network link, we
will study the behaviour of the proposed DCBF. Finally, the
conclusion is that false rate reduction is significant, provid-
ing minimal memory overhead and with minimal processing
requirements, thus making it suitable for an embedded sys-
tem.

2 Related work

Existing algorithms are classified based on router real-time
traffic analysis capability, statistical algorithms and algo-
rithms based on artificial intelligence [8]. Algorithms based
on artificial intelligence require more development effort and
additional resources. One example is the implementation of
fuzzy logic in embedded systems which requires a huge num-
ber of real-time floating point calculations. Such demanding
computations require the use of an additional Digital Sig-
nal Processor (DSP) [15,16]. Statistical algorithms require
more memory for calculations and are difficult to implement
in real time. In addition, statistical analysis limits the perfor-
mance of network communication because of the overhead
required for sampling packets in real time [17,18]. Traffic
can be analysed in real-time on ISP routers which are imple-
mented as embedded systems. There are multiple algorithms
which are designed to reduce required resources and provide
better detection [19].

It is challenging to analyse real-time traffic in time slots
and make a decision for all traffic. Algorithms are based on
the fact that TCP uses three segments to establish and four
segments to terminate a connection. The expectation is that
the number of control connection packets and the number of
connection termination control packets are proportional in
normal network traffic. If there is a significant disruption to
this ratio, the existence of an attack can be proven.

The main drawback of these algorithms is that they rely
on an assumption for choosing which control packet to use
and how to define the correct ratio to prove the existence
of the attack. There is a distinct difference in the behaviour
of application protocols. The ratio threshold should be flexi-
ble enough to cover these differences and, at the same time,
small enough to detect a small footprint attack. Given that the
packet ratio in any network varies through time, it needs to be
estimated in time intervals and subsequently used as a refer-
ence point in the following measurement cycle. Since there
are three different control packets in the process of estab-
lishing a connection and four in terminating a connection,
different packet ratios are available for examination. Addi-
tionally, some control packets are similar to others, hence
distinguishing them becomes difficult [20].

A network router is used as the source of control packet
information. The available data consists of the source and
destination network addresses and the source and destination
ports. In case of TCP protocol, sequence and acknowl-
edgement numbers as additional data which describe the
connection flow are used. Detection algorithms process this
data to determine if an attack is occurring.

Detection errors are divided into two separate issues: false
positives and false negatives. A false positive error is a detec-
tion of a non-existent ongoing attack, whereas a false negative
error is a non-detected attack. Attackers hide attacks by cre-

@ Springer

70

I. Dodig et al.

ating a fraudulent joint packet and steer the algorithm to a
misleading direction. A detected false positive error is caused
by purposefully misleading recognition of the matching pair.
The recognition error varies depending on the used control
packet.

In the TCP protocol, specific types of packets, such as
SYN, SYN/ACK, ACK, FIN, RST, are used to establish and
close a connection. Several distinctive algorithms based on
different monitored ratios of specific packet types have been
developed.

Sun et al. [3,21] proposed a more robust scheme to detect
SYN flooding attacks using the CBF which recognizes the
corresponding FIN RST packet for the SYN packet. How-
ever, the SYN-FIN method cannot detect attacks mixed with
spoofed FIN RST packets.

Kompella et al. [22] introduced a modified CBF called
a Partial Completion Filter (PCF) to check the difference
between SYN and FIN packets. The problem remains as a
spoofed FIN RST packet can obstruct the algorithm.

Chen and Yeung [23,24] proposed using SYN-ACK pairs
with the CBF. They did not reveal the method for differenti-
ating between ACK and DACK. Even if a successful method
is used, spoofing SYN and ACK packets may still obstruct
the algorithm.

Nashat et al. [25] proposed a scheme based on the SYN-
SYN/ACK protocol pair and packet header information
inspection. The CBF is used to avoid the effect of SYN/ACK
retransmission, and the Change Point Detection method is
applied to avoid the dependency of detection on sites and
access patterns. In case of DDoS, detecting a single mali-
cious host in a large local network is difficult.

Ling et al. [26] proposed a defense mechanism that makes
use of edge routers that connect end hosts to the Internet and
detect and store whether the outgoing SYN, ACK or incom-
ing SYN/ACK segment is valid. This is accomplished by
maintaining a mapping table of the outgoing SYN segments
and incoming SYN/ACK segments, and establishing the des-
tination and source IP address database. A hashing functionis
used to establish mapping. This solution exploits ideas simi-
lar to the Bloom filter where higher filter levels are attenuated
with respect to an earlier filter level characterised with a lossy
distributed index that may introduce a false rate.

Sun et al. [14,27] proposed a more accurate and fast SYN
flood detection method, named SACK?. SACK? exploits the
behaviour of SYN/ACK-ACK pairs. The CBF is used to rec-
ognize CliACK packet.

Halagan et al. [28] proposed, implemented and evaluated
a new method for detection and type identification of SYN
flood (DDoS) attacks. The method allows distinguishing the
type of detected SYN flood attacks based on the Counting
Bloom Filter. Their method uses a SYN and ACK pair. This
solution is implemented in the network monitoring tool called
KaTalLyzer.

@ Springer

The discussed methods are classified according to a
matching pair which is then examined as four different
types: SYN-FIN (RST), SYN-SYN/ACK, SYN-ACK and
SYN/ACK-ACK.

The drawback of the SYN-FIN (RST) algorithm lies
beyond the possibility of creating false FIN (RST) packets.
It is impossible to determine the exact FIN packet for ade-
quate SYN without a description of the entire connection. The
moment FIN packets occur cannot be determined in advance
since the connection duration is unpredictable. The applica-
tion layer protocol can maintain a connection longer than the
detection interval and thus induce a false positive error.

The SYN-SYN/ACK algorithm requires a significant dif-
ference in the number of packets. In a DDoS attack, local
significance is minor, and it is impossible to be detected.

The SYN-ACK algorithm can be easily tricked. An
attacker can send a mix of false SYN and ACK packets of
random numbers to avoid detection.

In the SYN/ACK-ACK algorithm, false packets cannot
be generated as correlated sequence numbers between pairs
of packets exist. This method is recommended for detecting
attacks on the Internet service provider routers. The disad-
vantage of the algorithm lies in the difficulty of distinguishing
ACK from DACK, given that the ACK packet header contains
the same flags as the DACK packet header. The difference
can be observed by monitoring the packets’ sequential num-
bers. The ACK packet is a response to SYN/ACK, and the
DACK packet is the response to a packet of data after the con-
nection is established. To recognize the difference, a record
of header data has to be maintained. The easiest way to rec-
ognize DACK from ACK is to use the CBF as it provides
detection abilities with minimal resources.

The disadvantage of the CBF comes from hashing func-
tions, which simplify the input of a 160-bit packet header
while computing the k hash function for it and producing
hash values ranging from 1 to m. The number of values and
proposed range directly influences the error rate of the struc-
ture. For greater ranges and values, the error rate becomes
smaller, but the structure uses more resources (memory and
processing power). It becomes useful to restrain the increase
in the range and number of values in order to make this algo-
rithm suitable for embedded system routers implementation
[14].

Recent works [29,30] have proposed a new communi-
cation paradigm, namely, Information-Centric Networking
(ICN) to solve several Internet problems like security, mobil-
ity, scalability and quality of service. Research on ICN has
already provided notable solutions in many areas of Inter-
net usage. Multiple algorithms based on the Bloom filter
structure exist for improving source routing: the Free Rid-
ing Multicast (FRM), Line speed Publish/Subscribe Inter-
Networking protocol (LIPSIN) and Bloomcast [29]. The
Bloom filter is used to encode the source routing path from

Reducing false rate packet recognition using Dual Counting Bloom Filter

71

the publisher to the subscriber. Using the Bloom filter intro-
duces false positive errors due to two possible reasons: extra
bandwidth and potential forwarding loops. False positives
can be circumvented by adjusting the size and capacity of
the Bloom filter and the number of hash functions. These
parameters are used to define the fill factor of the Bloom
filter structure [30].

3 Counting Bloom Filter data structure

The Bloom filter is a widely used space-efficient data struc-
ture that does not require a large amount of memory but does
enable the identification of affiliation elements within a set. It
consists of a data field size of m bits and k independently dis-
persed hash functions. A building block of a CBF structure
is a Bloom filter that enables deletion by implementing each
entry as a small counter [31]. Bloom filters are extensively
used within the network security domain. In this section, we
will discuss the main benefits and issues relating to its use in
the SACK? algorithm.

3.1 Hash function analysis

The most commonly used hashing functions in embedded
systems for linear transformations are a class of hashing func-
tions called H3 [32]. For an input array of one byte:

byte; = <bj1, bi2, ..., big>, ()

and the hash function H3 is defined as:
hi = dj b} @ d},bs ® di3bs © diyby @ - - @ djghy, 2

where dil . are randomly generated numbers ranging from 1
to m. All other hashed functions are obtained using the fol-
lowing expression:

H =H_ ®hl, Viell...kl, Hj=0. 3)

An input value is divided into bytes. For every bit within
an input byte (i), a random value d;(1—g) is multiplied by
the bit value (b’(llfg)). On the resulting values, the exclusive
disjunction is applied to form subscore (k;) as defined in (2).
The hash function is calculated as the exclusive disjunction
between all byte subscores according to (3).

Generally, using the CBF to detect a matching pair of
network packet requires hashing of 6-tuple called Py ack-
This 6-tuple input structure consists of: S7 P as an IP address
source, DI P as a destination IP address, S P is a source port,
D P is adestination port, SE Q is a sequential packet number
and ASEQ is an acknowledge sequential packet number.
This data is obtained from a SYN/ACK packet header:

Psynjack = <SIP,DIP,SP,DP,SEQ, ASEQ>. (4)

Detecting a matching pair of SYN/ACK and ACK pack-
ets starts with the detection of the ACK packet. For every
detected ACK or DACK packet which has the same flags in
the packet header, and according to the matching flags in the
packet header, a new 6-tuple named P, is generated. P,k
tuple consists of the same members stored in different order:

Py =<DIP,SIP,DP,SP,ASEQ —1,SEQ>. (5)

The input structures Py /ack and Pgyqck heading to the
filter has a length of 20 bytes given that the IP address require
4 bytes, the source port 2 bytes and an accumulated sequence
number of 4 bytes of memory. By using (2), the H3 function
is defined as:

H =dib@dib, ®diby ® - - @ dlgobrso, VI €[l...kl,
(6)

where dll”. , is arandomly generated number ranging from 1
to m.

Since these functions exploit basic logic elements, they
are suitable for efficient implementation in embedded sys-
tems [33]. Another possibility is implementation of hash
functions in hardware via FPGA, which significantly reduces
consumption of processing power [34].

In our case, for every Psyujack and Pgyack packet, a set of
values is generated by applying a set of k hash functions:

Riyn/ack = HZ(Psyn/ack), vViell... k], @)
Réd)ack = H' (Payack), VI €[l...kl.)

The result Ry /ack O R(gyack of hash functions is a num-
ber ranging from 1 to m. For every SYN/ACK packet, the
k values in the field 1 to m will be increased at the position
Riyn/uck’ VI € [1...k]. If the value of the field overflows,
the increase will be omitted. For every ACK packet, the k
values in the field 1 to m will decrease if possible at position
Réd)ack, VI € [1...k]. It is possible to decrease the fields
if all the values in the required range are greater than zero.
At the beginning, all values of the m fields are zero.

The purpose of the CBF data structure is to recognize
the corresponding ACK packet of the previously received
SYN/ACK packet. As the ACK packet has identical header
flags as DACK, itis possible to recognize it as an ACK packet.
In the case when the packet is propagated in the same direc-
tion and identical handshake in 6-tuple, only the sequential
numbers are distinctive. For other connections types, all of
the 6-tuple elements could be different. In normal network
behaviour, every SYN/ACK will be matched with proper
ACK. SYN/ACK will increase k values in the field m and

@ Springer

72

I. Dodig et al.

matched ACK will decrease the values in identical positions.
Under certain conditions, there is a possibility that k values of
the DACK from another or the same connection will be even-
tually decreased in field m. In this case, the assumption is that
an appropriate ACK has arrived, and is no longer expected.
When a matching ACK packet eventually arrives, the corre-
sponding values in the field will already be empty, and this
genuine matching ACK packet is erroneously recognized as
a DACK and is disregarded. This situation is referred to as a
false rate in the CBF data structure [35].

3.2 False rate probability

A false rate in the Bloom filter occurs due to the hashing
which fails to guarantee unique mapping between an element
and a group of indexes. The probability of a false rate for n
elements of the input string in the CBF data structure with k
independent functions on the field size m is determined using
the following equation:

(e

The equation takes into account the ideal number of dis-
persed functions according to the following equation:

k=in2) x 2. (10)
n

For the Bloom filter, this provides the best ratio of memory
capacity and error probability. In this case, the error is:

1\f "
Py (§> ~ 061855, (1)

For the case of the CBF, there is a possibility of an error
that manifests in a lack of recognition of elements belonging
to the input data set (i.e. false rate). This is possible due to the
increasing and decreasing of field elements value. The occur-
rence of this error depends on the distribution of increasing
and decreasing elements, as well as the number of elements
in the array. Finding a theoretical solution to error propaga-
tion caused by the randomised nature of the assigned values
is a real challenge.

According to Manna et al. [8], this technique generally
gives rise to a large false positive rate caused by the Bloom
filter data structure during network flow congestion. This
false positive can affect the final decision. There are various
solutions for improving false positives in the light of the rich
Bloom filter data structure parameters. A recent work [36]
has proposed that at each element insertion, hashed counters
be incremented by a hashed variable increment, instead of a

@ Springer

Outgoing SYN/ACK
Incoming ACK

Outgoing
SYN/ACK

>
flry

>
]

>
~

>
flry

Decision

Fig. 2 Architecture of SACK? algorithm [14]

simple unit increment. Querying an element requires check-
ing a particular counter value. In such cases, evaluation is
based on purely randomised data and indicates a decrease
in false positives by 53% while utilising the same amount
of memory. Furthermore, another proposal to better elimi-
nate false positives relies on Bloom-filter-based forwarding
where Sireld et al. [37] proposed permuting the Bloom filter
at each router. The permutation is accomplished by shuffling
filter bits. This has been shown to sufficiently protect against
loops and flow duplication of the path across which the packet
has already traversed [7].

3.3 SACK? algorithm

The Bloom filter is a key structure in the SACK?> SYN
flood detection method, which exploits the behaviour of
SYN/ACK-ACK pairs [14].

Figure 2 shows the architecture system for SACK?. The
CBF data structure is used twice: firstly, for recognizing
the corresponding ACK packet for every SYN/ACK packet-
CBF1, and secondly, for deciding on whether an attack
exists-CBF2. If the CBFI reaches a decision on the cor-

Reducing false rate packet recognition using Dual Counting Bloom Filter

73

responding ACK packet, it will transfer a 2-tuple (the
destination IP address and the destination port number) to
CBF2.

CBF2 independently uses its own field and hash func-
tions, which do not have to be of the same length as the
field in CBF1. The primary input parameter to CBF2 is the
SYN/ACK packet. For every SYN/ACK packet, a 2-tuple
(source IP address and source port number) is hashed using
hash functions and stowed into the CBF2 structure. This
increases the counter values in CBF2. This 2-tuple struc-
ture is hashed using hash functions from CBF2. The results
are used to decrease the values of the calculated positions in
the field m of the CBF2.

If any counter in CBF2 exceeds the designated threshold,
an attack is reported. The threshold is usually foreordained
according to normal network traffic. The SACK? algorithm
detects attacks in fixed time periods. In the case when return-
ing values are below the threshold, the report of an existing
attack is withdrawn. At the end of the period, the values of
field m in CBF2 are reset to zero.

According to existing SACK? studies, a measured false
rate supports the theory behind Bloom filters. Depending on
the network traffic, the measured experimental false rate of
CBF1 in a real environment may exceed 20% [14,27,35].
These peaks represent a drawback of the SACK? algo-
rithm. CBF1 introduces a false rate for the matching pair
SYN/ACK-ACK. This false rate is propagated into CBF2
which makes the decision about the existence of the DDoS
attack.

In the following section, we will introduce a novel DCBF
data structure which helps decrease false detection of match-
ing packets and is compatible with SACK? algorithm.

4 Dual Counting Bloom Filter data structure

In order to reduce the false rate a new data structure called
the Dual Counting Bloom Filter (DCBF) is introduced. This
structure consists of an additional Bloom filter in CBF1 archi-
tecture. The responsibility of CBF1 is to analyse inverted
input data. This additional CBF1 will be referredtoas CBF 1.
It is used for supplementary verification if a received ACK
packet is part of the matching pair. This additional verifica-
tion reduces the false rate. Figure 3 illustrates an improved
architecture of SACK? with integrated DCBF as a replace-
ment for the CBF1 data structure.

Input to the DCBF structure is the same as for CBF1 in
the SACK?> algorithm. This inputis a 6-tuple called Psyy jack -
Information for this input is extracted from the packet header
of the SYN/ACK which in turn is recognized by matching
flags in the packet header:

Psynjack = <SIP,DIP,SP,DP,SEQ, ASEQ>. (12)

Inversion for the C B F1 is performed by complementing
every bit in the Pyy,/qcx input data. For every Pyyp/qck an
inverted 6-tuple Py ack is determined:

Using (1), (2) and (3) hashed values are calculated for k
hashed functions:

Réyn/ack = H'(Psynjack), VI €[l...kl. (14)

Simultaneously, CBF'1 in the DCBF data structure for
every Pgyn/ack generates a hashed value using the same set
of k hash functions:

— —
Ryynjack = H' (Psynjact). VL€ [1...K]. (15)

In (14) and (15), the same generated hash functions are
used. Input data length is 20 bytes. The hash function is cal-

culated according to (2) and (3):

H =dib@odb@db;® - - @digbico, VIe[l...k].
(16)

The resulting Ryyp /ack of hash functions is a number rang-
ing from 1 to m. For every result obtained from a SYN/ACK
packet, the k values in the field 1 to m will increase at posi-
tion Réyn/ack, Vi € [1...k]in CBF1 within the DCBF data
structure. If the value of the field overflows, the values will
not increase.

The result Fsyn Jack of the same hash functions is a number
in arange 1 to m. For every result obtained from SYN/ACK

packet, the k values in the field 1 to m increase at position
Riynjacts VI € [1...K]inthe CBFT in DCBF data struc-
ture. If the value of the field overflows, the values do not
increase.

For each hashed result obtained from an ACK or DACK
packet, the k values in the field 1 to m will decrease. This
change will occur at position Réd)ack, Vvl € [1...k] from
the CBF1 in the DCBF data structure. It is possible to
decrease fields when all affected values are greater than zero.
For the case when decreasing every hash function is not possi-
ble due to zero values, the conclusion is that this ACK packet
has no matching SYN/ACK packet. C B F'1 in the DCBF data
structure will not be changed or verified.

For the case when CBF1 determines an ACK packet, then
the P(g)ack 6-tuple will be inverted:

Pak = <DIP,SIP,DP,SP,ASEQ — 1, SEQ>. (17)

@ Springer

74 I. Dodig et al.
Outgoing Outgoing SYN/ACK
SYN/ACK Incoming ACK
6-tuple
P DCBF
| SYN/ACK - |
I K inv |
| inv —
Y D ceerr L 1 CBF1 |
: : v : r : v v : :
b k hash function ! | k hash function b
| | | | | |
| | | | |
h h h !
: : v hy v h> v P : : v v’ v _* : :
| : | : | |
o : | | I] o
LA oo m O S LI B
: ACK ACK |
U R]
> 2-tuple <

________________________ CBF2_

| |

| k hash function !

| |

l hy h, he 1

| v v v |

| |

| |

T I T
I S |

Fig. 3 DCBF improvement of SACK? algorithm

Hash values are calculated for (D)ACK according to (16):

— —
Rigyack = H' (P(@yact). VI € [1...kl. (18)

This result is tested on C B F'1 in DCBF data structure to
reduce the false rate for match verification. Every k values
in the field 1 to m will be decreased if possible at the posi-

tion R(guet» VI € [1...K] from the CBFT in DCBF data
structure. It is possible to decrease the fields if all the values
that should be decreased are greater than zero.

In the case when the decrease of every hash function of
the CBF1 is not eligible, due to zero value, it is concluded
that this ACK packet has no matching SYN/ACK packet.

Otherwise, if the decrease succeeds, the DCBF makes the
decision that this ACK packet corresponds to the previous
SYN/ACK packet. This decision is transferred to the CBF2
filter.

Obtained results from DCBF could be further processed
by CBF2 using SACK? algorithm. Threshold determination
and DDoS detection are implemented as described in [14].

@ Springer

Decision

5 DCBF evaluation

This section summarises the evaluation of results from the
proposed structure DCBF and compares it with the used CBF
structure in the SACK? algorithm. We present a theoretical
approach to false rate estimation and resource utilisation.
The experimental setup and results using real traffic mea-
surements are discussed.

5.1 Theoretical evaluation

As discussed in Sect. 3, in the CBF the optimal value of the
number of dispersed functions k, for a given size of the field
m and the number of packets n, in order to minimise the
false rate is given by (10). The minimum false rate value is
therefore given by (11).

In the proposed DCBEF, false rate should be reduced as the
additional filter C BF'1 further verifies the input. The prob-
ability of false rate for each filter is estimated in line with
the CBF equation. Given that the second Bloom filter has its

Reducing false rate packet recognition using Dual Counting Bloom Filter

75

9
== CBF1 —s—DCBF
8

False rate (%]
w

_,__r/"‘/‘

r i
50 100 150 200 250 300 350 400
Packets per sec

Fig. 4 Expected theoretical false rate in CBF1 and DCBF

own independent field m, a false positive for the DCBF is
calculated as the false rate in the CBF data structure [35].

lk lk 12xln(2)><% "
~ | = —) &~ (= ~ (0.38255n .
o= (5) < (:) = (5)

19)

Figure 4 shows the expected theoretical ideal false rate
values based on the number of packets given as an input to
the filter. For a packet number greater than 200, the DCBF
significantly decreases the false rate value and consequently
improves the SACK? algorithm [8].

For a DCBF implementation in an embedded system,
memory requirements should be considered. In the case of
CBF1, the number of bits for each predetermined random
number is [logym]. The inputs to the first Bloom filter are
packets of size L = Ly, = Lgck = 160 bits. We limited
the theoretical analysis to the n = 350 as optimal, to take
into account the physical limit of the maximum number of
packets on the wide area network link in our experiment with
n = 400 as a peak value. The most common used number of
hash functions is k = 4, since it results in an average false
rate of 5% as obtained by (11). Using the Eq. (10) the size of
the field m is calculated using a known k value. To simplify
the algorithm, the size of the field m is rounded up to the
nearest power of two. For m = 2048 the resulting value is
n = 350 and k = 4 (10). The analysis from Fan et al. [38]
reveals that four bits per element in the field m should suf-
fice for most network applications in order to avoid a counter
overflow of the CBF data structure. In this case, the proba-
bility of overflow is 1.37 x m x 10~13. Memory usage for
CBFl is:

Mcpri =4 xm+k x L x logom. (20)
In our case and based on the chosen parameters, the result-

ing requirement is 1.84kB for the CBF1 Bloom filter. The
memory content can be divided into two parts. The first part

~#—CBF1 ——DCBF

Memory [kB]

50 100 150 200 250 300 350 400
Packets per sec

Fig. 5 Memory requirements of CBF1 and DCBF

of the required memory is used for storing the CBF field,
and the second part for storing random numbers used by dis-
persed functions. The DCBF utilising an additional Bloom
filter requires additional storage for the m field. Randomly
generated numbers (d) in the hash functions are the same
for both Bloom filters. The only difference is in input data
which is inverted for the second Bloom filter. The total mem-
ory requirement of the DCBF is:

Mpcpr =2 x4 xm+k x L xlogym. 21

For this case, the memory requirement is 2.83 kB for the
DCBF Bloom filter. Thus, in a worst-case scenario for our
measurement link, the memory requirement is increased by
0.98kB. According to Sun et al., implementing the SACK>
algorithm requires 18kB of memory for CBF1 and CBF2
[27]. CBF2 uses an additional 32 bits per element of the field
m. CBF1 in SACK? uses 1.84kB. As a result, by replacing
CBF1 with DCBF in SACK?, the required additional memory
increases by 5.56%.

Figure 5 shows the memory consumption required by
CBF1 and DCBF depending on the number of packets.

5.2 Experimental results

A study was conducted to verify the improvement of the false
rate for a DCBF. CBF1, part of the SACK? algorithm and the
proposed DCBF were simulated in line with the presented
algorithms. The measurements for input data were acquired
on a wide area network link. Traffic was aggregated over a
6-month period and stored in a database.

Traffic varied from n = 6 to a maximum possible n = 400
packets per second. Smaller traffic patterns when n < 50
were isolated because the false rate did not occur for the
CBF1 or the DCBF. This was as expected and in line with (10)
for n = 50 where m = 256 is sufficient, which is far smaller
than the used m = 2048. Experimental evaluation with the
number of packets exceeding n = 50 leads to a false rate

@ Springer

76

I. Dodig et al.

25

——
u CBF1#1

|
|

CBF #

20 1 D #1

" | mcer1#2

|

15 o | ADCBF#2

o B s

10

False rate (%]

|
]
5 l_-l.-ll.-'l.".' ..l-.'.-- -.... -..-l..—'. ..-l.

A

LYWV
Aakood, ad 4, San, onade 4% 48 4 oFholony A4, tAgapt
0 AOATA1%, 40400 AL a® ACARMMRR A 0L 0a A 000 PRan AT 1h0s

0 500 1000 1500 2000 2500 3000 3500 4000

Time [sec]

Fig. 6 False rate measurement of CBF1 and DCBF

Table 1 CBF1 and DCBF false
rate

Falserate CBF1 DCBF

Minimal 4.03 0
Average 6.05 0.59

Maximum 23.25 2.11

starting to appear. Isolation of smaller traffic patterns results
in an effective average traffic of n = 200.

The recorded traffic was analysed and modified to provide
ideal matching pairs. Such traffic modification ensures con-
sistent traffic data without erroneous network conditions or
possibly capturing an attack. In this way, every attack detec-
tion in our analysis can be interpreted as a pure false rate.
This traffic data was analysed using CBF1 and the DCBF
algorithm. We captured a large number of samples, analysed
and presented the most interesting samples, which confirmed
the existence of the false positive rate.

In Fig. 6, we present two examples of traffic in a one-hour
period, where the samples were taken every 60s. The graph
shows a false rate for each algorithm (CBF1, DCBF). The
stream designated with the same number was obtained for
the same input traffic.

Table 1 shows the minimal, average and maximum false
rate values of the total measured traffic for each algorithm.
Achieved average DCBEF false rate improvement is 89,53%,
minimal value is 72,26% and the maximal value is 100%
with respect to CBFI.

When comparing these obtained results with Eqgs. (11)
and (19), a certain similarity can be observed. CBF1 and
the DCBF data structure accumulate and delete values con-
trary to the Bloom filter. Additionally, CBF1 and DCBF reset
the entire field m when any counter reaches half of its max-
imum. These differences cause deviations in experimental
measurements when compared to what is expected theoreti-
cally.

In line with all these measurements, a DCBF false rate out-
performs CBF1 on average by 90%. Additionally, DCBF in
a worst case scenario, requires approximately an additional 1

@ Springer

kB of memory. The computational overhead of the proposed
solution introduces 7—12% activation of the additional Bloom
filter C BF'1 while at the same time significantly improving
the false rate. Future work will verify the proposed algorithm
improvements in comparison to the Bloom-filter-based for-
warding algorithm.

6 Conclusion

This paper proposes a novel DCBF structure. The objective is
to decrease the false rate with minimal additional resources.
The proposed solution is compared to the router data struc-
ture scheme algorithm SACK?. Router data structure is used
to analyse the ratio of the connection and connection termi-
nation control packets in TCP communication. Every packet
header needs to be examined to determine the ratio of the
control packets.

Processing complete headers require a significant amount
of memory, especially on a fast link or during network
congestion. The data is organised into a memory efficient
CBF data structure to reduce memory requirements. The
algorithms based on the CBF require fewer resources (e.g.
memory and processing power), making it suitable for
deployment in an embedded environment.

The negative side of the Bloom filter is the error caused
by false recognition of a matching SYN/ACK and ACK pair.
The proposed DCBF decreases the false recognition rate
by approximately of 90%. However, additionally exploiting
the CBF increases resource requirements. The increase in
memory consumption is the biggest drawback of the DCBF
structure for implementation in an embedded system (e.g.
a router). The proposed solution for the case of a flow of
network packets of n = 400 required an additional 1.13
kB of memory compared to the standard CBF, which means
it is still suitable for implementation in an embedded sys-
tem.

Analyses showed that the additional 5.56% of mem-
ory used in the DCBF compared to the SACK? algorithm
improves the accuracy of SYN/ACK-ACK pair detection by
90%. Moreover, DDoS attack detection using this algorithm
improved immensely in the case of a minor attack.

In the future, the plan is to explore the possibility of apply-
ing the proposed solution to other algorithms based on the
CBF or Bloom filters. Further verification will include data
from different network locations and a comparison of dif-
ferent existing algorithms. Additionally, this paper assumes
that a false rate error of 20% in the CBF1 data structure will
be propagated to the error rate in CBF2. This is expected
to affect detection of DDoS attacks. This correlation could
be further examined. The verification of the new improved
SACK? algorithm during the different rate of DDoS attack is
a subject of future work.

Reducing false rate packet recognition using Dual Counting Bloom Filter

71

Acknowledgements The authors would like to thank Central Informat-
ics Support staff at Zagreb University of Applied Sciences for gathering
the data.

Compliance with ethical standards

Conflict of interest On behalf of all authors, the corresponding author
states that there is no conflict of interest.

References

10.

11.

12.

14.

15.

16.

17.

. Cisco. (2016). Annual Security Report 2016. http://www.cisco.

com/c/dam/assets/offers/pdfs/cisco-asr-2016.pdf. Accessed Jan
2016.

. Zhang, G., Fischer-Hiibner, S., & Ehlert, S. (2010). Blocking

attacks on SIP VoIP proxies caused by external processing.
Telecommunication Systems, 45(1), 61-76.

. Sun, C., Fan, J., & Liu, B. (2007). A robust scheme to detect SYN

flooding attacks. In Second International Conference on Commu-
nications and Networking (pp. 397-401).

. Li, L., & Lee, G. (2005). DDoS attack detection and wavelets.

Telecommunication Systems, 28(3—4), 435-451.

. Zlomisli¢, V., Fertalj, K., & Sruk, V. (2017). Denial of service

attacks, defences and research challenges. Cluster Computing The
Journal of Networks, Software Tools and Applications,20(1), 1-11.

. DDoS Attacks in Q4 2015. Kaspersky Lab Report. https://

securelist.com/analysis/quarterly-malware-reports/734 14/kasper
sky-ddos-intelligence-report-for-q4-2015/. Accessed Jan 2016.

. Markku, A., Aura, T., & Sireld, M. (2014). Denial-of-service

attacks in Bloom-filter-based forwarding. IEEE/ACM Transactions
on Networking (TON), 22(5), 1463-1476.

. Mehdi, M. A., & Amphawan, A. (2012). Review of syn-flooding

attack detection mechanism. International Journal of Distributed
& Parallel Systems, 3(1), 99-117.

. Scarfone, K., & Mell, P. (2010). Guide to intrusion detection and

prevention systems (IDPS) (NIST SP 800-94). Washington, DC:
Computer Security Resource Center, National Institute of Stan-
dards and Technology, U.S. Department of Commerce.

Wang, G., Xu, M., & Huan, X. (2012). Design and implementation
of an embedded router with packet filtering. In Proceedings—
2012 IEEE Symposium on Electrical and Electronics Engineering,
EEESYM 2012 (pp. 285-288).

Mittal, A., Shrivastava, A. K., & Manoria, M. (2011). A review
of DDOS attack and its countermeasures in TCP based networks.
International Journal of Computer Science & Engineering Survey
(1IJCSES), 2(4), 177-187.

Ma, X., & Chen, Y. (2014). DDoS detection method based on chaos
analysis of network traffic entropy. IEEE Communications Letters,
18(1), 114-117.

. Broder, A., & Mitzenmacher, M. (2003). Network application of

Bloom filters: A survey. Internet Mathematics, 1(4), 485-500.
Sun, C., Hu, C., Tang, Yi, & Liu, B. (2009). More accurate and
fast SYN flood detection. In Proceedings of 18th International
Conference on Computer Communications and Networks (pp. 1—
6).

Farkaz, F., & Halasz, S. (2006). Embedded fuzzy controller for
industrial applications. Acta Polytechnica Hungarica, 3(2), 41-63.
Xia, Z., Lu, S., Li, J., & Tang, J. (2010). Enhancing DDoS flood
attack detection via intelligent fuzzy logic. Informatica (Slovenia)
An International Journal of Computing and Informatics, 34(4),
497-507.

Kawahara, R., Ishibashi, K., Mori, T., Kamiyama, N., Harada, S., &
Asano, S. (2007). Detection accuracy of network anomalies using

18.

19.

20.

21.

22.

23.

24.

25.

26.

217.

28.

29.

30.

31.

32.

33.

34.

35.

sampled flow statistics. In Global Telecommunications Conference
2007, GLOBE-COM ’07 (pp. 1959-1964). IEEE.

Kanwal, G., & Rshma, C. (2011). Detection of DDoS attack using
data mining. International Journal of Computing and Business
Research (IJCBR), 2(1), 1-10.

Prathibha, R. C., & Rejimol Robinson, R. R. (2014). A compar-
ative study of defense mechanisms against SYN flooding attack.
International Journal of Computer Applications, 98(1), 16-21.
Fall, R. K., & Stevens, R. W. (2012). TCP/IP illustrated, volume
1: The protocols. Addison-Wesley Professional Computing Series.
New York: Pearson Education.

Sun, C., Fan, J., Shi, L., & Liu, B. (2007). A novel router-based
scheme to mitigate SYN flooding DDoS attacks. In /[EEE INFO-
COM (Poster), Anchorage, Alaska, USA

Kompella, R., Singh, S., & Varghese, G. (2007). On scalable attack
detection in the network. IEEE/ACM Transactions on Networking,
15(1), 14-25.

Chen, W., Yeung, D. Y. (2006). Defending against TCP SYN flood-
ing attacks under different types of IP spoofing. In International
Conference on Mobile Communications and Learning Technolo-
gies (ICNICONSMCLO6) (pp. 38-42).

Chen, W., & Yeung, D. Y. (2006). Throttling spoofed SYN flooding
traffic at the source. Telecommunication Systems, 33(1), 47-65.
Nashat, D., Juang, X., & Horiguchi, S. (2008). Router based detec-
tion for low-rate agents of DDoS attack. In 2008 International
Conference on High Performance Switching and Routing (pp. 177—
182).

Ling, Y., Gu, Y., & Wei, G. (2009). Detect SYN flooding attack in
edge routers. International Journal of Security and its Applications,
3(1), 31-45.

Sun, C., Hu, C., & Liu, B. (2013). SACK?: Effective SYN flood
detection against skillful spoofs. IET Information Security, 6(3),
149-156.

Halagan, T., Kovacik, T., Truchly, P, & Binder, A. (2015). Syn
flood attack detection and type distinguishing mechanism based on
Counting Bloom Filter. In Information and Communication Tech-
nology: Third IFIP TC 5/8 International Conference, ICT-EurAsia
2015, and 9th IFIP WG 8.9 Working Conference, CONFENIS 2015,
Held as Part of WCC 2015, Daejeon, Korea, 4-7 Oct 2015, Pro-
ceedings (pp. 30-39). Springer, New York.

Alzahrani, A. B., Vassilakis, G. V., & Reed, J. M. (2014). Selecting
Bloom-filter header lengths for secure information centric net-
working. In 2014 9th International Symposium on Communication
Systems, Networks & Digital Signal Processing (CSNDSP) (pp.
628-633). IEEE.

Alzahrani, B., Vassilakis, V., Alreshoodi, M., Alarfaj, F., & Alhindi,
A. (2016). Proactive detection of DDOS attacks in Publish-
Subscribe networks. International Journal of Network Security &
Its Applications (IJNSA), 8(4), 1-15.

Blustein, J., & El-Maazawi, A. (2002). Bloom filters—
A tutorial, analysis, and survey. Faculty of Computer Sci-
ence, Dalhousie University. https://www.cs.dal.ca/sites/default/
files/technical_reports/CS-2002-10.pdf. Accessed Jan 2016.
Ramakrishna, M. V., Fu, E., & Bahcekapili, E. (1997). Efficient
hardware hashing functions for high performance computers. /[EEE
Transactions on Computers, 46(12), 1378-1381.

Ramakrishna, M. V., Fu, E., & Bahcekapili, E. (1994). A perfor-
mance study of hashing functions for hardware applications. In
Proceedings of International Conference on Computing and Infor-
mation (pp. 1621-1636).

Harwayne-Gidansky, J., Stefan, D., & Dalal, 1. (2009). FPGA-
based SoC for real-time network intrusion detection using Counting
Bloom Filters. In /IEEE Southeastcon 2009 (pp. 452-458).
Tabataba, E.S., & Hashemi, M.R. (2011). Improving false positive
in Bloom filter. In 2011 19th Iranian Conference on Electrical
Engineering (pp. 1-5).

@ Springer

http://www.cisco.com/c/dam/assets/offers/pdfs/cisco-asr-2016.pdf
http://www.cisco.com/c/dam/assets/offers/pdfs/cisco-asr-2016.pdf
https://securelist.com/analysis/quarterly-malware-reports/73414/kaspersky-ddos-intelligence-report-for-q4-2015/
https://securelist.com/analysis/quarterly-malware-reports/73414/kaspersky-ddos-intelligence-report-for-q4-2015/
https://securelist.com/analysis/quarterly-malware-reports/73414/kaspersky-ddos-intelligence-report-for-q4-2015/
https://www.cs.dal.ca/sites/default/files/technical_reports/CS-2002-10.pdf
https://www.cs.dal.ca/sites/default/files/technical_reports/CS-2002-10.pdf

78

1. Dodig et al.

36. Rottenstreich, O., Kanizo, Y., & Keslassy, 1. (2014). The variable
increment counting Bloom filter. IEEE/ACM Transactions on Net-

working, 22(4), 1092-1105.

37. Sireld, M., Rothenberg, C. E., Aura, T., Zahemszky, A., Nikander,
P, & Ott, J. (2011). Forwarding anomalies in Bloom filter-based
multicast. In INFOCOM, 2011 Proceedings IEEE (pp. 2399-

2407).

38. Fan, L., Cao, P, Almeida, J., & Broder, A. Z. (2000). Sum-
mary cache: A scalable wide-area web cache sharing protocol.
IEEE/ACM Transactions on Networking (TON), 8(3), 281-293.

94

ing with emphasis on memory architectures, and state-of-the-art
concepts and techniques in multicore software engineering and fault-
tolerant computing. He is a member of IEEE and ACM society. He
participates in conference international programs committees, and he
serves as a technical reviewer for various international journals and
conferences.

@ Springer

Ivica Dodig is pursuing a PhD
in a Computer Science program
at Faculty of Electronics and
Computing in Zagreb, Univer-
sity of Zagreb, Croatia. He has a
MS in Computer Sciences from
Faculty of Electronics and Com-
puting in Zagreb, Croatia. Main
area of research is Denial of Ser-
vice attacks. Currently working
at Zagreb, University of Applied
Sciences as a senior lecturer.

Vlado Sruk is an Associate Pro-
fessor at the Department of Elec-
tronics, Microelectronics, Com-
puter and Intelligent Systems at
Faculty of Electrical Engineer-
ing and Computing. He obtained
Ph.D. degree in computer sci-
ence from the University of
Zagreb in 1998. He partici-
pated as a researcher in inter-
national scientific projects. His
current research interests are in
the areas of multicore embed-
ded systems, mobile comput-
ing, high-performance comput-

Davor Cafuta is a PhD can-
didate in a Computer Science
program at Faculty of Electron-
ics and Computing in Zagreb,
University of Zagreb, Croatia.
He has a MS in Computer Sci-
ences from Faculty of Electron-
ics and Computing in Zagreb,
Croatia. Main area of research
is network security and embed-
ded systems. Currently working
at Zagreb, University of Applied
Sciences as a senior lecturer.

	Reducing false rate packet recognition using Dual Counting Bloom Filter
	Abstract
	1 Introduction
	1.1 Background of TCP/IP protocol
	1.2 Algorithms based on Counting Bloom Filter

	2 Related work
	3 Counting Bloom Filter data structure
	3.1 Hash function analysis
	3.2 False rate probability
	3.3 SACK2 algorithm

	4 Dual Counting Bloom Filter data structure
	5 DCBF evaluation
	5.1 Theoretical evaluation
	5.2 Experimental results

	6 Conclusion
	Acknowledgements
	References

