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Abstract Mobile terminals can typically connect to multi-
plewireless networkswhich offer varying levels of suitability
for different classes of service. Due to the changing dynamics
of network attributes and mobile users’ traffic needs, verti-
cal handovers across heterogeneous networks become highly
desirable.Multiple attribute decisionmaking (MADM) tech-
niques offer an efficient approach for ranking competing
networks and selecting the best one according to spe-
cific quality of service parameters. In this paper, a genetic
algorithm (GA) is applied to optimize network attributes’
weighting by emphasizing ranking differences among can-
didate networks, thereby aiding correct decision making
by reducing unnecessary handovers and ranking abnormal-
ities. The performance of the proposed GA-based vertical
handover is investigated with typical MADM techniques
including Simple Additive Weighting (SAW) and Technique
for Order Preference by Similarity to Ideal Solution (TOP-
SIS). The results show that the proposed GA-based weight
determination approach reduces the abnormality observed in
the conventional SAW and TOPSIS techniques substantially.
The results of this paper will help ensuring the application of
MADMmethods to more dynamic and challenging decision
making problems encountered in wireless network.

B Ali F. Almutairi
ali.almut@ku.edu.kw

Mohannad Hamed
mohim8k@hotmail.com

Mohamed Adnan Landolsi
a.landolsi@ku.edu.kw

Mishal Algharabally
m.algharabally@ku.edu.kw

1 Electrical Engineering Department, College of Engineering
and Petroleum, Kuwait University, Khaldiya, Kuwait

Keywords Vertical handover ·
Multiple attribute decision making · Wireless networks ·
Genetic algorithm

1 Introduction

The wide diversity in wireless access technologies is mani-
fested by the coexistence of various heterogeneous networks
with different features and architectures as shown in Fig. 1.
This diversity provides mobile terminals with different con-
nectivity options depending on the offered quality of service
(QoS) parameters and the mobile users’ traffic classes. This
flexibility gives rise to the need of transferring a mobile ter-
minal connectivity from one network to another in a seamless
way. When this process is executed between two networks
with different architectures and air interface protocols, it is
commonly described as “vertical” handover (VHO) [1,2]. A
vertical handover process can typically be divided into three
phases [3]; namely, Handover Initiation Phase, Handover
Decision Phase, and Handover Execution Phase. Different
handover management schemes are presented in [4–9].

The decision making problem in vertical handover execu-
tion takes into consideration several performance attributes
to enable the selection of the most suitable network.Multiple
attribute decision making (MADM) techniques are com-
monly used to take into account several attributes in order
to evaluate a given set of competing alternatives. In the
context of vertical handover, the main objective of these
methods is to rank the set of candidate networks by con-
sidering some evaluation parameters in a structured and
meaningful way. The application of several MADM algo-
rithms for vertical handover has been addressed and the
performance of typical algorithms has been investigated in
[10,11]. This includes Simple Additive Weighting (SAW),
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Fig. 1 Simulation topology of
heterogeneous wireless
networks

Technique for Order Preference by Similarity to Ideal Solu-
tion (TOPSIS), Multiplicative Exponent Weighting (MEW),
Grey Relational Analysis (GRA), ELimination and Choice
Expressing REality (ELECTRE), and Weighted Markov
Chain (WMC). Performance comparisons are also given
among several MADM algorithms such as SAW, MEW,
TOPSIS, GRA, ELECTRE and WMC with different traf-
fic classes [12]. The handover metrics considered include
cost per byte, total bandwidth, available bandwidth, secu-
rity, utilization, delay, jitter and packet loss. A different
approach based on two-stage vertical handover process was
suggested in [13]. On the other hand, different works, as
in [14–16], focused on suitable attribute weighting tech-
niques such as Analytic Hierarchy Process (AHP), Fuzzy
Analytic Hierarchy Process (FAHP), Analytic Network Pro-
cess (ANP), Fuzzy Analytic Network Process (FANP), and
Random Weighting (RW) which are studied and compared
for different mobile users’ traffic classes, including con-
versational, streaming, interactive and background traffic.
The results reported in [14–16] show that different weight-
ing techniques, namely; AHP, FAHP, ANP, FANP and RW,
give widely varying performance when combined with the
TOPSIS, DIA and GRA MADM algorithms. It should how-
ever be noted that the attributes’ weights selection in these
weighting techniques are set by decision-makers in heuris-
tic (arbitrary) ways, leading to subjective network selection
and increased ranking fluctuation, or ranking abnormality,
which refers to the rapid changes in ranking order when a
low ranked alternative is removed. This constitutes a major
drawback as it leads to frequent (and unnecessary) handover

initiations, thereby causing instabilities, delay and/or loss of
service, and drainage of system resources due to increased
computational and power consumption loads. As such, more
robust MADM algorithms are needed to maintain the best
alternative irrespective of the removal or addition of other
alternatives [12], and there has been some recent interest in
mitigating the ranking abnormality problem as discussed in
[17–24]. The authors in [25] also proposed a two-step VHO
decision algorithm based on dynamic weight compensation
by introducing self-adaptive correction matrix. However, the
challenge of ranking abnormality still needs further improve-
ment. Such a challenge motivates the work presented in this
paper, where we introduce a different approach to reduce
ranking abnormality by targeting the weights assignment
rather than looking at the normalization techniques [24]. A
genetic algorithm (GA) weight assignment technique is pro-
posed to reduce the ranking abnormality throughmaximizing
the summation of the ranking differences of candidate net-
works. In contrast with the previously mentioned ranking
abnormality reduction techniques, the proposed GA-based
technique can be applied to any MADMmethod irrespective
of the attributes and normalization techniques used. Fur-
thermore, since attributes’ weights are commonly assigned
based on the (subjective) decision maker’s experience which
can affect the ranking and selection of alternatives, the pro-
posedGAapproachmitigates this problemby automating the
weight generation process through the maximization of the
summation of the ranking differences among candidate alter-
natives. The proposed GA-based algorithm will be evaluated
and validated by thorough comparisons with conventional
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techniques by using metrics based on the ranking abnormal-
ity, attributes’ weights, and ranking difference summation.

The rest of the paper is organized as follows. MADM
methods are presented in Sect. 2. The genetic algorithm
details are highlighted in Sect. 3. Section 4 introduces the
GA-based technique for optimizing attributes’ weighting.
Numerical results and discussions are presented in Sect. 5.
A summary of the work findings and conclusions are given
in Sect. 6.

2 Multiple attribute decision making methods

As noted in the introduction, we consider for comparative
purposes the SAW and TOPSIS methods combined with
AHP, and assess their merits in terms of ranking abnormality,
attributes’ weight values, and ranking difference summation.
We then show that the proposed GA-based weight assign-
ment approach provides distinctively better performance.
For completeness, the AHP, SAW and TOPSIS mathemat-
ical formulations are first highlighted before introducing our
proposed method next. By the same token, the relevant for-
mulations are also specified for the problem at hand, namely
the vertical handover decision among competing wireless
networks.

2.1 Analytic Hierarchy Process (AHP)

The Analytical Hierarchy Process is a procedure that gives
a numerical weight to each decision alternative according
to how well that alternative fulfills the criteria set for deci-
sion making [26]. The generated weights depend on the
importance of each attribute compared to other attributes.
The method attempts to establish a consistent way through
pair-wise comparisons, and relies on experts’ experience for
constructing a decision matrix. The AHP steps are summa-
rized below [26]:

(1) Step 1: Problem decomposition
First, the problem is decomposed into a hierarchy that
contains three levels: (i) the topmost level consists of
the overall objective, (ii) the subsequent level represents
the decision factors, and (iii) the alternative solutions are
located at the bottom level.
(2) Step 2: Construction of a pair-wise comparisonmatrix
The second step attempts to construct a pair-wise com-
parison matrix to give a measurable assessment of the
importance of decision criteria vis-à-vis each other. In our
specific case, the network quality-of-service (QoS) param-
eters are assessed pair-wise. This assessment is quantified
according to Saaty’s 9-point scale which maps the qual-
itative judgments into numerical relative priorities [26],
as shown in Table 1. For example, if attribute A is deci-
sively more important than B andwas assigned the scale 7,

Table 1 AHP importance scale [26]

Intensity of
importance

Definition Description

1 Equal importance Element Ai and Aj are
equally important

3 Weak importance of Ai
over Aj

Experience and
judgments slightly
favors Ai over Aj

5 Essential or strong
importance

Experience and
judgments strongly
favors Ai over Aj

7 Demonstrated
importance

Ai is very strongly
favored over Aj

9 Absolute importance The evidence favoring
Ai over Aj is of the
highest possible order
of affirmation

2, 4, 6, 8 Intermediate importance When compromise is
needed

then attributeB, being relatively less important, is assigned
1/7. The matrix main diagonal is set to 1 as this reflects
any given parameter importance compared with itself.
The non-diagonal entries display inverse symmetry with
respect to themain diagonal because of the reason outlined
above.
After the construction of the comparison matrix, columns
are summed and each entry is normalized by the col-
umnweight. Next, each row of the normalized comparison
matrix is summed and divided by the number of elements
in the row. The result gives a weight vector which contains
the percent weight of each criterion when compared to the
other ones.
(3) Step 3: Measurement of consistency of the weights
The last step forms the sum of each column of the pair-
wise comparison matrix and places it in the last row. The
resultant matrix is then normalized to form a Normalized
Comparison matrix by making the elements of the sum
row as 1. A Consistency Ratio (CR) is obtained as out-
lined in [26]. It is recommended that the value of CR does
not exceed 0.1, in which case the pair-wise comparison
matrix is said to be consistent. The determination of the
most suitable normalization procedure to normalize dif-
ferent criteria is one of the main challenges in MADM
techniques. The performance of MADM techniques with
different normalization is investigated in [27–30].

2.2 Simple Additive Weighting (SAW) method

SAW [12] is among the conventional MADM techniques
used for producing candidate’ scores and ranking alterna-
tives. To illustrate the method, we assume a number of
candidate networks denoted by “m” and a number of deci-
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sion attributes denoted by “n”. A context matrix ASAW is
then defined by:

ASAW =
⎡
⎢⎣
a11 · · · a1n
...

. . .
...

am1 · · · amn

⎤
⎥⎦ (1)

where aij denotes attribute j of candidate network i. With
respect to the decision parameters, it is observed that they
can be classified into two categories: benefit and cost param-
eters, where the higher the value of a benefit parameter, the
better the outcome, and vice versa for a cost parameter. For
our purpose, data rate, security and bandwidth are considered
benefit parameters, and st, delay, and jitter are cost param-
eters. With this classification, the context matrix A is then
normalized to produce a matrix Ā using the following equa-
tions:

For the benefit criteria:

āij = aij∑m
i=1 aij

(2)

For the cost criteria:

āi j =
∑m

i=1 aij
aij

(3)

The normalized context matrix ( Ā) is given by:

Ā =
⎡
⎢⎣
ā11 · · · ā1n
...

. . .
...

ām1 · · · āmn

⎤
⎥⎦ (4)

On the other hand, for every trafficprofile, a givenweights’
vector is assigned and denoted by W with its elements w j ’s
representing the weights of criteria j = 1,…,n. For normal-
ization, the sum of w j ’s is set to 1.

W = [w1 · · · · · ·wn] (5)

Then, a new matrix ¯̄A is formed by multiplying each col-
umn of the Ā matrix that represents any given attribute by
that attribute’s weight. This matrix is given by:

¯̄A =
⎡
⎢⎣
ā11 ∗ w1 · · · ā1n ∗ wn

...
. . .

...

ām1 ∗ w1 · · · āmn ∗ wn

⎤
⎥⎦ (6)

The SAW model finally evaluates all candidate networks
and ranks the alternatives with a numerical score. The net-

work with the highest score is then selected.

SSAW =
n∑
j=1

āij ∗ w j (7)

2.3 Technique for order preference by similarity to ideal
solution (TOPSIS)

TheTOPSISmodel is another commonMADMmethod used
for ranking alternative candidates [12]. It defines an index
that compares the separation of each network to the best and
worst network which indicate ideal and bad solution, respec-
tively. The context matrix ATOPSIS for a given set context of
m candidate networks and n decision criteria is constructed
as follows:

ATOPSIS =
⎡
⎢⎣
a11 · · · a1n
...

. . .
...

am1 · · · amn

⎤
⎥⎦ (8)

where the normalization of attributes is given by:

āij = aij√∑m
i=1 a

2
ij

(9)

The weight normalized matrix ( ¯̄ATOPSIS) is obtained by mul-
tiplying each context criteria by their class weights:

¯̄ATOPSIS =
⎡
⎢⎣
ā11 ∗ w1 · · · ā1n ∗ wn

...
. . .

...

ām1 ∗ w1 · · · āmn ∗ wn

⎤
⎥⎦ (10)

To identify the best and worst alternatives with respect to
a given context criterion (with index j), we find the highest
and lowest values among all

(
āij

)
, respectively. The following

equations illustrate this.

āBestj = Max
(
āi j

)
, i = 1, . . . ,m (11)

āWorstj = Min
(
āij

)
, i = 1, . . . ,m (12)

The distances of each candidate network from the best and
worst solutions are then obtained as:

S+
i =

√√√√
n∑
j=1

(
āij − āBestj

)2
(13)

S−
i =

√√√√
n∑
j=1

(
āij − āWorstj

)2
(14)

To identify the best alternative, the highest value of STOPSIS
is found after ranking based on the relative distances from
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best and worst solutions.

STOPSIS = S−
i

S+
i + S−

i

(15)

3 Genetic algorithm optimization

Genetic Algorithms (GA) have been successfully adopted
for various optimization applications in many fields of sci-
ence and engineering (see, e.g., [30–33]). These algorithms
can be applied to solve different types of optimization prob-
lems, including both constrained and unconstrained ones, by
relying on the principles of natural selection and genetics.

For our purpose, the application ofGAs as a searchmethod
to solve the weight optimization problem is investigated in
this work to reduce ranking abnormality in VHO applica-
tions. In the GA framework, solutions are transformed into
coded forms called chromosomes.Aswith other optimization
methods, a candidate solution viability is rated by an objec-
tive function. In the GA approach, each solution is tested by a
fitness function that reflects its strength among all other solu-
tions in the population. This fitness function can be viewed as
the objective function [34–36]. After the problem is encoded
into chromosomes and a fitness function has been chosen,
the GA evolves solutions until the fitness accuracy is met, or
a maximum number of generations are reached.More specif-
ically, initial populations of candidate solutions are created
randomly. Then the populations are mated and a sequence
of new populations emerges. At each step, individuals in the
current generation are used to create the next population. The
GA-based specific processing steps applied in this work are
summarized in the following:

(1) Evaluation and fitness assignment
The objective function values of the candidate solutions
in the current population are evaluated. The algorithm
uses the objective function values to determine the fitness
values of the candidate solutions in the current popula-
tion.
(2) Selection
The algorithm selects members, called parents, based on
their fitness. The main idea of selection is to prefer bet-
ter solutions to worse ones. There are different strategies
to select the individuals to be copied over into the next
generation. In the “elitism” technique, some of the indi-
viduals in the current population that have the best fitness
values are chosen as elite individuals and are passed to
the next population as children. The technique selects
the first parents by the fitness order and they mate to pro-
duce next generation. In the “roulette wheel” selection
technique, selection is represented as a game of roulette
whereby each individual gets a slice of the wheel, but

more fit ones get larger slices than less fit ones. With
this selection method, the chance of a chromosome to be
selected is calculated according to their fitness (cost) or
according to their rank. In the “tournament” technique, a
small subset of chromosomes is selected randomly and
the one with the best fitness will become a parent. Parents
can also be selected randomly.
Stochastic universal sampling is used in our case as it
chooses several solutions from the population by set-
ting a single random value to sample all of the solutions
by choosing them at evenly spaced intervals. This gives
weaker members of the population a chance to be chosen
and thus reduces the unfair nature of fitness-proportional
selection methods.
(3) Crossover (Recombination)
Crossover combines the vector entries or genes of two
parents to form potentially better solutions (offspring) for
the next generation. Different strategies of crossover are
developed and used according to the optimization prob-
lem at hand. In one-point crossover, a single crossover
point on both parents’ organism strings is selected.
All data beyond that point in either organism string is
swapped between the two parent organisms. The result-
ing organisms are the children. In two-point crossover,
two points are selected on the parent organism strings.
Everything between the two points is swapped between
the parent organisms, rendering two child organisms. On
the other hand, uniform crossover uses a fixed mixing
ratio or a predefined rule between two parents. If themix-
ing ratio is 0.5, the offspring has approximately half of
the genes from first parent and the other half from second
parent, which is the approach used in this paper.
(4) Mutation
Mutation applies random changes to one or more genes
of an individual parent to form children. It is performed
with a low probability in the range 1–20%. Mutation is a
divergence operation. It is intended to occasionally break
one or more members of a population out of a local min-
imum/maximum space and potentially discover a better
one. The end goal is to bring the population to conver-
gence, mutation, being a divergence operation, should
happen less frequently, and typically effects a few mem-
bers of a population in any given generation. Types of
mutations includes: flip bit mutation where the bits of
the chosen genome are inverted. Boundary mutation is
another type where the genome is replaced with lower/
upper bounds randomly. This can be used for integer
and float genes. Uniform mutation is another approach
where the value of the chosen gene is replaced with a
uniform random value selected between user-specified
upper and lower bounds. Gaussian mutation is also used
whereby the operator adds a unit Gaussian distributed
random value to the chosen gene. If it falls outside of the
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user-specified lower or upper bounds for that gene, the
new gene value is clipped. This mutation operator can
only be used for integer and float genes.
Due to the nature of our problem, adaptive feasible muta-
tion is chosen to randomly generate directions that are
adaptive with respect to the last successful or unsuccess-
ful generation. The mutation chooses a direction and step
length that satisfies bounds and linear constraints.
(5) Reproduction
This final step accounts for the reproduction of children
through by selection, crossover, and mutation to form the
next generation.

4 GA-based weight vector determination

In MADM techniques, the weights are often determined by
decisionmakers’ experience, and this could lead to subjectiv-
ity in network selection.Another drawback is that the ranking
differences of evaluation values are small in some environ-
ments. This will make it difficult for a decision maker to
choose the best alternative, which leads to the previously
mentioned ranking abnormality.

In conventional MADM algorithms, the degree of impor-
tance (i.e., weight) of every attributemust be determined. The
larger the weight, the higher the importance of the attribute
corresponding to that weight, and vice versa. In the current
MADM, decision makers rely on users’ requirements and
other subjective experience to set the weights of attributes.
For example, the AHP method is widely used to determine
the weight of each attribute [26]. Other weighting techniques
are also presented in [14–16]. However, these techniques
are found to be subjective assignment methods. As a con-
sequence, the objective selection of the most appropriate
network is not always achieved.Thus, oneof themajor limita-
tions of these conventionalMADMmethods is the absence of
objectiveness with regards to weight assignment, and hence
overall decision making.

In this paper, the weights are obtained by solving an
optimization problem whose objective is to maximize the
summation of the absolute value of the ranking differences
among candidate networks. The determination of theweights
of the attributes is achieved by the application of GA tech-
niques, as discussed in the previous section.

To develop the GA-based approach, we let the parame-
ter Ni represent the ranking value of a certain network I ,
assuming we have M networks with N attributes. The objec-
tive function needs to optimize “�”, the summation of the
absolute value of the ranking values differences of the net-
works, which is given by:

� =
M∑
r=1

M∑
s=r+1

|Nr − Ns | (16)

In case of SAW:

�SAW =
M∑
r=1

M∑
s=r+1

∣∣∣∣∣∣
N∑
j=1

arjW j −
N∑
j=1

asjW j

∣∣∣∣∣∣
(17)

where the values of the weight vectorWvalues are optimized
to maximize �SAW . More specifically, with the TOPSIS
algorithm, the separation measurements of each network
from the positive and negative ideal solutions are given by
the following equations:

S+
i =

√√√√ N∑
i=1

(
w j ∗ aij −

(
w j ∗ aBestj

))2

=
√√√√

N∑
j=1

[
w2

j ∗
(
aij − aBestj

)2]
(18)

S−
i =

√√√√ N∑
i=1

(
w j ∗ aij − (w j ∗ aworstj )

)2

=
√√√√

N∑
j=1

[
w2

j ∗
(
aij − aworstj

)2]
(19)

In the TOPSIS framework, the ranking is then obtained by
calculating the relation of each network to the best and worst
solutions, as outlined in Sect. 2. The summation of the abso-
lute value of the ranking values differences is given by:

�TOPSIS =
M∑
r=1

M∑
s=r+1

∣∣∣∣
S−
r

S+
r + S−

r
− S−

s

S+
s + S−

s

∣∣∣∣ (20)

In the subsequent numerical results, the objective functions
represented by �SAW and �TOPSIS are used as cost metrics
for the GA to obtain optimum weights that maximize these
functions.

With respect to the computational complexity aspects of
the proposed GA-based VHO MADM algorithm, it can be
seen from Eqs. (16), (17) that, for the case of the SAW-based
approach, the main input fed to the GA optimization part
consists of the delta metric, which requires an order of 2n
multiplications and 2nm2 additions, where nis the number of
decision criteria (i.e., length of the weight vectorW ) andm is
the number of candidate networks. Similarly, for the TOPSIS
implementation, the computation of each of the quantities
S+
i and S−

i based on Eqs. (18)–(20) requires 2n multiplica-
tions and 2n additions, while the computation of the delta
metric in Eq. (20) adds on the order of 2m2 divisions and
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Table 2 Attributes values for
the candidate networks

# Network CB (%) S (%) DR (mbps) D (ms) J (ms) L (per 106)

1 UMTS1 60 70 0.1–2 25–50 5–10 20–80

2 UMTS2 80 90 0.1–2 25–50 5–10 20–80

3 WLAN1 10 50 1–11 100–150 10–20 20–80

4 WLAN2 5 50 1–11 100–150 10–20 20–80

5 WIMAX1 50 60 1–60 60–100 3–10 20–80

6 WIMAX2 40 60 1–60 60–100 3–10 20–80

7 LTE1 50 60 2–100 50–300 3–12 20–80

8 LTE2 40 60 2–100 50–300 3–12 20–80

2m2 additions. On the other hand, it is found that for typical
implementations of Genetic Algorithms [33], the complex-
ity requirements are estimated as O(gpn), with g denoting
the number of generations, p the population size and n the
size of the individuals (weights vector), respectively. There-
fore, it can be seen that the computational complexity of
our proposed algorithm is practically manageable given that
the number of VHO candidate networks mis small for all
practical purposes, and the number of decision criteria or
attributes n is also limited (six attributes, in our assumed
MADM model).

5 Results and discussions

5.1 Simulation setup

To investigate the performance of the proposed algorithm,
a simulation environment was developed. Eight networks
with six QoS attributes (as shown in Table 2) are assumed to
be available in the coverage area. The six attributes which
are used to evaluate this heterogeneous environment are:
Cost per Byte (CB), Data-Rate (DR), Security (S), Packet
Delay (D), Packet Jitter (J) and Packet Loss (L). Some of
the attributes are modeled as uniform random variables with
minimum and maximum values specified in Table 2. The
randomness in the values of the attributes are essential to
capture the dynamics of these networks and to reflect a more
realistic scenario. In addition, the existence of two networks
from each category introduces high probability for ranking
abnormality to occur. Attribute values of the candidate net-
works are normalized using Linear Scale Transformation
[26].

The simulation is run for 1000 iterations. For the con-
ventional SAW and TOPSIS methods, the weights, shown
in Table 3, are generated by the AHP technique and are
maintained for all the runs. On the other hand, for the GA
based technique, new weights are generated in every run
based on the optimization approach specified in Eqs. (17)
and (20).

Table 3 Weight vectors associated with the criteria generated by AHP

CB S DR D J L

Wconversational 0.036 0.124 0.104 0.325 0.307 0.102

Wbackground 0.085 0.155 0.441 0.051 0.079 0.186

Winteractive 0.078 0.174 0.092 0.309 0.050 0.294

Wstreaming 0.101 0.195 0.297 0.092 0.119 0.192

5.2 AHP criteria weights for traffic classes

The AHP method takes into account the user experience to
build the decision matrix and to determine the weights of
criteria [26]. Using the AHP procedure outlined in Sect. 2,
the weights for each QoS of the different classes of traffic are
generated as shown in Table 3. These set of weights will be
used as a reference to the weights generated by applying the
proposed GA approach.

5.3 Results

Using the attribute values and weight vector calculated from
AHP, network selection is performed using SAW and TOP-
SIS techniques.

To investigate the performance of the GA based weight
assignment technique, instead of relying on the AHPmethod
of determining fixed attribute weights, the weights are
allowed to varywithin certain ranges to achieve the optimiza-
tion of ranking separation. If the range is too small, ranking
abnormality will not improve in a noticeable manner. Based
on our investigation, it is found that the most suitable range
is to allow the weights to vary within a ±75% window. This
will allow the GA to maximize the summation of the dif-
ferences of the ranking values according to Eqs. (17) and
(20).

GA is then used to maximize the total difference between
candidate networks ranking. The algorithm is applied in con-
junction with SAW and TOPSIS in our case, but can be
also used with other MADM methods. To reduce ranking
abnormalities, the difference between networks final rank-
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Table 4 AHP based static
weights and GA optimized
weights for SAW and topsis
techniques

Attribute AHP SAW %Diff. TOPSIS %Diff.

Conversational
traffic

CB 0.036 0.0129 64.17 0.0141 60.83

S 0.124 0.118 4.84 0.137 10.48

DR 0.104 0.1122 7.88 0.0956 8.08

D 0.325 0.3659 12.58 0.3396 4.49

J 0.307 0.2911 5.18 0.3055 0.49

L 0.102 0.1002 1.76 0.1078 5.69

Background
traffic

CB 0.085 0.0692 18.59 0.0548 35.53

S 0.155 0.1175 24.19 0.134 13.55

DR 0.441 0.5694 29.12 0.5646 28.03

D 0.051 0.026 49.02 0.0268 47.45

J 0.079 0.0702 11.14 0.07 11.39

L 0.186 0.1479 20.48 0.1494 19.68

Interactive
traffic

CB 0.078 0.0547 29.87 0.0499 36.03

S 0.174 0.153 12.07 0.1644 5.52

DR 0.092 0.0872 5.22 0.0746 18.91

D 0.309 0.42 35.92 0.4253 37.64

J 0.05 0.0393 21.40 0.0389 22.20

L 0.294 0.246 16.33 0.2464 16.19

Streaming
traffic

CB 0.101 0.082 18.81 0.0647 35.94

S 0.195 0.1308 32.92 0.1535 21.28

DR 0.297 0.4743 59.70 0.4652 56.63

D 0.092 0.0636 30.87 0.0659 28.37

J 0.119 0.1032 13.28 0.1027 13.70

L 0.192 0.1461 23.91 0.1474 23.23

ing should be as large as possible. The GA is used to choose
the values of the weights’ vector within a set of predefined
boundaries.

Table 4 represents the weights associated with the dif-
ferent criteria generated using the GA based optimization
with the SAW and TOPSIS techniques. The results are to
be compared to those of Table 3 where the weights gener-
ated by the conventional AHP technique. As can be seen
from Table 4, the weights obtained by GA optimization still
reflect the importance of the criteria in a given class of traf-
fic. For example, for conversational traffic, AHP technique
(Table 3) assigns large weights for Delay and Jitter and the
same trend is observed when the GA based technique is used
(Table 4). Another important observation is that in the GA-
based technique, the weight assignments not only reflect the
importance of the criteria but also optimize the summation
of the differences among consecutive ranking values.

Tables 5 and 6 demonstrate the average difference in
assigned final weight value. The total sum of the abso-
lute rank differences is substantially increased by applying

the proposed GA based optimization. One can notice that
the total separation among the ranking value has increased.
For example, in the case of SAW technique, the total rank
value separation has increased by 32.60, 31.88, 49.00, and
64.57% for conversational, background, interactive, and
streaming traffic classes; respectively. For the TOPSIS tech-
nique, the total rank value separation has increased by 33.05,
14.37, 55.51, and 36.78% for conversational, background,
interactive, and streaming traffic classes; respectively. This
improvement demonstrates the effectiveness of the proposed
GA-based optimization in reducing ranking abnormalities.

Table 7 shows the ranking abnormality percentages for
conversational, background, interactive and streaming traf-
fic classes. The table compares the performance of SAW
and TOPSIS when the GA based technique is used to that
obtained by AHP technique. The abnormalities experienced
by SAW and TOPSIS have been reduced substantially. For
conversational traffic, the proposed GA based technique
reduced ranking abnormality by 14.8% for SAW and 21.2%
for TOPSIS. For background traffic, the proposed GA based
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Table 5 Summation of absolute
values of ranking differences for
SAW with or without G.A.

Ranking
differences summation
without G.A.

Ranking
differences summation
with G.A.

Percent increase
(%)

Conversational traffic 0.0914 0.1212 32.60

Background traffic 0.1719 0.2267 31.88

Interactive traffic 0.0753 0.1122 49.00

Streaming traffic 0.1129 0.1858 64.57

Table 6 Summation of absolute
values of ranking differences for
TOPSIS with or without G.A.

Ranking
differences summation
without G.A.

Ranking
differences summation
with G.A.

Percent increase
(%)

Conversational traffic 0.4714 0.6272 33.05

Background traffic 0.7198 0.8232 14.37

Interactive traffic 0.3920 0.6096 55.51

Streaming traffic 0.5441 0.7442 36.78

Table 7 Percentage of ranking
abnormality occurrences for
SAW and TOPSIS after using
G.A. for weights optimization

SAW TOPSIS

Without G.A. (%) With G.A. (%) Without G.A. (%) With G.A. (%)

Conversational traffic 39.7 24.9 47.9 26.7

Background traffic 21.5 12.7 23.6 16.9

Interactive traffic 51.4 26.9 59.2 26.7

Streaming traffic 35.0 18.4 36.0 22.7

technique reduced ranking abnormality by 8.8% for SAW
and 6.7% for TOPSIS. For interactive class, the proposed
GA based technique reduced ranking abnormality by 24.5%
for SAW and 32.5% for TOPSIS. For streaming traffic, the
proposed GA based technique reduced ranking abnormal-
ity by 16.6% for SAW and 13.3% for TOPSIS. These results
confirm again that the application of the GA-based optimiza-
tion leads to noticeable reduction in ranking abnormalities,
especially when these abnormalities are high with other con-
ventional methods.

6 Conclusion

This paper proposed the use of GA-based approach to opti-
mize the weights of the network attributes to maximize the
total difference among the rank values of the networks.
As opposed to the conventional AHP technique, the pro-
posed GA optimization is used to generate dynamic weights
for SAW and TOPSIS MADM techniques. It is found that
incorporating the GA in MADM methods reduces the sub-
jectivity in assigning weight values. Furthermore; it is shown
that the proposed approach results in generating dynamic
weights values that represents the importance of the network
attributes. The abnormalities of the SAW and TOPSIS tech-

niques have been reduced for all classes of services when
the GA based proposed technique is applied. In addition, the
proposed approach can be applied to other MADMmethods
to reduce the ranking abnormalities.
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