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Abstract This paper studies the transceiver design for
multiuser multiple-input multiple-output cognitive radio net-
works. Different from the conventional methods which aim
at maximizing the spectral efficiency, this paper focuses on
maximizing the energy efficiency (EE) of the network. First,
we formulate the precoding and decoding matrix designs as
optimization problems which maximize the EE of the net-
work subject to per-user power and interference constraints.
With a higher priority in accessing the spectrum, the primary
users (PUs) can design their transmission strategies without
awareness of the secondary user (SU) performance. Thus, we
apply a full interference alignment technique to eliminate
interference between the PUs. Then, the EE maximization
problem for the primary network can be reformulated as a
tractable concave-convex fractional program which can be
solved by the Dinkelbach method. On the other hand, the
uncoordinated interference from the PUs to the SUs can-
not be completely eliminated due to a limited coordination
between the PUs with the SUs. The secondary transceivers
are designed to optimize the EE while enforcing zero-
interference to the PUs. Since the EE maximization for the
secondary network is an intractable fractional programming
problem, we develop an iterative algorithm with provable
convergence by invoking the difference of convex functions
programming alongwith theDinkelbachmethod. In addition,
we also derive closed-form expressions for the solutions in
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each iteration to gain insights into the structures of the opti-
mal transceivers. The simulation results demonstrate that our
proposed method outperforms the conventional approaches
in terms of the EE.

Keywords Cognitive radio · Energy efficiency · MIMO
interference channels · Transceiver design · Interference
alignment

1 Introduction

Cognitive radio (CR) has been widely recognized as a pow-
erful means to efficiently utilize the scarce and precious
frequency radio resources [1,2]. The principle of the CR
technology is to allow the secondary users (SUs) to share
the spectrum bands licensed to the primary users (PUs). In
general, the operation models of the CR networks can be
classified into opportunistic spectrum access (OSA) or spec-
trum sharing (SS) models [2]. In the OSA model, the SUs
can opportunistically access the spectrum if they can find the
spectrum holes or white spaces in which the PUs are inactive.
In contrast, in the SS model, the SUs can transmit concur-
rently with the PUs. However, the SUs are provided a lower
priority in accessing the spectrum than thePUs.Thus, theSUs
are only allowed to transmit if they do not harmfully affect
the performance of the PUs [1,3]. Due to simultaneous trans-
missions of the PUs and SUs, the SS model can utilize the
spectrum more efficiently than the OSA provided that inter-
ference is properly managed. Thus, the design problems of
the SU transmission strategies to cope with interference and
to improve the secondary network performance without any
degradation in the PU transmission performance are crucial
inCRnetwork designs [1,3,4]. The focus of the present paper
is on the underlay multiple-input multiple-output (MIMO)

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s11235-017-0300-9&domain=pdf
http://orcid.org/0000-0003-2569-4152


470 H. H. Kha et al.

CR networks in which the users exploit spatial dimensions
for interference management.

Research works have been extensively conducted to
improve the performance of the CR networks; see, for exam-
ple, [1,4–9] and references therein. Two performancemetrics
which are widely used in the CR designs are the sum-
rate maximization (SRM) and minimum mean square error
(MMSE) [4–7,9]. The sum-rate functions are in general
non-concave in the design variables of the precoding and
decoding matrices and, thus, finding the optimal solutions
to the sum-rate maximization problems is difficult [4–6]. In
[4], the weighted sum-rate maximization of the SUs under
the per-user transmit power constraints and CR interference
constraints was considered in which the geometric program-
ming and network duality methods were used to develop the
alternative centralized algorithm for resource allocation. In
addition, the semi-distributed algorithm was proposed by
exploiting the primal decomposition technique. Similarly,
the convex relaxation technique and the uplink-downlink
dualitywere introduced in [5] tomaximize theweighted sum-
rate of the multiple-input single-output (MISO) CR network.
Alternatively, to overcome the difficulty associated with the
non-concavity of the sum-rate function, zero-forcing tech-
niques were used to cancel interference between the SUs
[6]. On the other hand, the MMSE-based methods for the
transceiver designs in CR networks were introduced in [7,8].
More specifically, non-iterative adaptive MMSE-block diag-
onalization techniques were proposed in [7] for multiuser
MIMO CR networks. In [8], the alternating optimization
techniques with reduced complexity were used since the
MMSE design problems are not jointly convex in the design
variables. Recently, interference alignment (IA) has been
emerged as an effective approach to manage interference.
It is enable not only to cancel interference but also to achieve
the maximum degrees of freedom (DoFs) [10]. The key prin-
ciple of IA is that the transmitters are cooperative with each
other to align their transmitted signals into a certain inter-
ference subspace at each unintended receiver such that the
desired signals can be received at the interference-free sub-
space. IA aims at restricting the dimension of the interference
subspace while maximizing the dimension of the desired sig-
nal subspace at each receiver. The conventional IA has been
widely applied into interference channels [11–13]. Recently,
the studies of IA in CR networks have been a very active
research area [1,3,10,14]. In CR networks, to guarantee no
harmful interference from the SUs to the PUs, the interfer-
ence from the SUs should be aligned into the subspace which
is orthogonal to the desired signal subspace at each primary
receiver (PRx).

In general, the aforementioned designs aimmainly at opti-
mizing the spectral efficiency by seeking the transceivers to
maximize the sum-rate or the DoFs. However, the spectral
efficiency schemes tend to use the maximum transmit power

which may result in energy inefficiency. Recently, due to
increasing global carbon dioxide (CO2) emissions and grow-
ing energy costs, greenwireless communication systemswith
energy efficiency have drawn increasing attention [15–19].
In this paper, we consider a MIMO CR network in which
multiple SUs share the same frequency spectrum with mul-
tiple PUs. Different from the conventional approaches, the
present paper focuses on designing the transmission strate-
gies of the users to maximize the energy efficiency rather
than the spectral efficiency. It should be emphasized that the
sum-rate maximization in CR networks through IA is mathe-
matically challenging to solve due to the nonconvexity of the
design problem [10]. Thus, the design problems of the EE
maximization in this paper will be more difficult since the
objective functions associated with the EE are highly non-
linear and non-concave fractional functions.

In CR networks, the PUs have a higher priority to access
the radio resource while the SU transmissions are required
not to degrade the performance of the PUs [20]. Thus, the
PUs focus on dealing with the mutual interference between
the users in the primary network while the SUs handle not
only interference between the users in their own network but
also interference from and to the PUs. Thus, interferencemit-
igation for the secondary network is more challenging than
that in the primary network. In our proposed method, full
IA is applied to the primary network to mitigate interference
between the PUs and, then, the EE maximization problem
for the primary network can be reformulated into a tractable
fractional programming problem which can be solved by
invoking the Dinkelbach method [21]. In contrast, it may
be impossible to obtain perfect IA in the secondary network
since the secondary receivers (SRxs) suffer from the unco-
ordinated interference caused by the primary transmitters
(PTxs). Thus, in this paper, we propose a partial IA scheme
for the secondary network in which the transceiver designs of
the SUs are designed to optimize the EE while enforcing the
signals transmitted from the secondary transmitters (STxs) to
be aligned into the unused dimensions of the PRxs. Since the
EE maximization of the secondary network is an intractable
nonlinear fractional programming problem. Thus, to refor-
mulate its objective function as a concave-convex fractional
function, we propose to reformulate the numerator of the
objective function as a difference of two concave functions
and, then, one of them is linearized. Then, we develop an iter-
ative algorithm by using the difference of convex functions
(DC) programming combined with the Dinkelbach method.
Moreover, to obtain more insights into the structures of the
transceivers, we also derive the closed-form expressions for
the transceivers in each iteration. We show that the conver-
gence of the proposed iterative algorithms are guaranteed.
Simulation results are provided to demonstrate the effective-
ness of the proposed method in terms of the achievable EE
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when compared to the other methods which maximize the
spectral efficiency.

The rest of the paper is organized as follows. In Sect. 2,
the system model of the CR network is introduced and the
transceiver design problems for the EEmaximization are for-
mulated. The transceiver design algorithms for maximizing
the EE in the primary and secondary networks are proposed
in Sect. 3. Section 4 provides simulation results to evaluate
the effectiveness of the proposed algorithms. Finally, con-
cluding remarks are drawn in Sect. 5.

Notations: Throughout this paper, boldface lowercase and
uppercase letters denote vectors and matrices, respectively.
(·)H denotes the conjugate transpose operation while E(.) is
the statistical expectation. ||xxx || and ||XXX ||F denote Euclidean
normof vector xxx and the Frobenius normofmatrix XXX , respec-
tively. We define [x]+ = max{0, x}. [XXX ]�k is a matrix whose
columns are taken from column k to column � of matrix
XXX . III n and 000n×m represent respectively the n × n identity
and n × m zero matrices. 〈XXX〉, |XXX |, rank(XXX), and N (XXX)

denote the trace, determinant, rank and null space of matrix
XXX . XXX � 0 means that XXX is a Hermitian positive semidefinite
matrix. X⊥ denotes an orthogonal subspace of the subspace
X . xxx ∼ CN (x̄xx, RRRxxx ) represents a complex Gaussian random
vector xxx with mean x̄xx and covariance RRRxxx .

2 System model and problem statement

We consider a CR network where Ks SUs share the same
spectrum with Kp PUs. This model can be considered as a
K -userMIMO interference channel with K = Ks +Kp. The
set of PUs, denoted as Kp = {1, . . . , Kp}, forms a primary
network while the set of SUs, Ks = {Kp + 1, . . . , Kp +
Ks}, forms a secondary network. Transmitter (Tx) k, where
k ∈ K = {1, . . . , K }, is equipped with Mk antennas while
receiver (Rx) k uses Nk antennas. Each transmitter sends its
signal to an intended receiver and causes interference to the
unintended users. Let xxxk ∈ C

dk×1 be the signal transmitted
from Tx k to the intended Rx k, in which dk is the number of
data streams. The transmitted signal vectors xxxk are assumed
to be independent and identically distributed (i.i.d.) so that
E{xxxkxxxHk } = III and E{xxx�xxxHk } = 000,∀� 	= k. Assume that
HHHk,� ∈ C

Nk×M� is the flat fading channel matrix from Tx
� to Rx k. Then, the received signal vector at Rx k can be
represented as

yyyk = WWWH
k HHHk,kFFFkxxxk

︸ ︷︷ ︸

desired signal

+
∑

�∈K,� 	=k

WWWH
k HHHk,�FFF�xxx�

︸ ︷︷ ︸

interference among users

+WWWH
k nnnk

︸ ︷︷ ︸

noise

(1)

where FFFk ∈ C
Mk×dk is a precoding matrix (PM) applied to

xxxk before transmission; nnnk ∈ C
Nk×1 is the complex additive

white Gaussian noise (AWGN) vector at Rx k with zeromean
and covariance matrix σ 2

k III , i.e., nnnk ∼ CN (000, σ 2
k III ); andWWWk

is the decoding matrix (DM) at Rx k. Then, the achievable
rate, Rk({FFFk}, {WWWk}), of user k is given by [1,10]

Rk({FFFk}, {WWWk}) = log2

∣

∣

∣III dk +WWWH
k HHHk,kFFFkFFF

H
k HHHH

k,kWWWkRRR
−1
k

∣

∣

∣

(2)

where RRRk = WWWH
k (

∑

�∈K,� 	=k HHHk,�FFF�FFFH
� HHHH

k,� + σ 2
k III dk )WWWk

is the covariance matrix of interference plus noise at Rx k.
The EEs of the primary and secondary networks are

respectively defined as [17,22,23]

ηPEE({FFFk,WWWk}k∈Kp ) =
∑

k∈Kp
Rk({FFFk}, {WWWk})

∑

k∈Kp

(

ζk〈FFFkFFFH
k 〉 + Pck

) (3)

ηSEE({FFFk,WWWk}k∈Ks ) =
∑

k∈Ks
Rk({FFFk}, {WWWk})

∑

k∈Ks

(

ζk〈FFFkFFFH
k 〉 + Pck

) (4)

where Pck and 1/ζk are circuit power and the power amplifier
efficiency parameters at Tx k. For simplicity of presentation,
we assume ζk = 1 and Pck = Pc [17,23].

In this paper, we assume that the PUs have the perfect
knowledge of the channels between the PUs in the pri-
mary network while the global knowledge of channel state
information (CSI) is available at the SUs. As discussed in
[24], such CSI can be obtained by exploiting the channel
reciprocity, feedback channels, and learning mechanisms.
Alternatively, CSI can be acquired by employing a fusion
center [3]. Such an assumption on perfect CSI is also widely
adopted in the literature; see, for example [24–26] and ref-
erences therein. In any case of imperfect CSI, the results
in this paper can be treated as benchmarks. Given that per-
fect CSI is available at the users, the problem of interest is
to jointly design the PMs and DMs which adapt with the
channel conditions to maximize the EE of the primary and
secondary networks. The EE maximization problem for the
primary network can be mathematically posed as

max
{FFFk ,WWWk }k∈Kp

ηPEE (5a)

s.t. 〈FFFkFFF
H
k 〉 ≤ Pk,∀k ∈ Kp (5b)

where Pk is the maximum transmit power at Tx k and con-
dition (5b) imposes the power constraint on the Txs.

In CR networks, the SU transmissions must preserve
the performance of the PUs by adapting their transmission
strategies to guarantee no harmful interference to the PUs.
Thus, the EE maximization for the secondary network can
be expressed as
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max
{FFFk ,WWWk }k∈Ks

ηSEE (6a)

s.t. WH
i HHHi,kFFFk = 000,∀k ∈ Ks, i ∈ Kp (6b)

〈FFFkFFF
H
k 〉 ≤ Pk,∀k ∈ Ks . (6c)

Here, condition (6b) ensures that the interference from the
STxs must not be pilled into the PRxs. Condition (6c) repre-
sents the per-user transmit power constraints.

It should be noted that the coupling of PMs and DMs
in the interference terms makes the rate function (2) highly
nonlinear and nonconcave. Thus, the objective functions (5a)
and (6a) are fractional functions with nonconcave numera-
tors. Consequently, the optimization problems (5) and (6) are
computationally intractable to solve directly.

3 Proposed algorithms for energy efficiency
maximization

In this section, we will propose the structures of the PMs
and DMs to mitigate interference and reformulate the opti-
mization problems (5) and (6) into amenable ones. Then, we
develop effective iterative algorithms to find the optimum
solutions to (5) and (6).

3.1 Energy efficiency maximization for the primary
network

In the CR network, the PUs have higher priority to access
the spectrum and, thus, they are oblivious to the presence of
the SUs. They selfishly design their transmission strategies to
maximize theirEEwithout awareness of theSUperformance.
To overcome the mathematical difficulties in solving prob-
lem (5) and make the optimization problem more tractable,
IA is adopted to cancel the PU interference by aligning the
interference signals into a reduced dimensional subspace at
each PRx. To this end, the PMs of the PTxs and the DMs of
the PRxs are respectively designed to have the structures as

FFFk = CCCkBBBkAAAk,∀k ∈ Kp (7)

WWWk = GGGkDDDk,∀k ∈ Kp, (8)

wherematricesCCCk ∈ C
Mk×dk andGGGk ∈ C

Nk×dk are designed
to confine the interference signals into an interference sub-
space at eachPRxwhilematrices BBBk ∈ C

dk×dk , AAAk ∈ C
dk×dk

and DDDk ∈ C
dk×dk are then designed for the EEmaximization

of the primary network.
Given the zero-interference from the SUs to the PUs in

(6b), interference at the PRxs in (1) can be perfectly elimi-
nated if the following IA conditions are satisfied

GGGH
k HHHk,�CCC� = 000,∀� ∈ Kp \ {k}, k ∈ Kp. (9)

To remove all interferences at PRx k, the interference signals
HHHk,�CCC�,∀� ∈ Kp \ {k}, are aligned into the interference
receiving subspace G⊥

k which is spanned by the orthonormal

basis matrix G̃GGk . To fulfill conditions (9), matrices G̃GGk and
CCC� can be obtained by using an iterative IA algorithm in [27].
Particularly, for fixed {G̃GGk}k∈Kp , CCC� can be calculated by

CCC� = ζ
d�

min

⎧

⎨

⎩

∑

k∈Kp,k 	=�

HHHH
k,�

(

III − G̃GGkG̃GG
H
k

)

HHHk,�

⎫

⎬

⎭

(10)

where ζ d
min {XXX} is a matrix whose columns are the d eigen-

vectors corresponding to the d smallest eigenvalues of XXX .
Then, for given {CCC�}�∈Kp , G̃GGk can be computed by

G̃GGk = ζ Nk−dk
max

⎧

⎨

⎩

∑

�∈Kp,� 	=k

HHHk,�CCC�CCC
H
� HHHH

k,�

⎫

⎬

⎭

(11)

where ζ
Nk−dk
max {XXX} is a matrix which consists of the (Nk −dk)

dominant eigenvectors of matrix XXX . Finally, using the singu-

lar value decomposition (SVD), one obtains III − G̃GGkG̃GG
H
k =

ΠΠΠkΣΣΣkΠΠΠ
H
k and, then matrices GGGk , k ∈ Kp, are defined by

GGGk = ΠΠΠk

(

[ΣΣΣk]dk1
)1/2

. (12)

The feasible condition for the IA scheme in (9) can be derived
by recalling a proper system inwhich the number of variables
Neq is no less than the number of equations Nva [28]. Neq

and Nva can be directly obtained from (9) and one has the
feasible IA condition as follows

∑

k∈Kp

dk(Nk − dk) +
∑

�∈Kp

d�(M� − d�) ≥
∑

� 	=k

dkd�. (13)

The next step is to design matrices BBBk and AAAk of the
PTxs as well as matrices DDDk of the PRxs, ∀k ∈ Kp, to
maximize the EE of the primary links. Note that after apply-
ing IA, the effective channel between Tx k and Rx k is
H̃HHk,k = GGGH

k HHHk,kCCCk ∈ C
dk×dk . The eigmode transmissions

are proposed to design BBBk and DDDk [29]. Specifically, we take
the SVD of the effective channel as follows

H̃HHk,k = Π̃ΠΠkΛ̃ΛΛkΩ̃ΩΩ
H
k , (14)

where Π̃ΠΠk ∈ C
dk×dk and Ω̃ΩΩk ∈ C

dk×dk are unitary matrix
which contains the left-singular and right-singular vectors,
Λ̃ΛΛk = diag(λ̃k,1, . . . , λ̃k,dk ) is a diagonal matrix where λ̃k,t
is the t-th largest singular value of H̃HHk,k . Then, matrices BBBk ,
DDDk , and AAAk are designed as follows
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BBBk = Ω̃ΩΩk, (15)

DDDk = Π̃ΠΠk, (16)

AAAk = diag(
√
ak,1, . . . ,

√
ak,dk ), (17)

where ak,t ≥ 0,∀t ∈ Sk = {1, . . . , dk}, is the power allo-
cated to data stream t of STx k. After applying IA in (9)
and using (15), (16), (17), the achievable rate of PU k in (2)
reduces to

Rk(AAAk) =
dk

∑

t=1

log2(1 + ak,t gk,t ),

where gkt = λ̃2k,t

σ 2
k
is the channel gain to noise ratio of stream

t at PRx k. Accordingly, problem (5) is rewritten as

max{ak,t }≥0
ηPEE =

∑

k∈Kp
Rk(AAAk)

∑

k∈Kp

(
∑dk

t=1 ak,t + Pc
) (18a)

s.t.
dk

∑

t=1

ak,t ≤ Pk,∀k ∈ Kp. (18b)

The cost function (18a) is a ratio of a concave function and a
convex one while constraints (18b) are convex. Thus, prob-
lem (18) is a concave-convex fractional program which can
be solved by the Dinkelbach method [21]. By invoking the
Dinkelbachmethod, our goal is to derive closed-form expres-
sions at each iteration to solve (18). First, we introduce a
parameterized problem as follows

max{ak,t }≥0

∑

k∈Kp

dk
∑

t=1

log2(1 + ak,t gk,t )−τ
∑

k∈Kp

⎛

⎝

dk
∑

t=1

ak,t + Pc

⎞

⎠

(19a)

s.t. (18b). (19b)

Problem (19) is a convex optimization problem and satisfies
the Slater’s conditions. Hence, it can be solved by its dual
problem given by

min{μk }≥0
max{ak,t }≥0

Lp
({ak,t }, {μk}

)

, (20)

where the partial Lagrangian function is defined as

Lp
({ak,t }, {μk}

) =
∑

k∈Kp

dk
∑

t=1

log2(1 + ak,t gk,t )

− τ
∑

k∈Kp

⎛

⎝

di
∑

t=1

ak,t + Pc

⎞

⎠ +
∑

k∈Kp

μk

⎛

⎝Pk −
dk

∑

t=1

ak,t

⎞

⎠

(21)

and {μk}k∈Kp are the Lagrangian multipliers corresponding
to (18b).

Problem (20) are solved by an iterative algorithm inwhich
the inner maximization and outer minimization problems
are alternatively solved. For given sets of the Lagrangian
multipliers {μk}k∈Kp , it is easily shown that the inner
maximization problem in (20) can be separated into Kp inde-
pendent subproblems. Specifically, in each iteration, the inner
maximization subproblem to find ak,t , can be written as

max{ak,t }≥0

dk
∑

t=1

log2(1 + ak,t gk,t ) − (τ + μk)

dk
∑

t=1

ak,t . (22)

The optimal solution to problem (22) can be easily derived
as

ak,t =
[

1

ln 2(τ + μk)
− 1

gk,t

]+
,∀t ∈ Sk . (23)

Now, for given {ak,t }k∈Kp,t∈Sk , the outer minimization prob-
lem in (20) are solved using the subgradient method to obtain
the optimal solutions {μ∗

k}k∈Kp . Particularly, at the (q+1)-th
iteration, {μk}k∈Kp are computed by

μ
(q+1)
k =

⎡

⎣μ
(q)
k − ρ

⎛

⎝Pk −
dk

∑

t=1

ak,t

⎞

⎠

⎤

⎦

+
, (24)

where ρ > 0 is the step size. Note that the convergence of the
subgradient method is guaranteed if the step size is properly
chosen [30]. Thus, the Lagrangian multipliers {μk}k∈Kp are
calculated iteratively until convergence.

Finally, for given {ak,t }k∈Kp,t∈Sk , we update τ by the
Dinkelbach method. The detailed algorithm to solve (18) is
summarized in Algorithm 1.

Algorithm1 : The power allocation algorithm (PAA) to solve
(18) for the EE maximization of the primary network

1: Initialze: randomize τ (0), {μ(0)
k },∀k ∈ Kp; set n = 0, q = 0; given

ρ, and error tolerance {ε1, ε2} > 0.
2: repeat
3: Update n = n + 1;
4: for k = 1 : Kp do
5: repeat
6: Update q = q + 1;
7: Calculate a∗

k,t ,∀t ∈ Sk , from (23);
8: Update μk from (24);

9: until

∣

∣

∣

∣

∣

μk

(

Pk −
dk∑

t=1
ak,t

)∣

∣

∣

∣

∣

≤ ε2;

10: Output: μ∗
k and a

∗
k,t ,∀t ∈ Sk ;

11: end for
12: Update τ (n) = η

(n)
SEE as in (18a) for given a∗

k,t ,∀k ∈ Kp, t ∈ Sk ;

13: until |τ (n) − τ (n−1)| ≤ ε1;
14: Output: aoptk,t ,∀k ∈ Kp, t ∈ Sk .
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3.2 Energy efficiency maximization for the secondary
network

Due to the uncoordinated interference from the PUs to the
SRxs, perfect IA for the secondary network may be not
obtained. Thus, we propose a partial IA scheme in which
only the interference from the STxs to the PRxs is perfectly
eliminated. Thus, the PMs of the STxs are designed to have
structures as

FFFk = CCCkBBBk,∀k ∈ Ks (25)

where the orthonormal matrices CCCk ∈ C
Mk×dk is selected

to align interference signals from the STx into the subspace
which is orthogonal to the receive subspaces of the PRxs
while matrices BBBk ∈ C

dk×dk are then designed for the EE
maximization of the secondary network.

In order to cancel interference from STx k to all the PRxs,
PMs FFFk , ∀k ∈ Ks, are designed to satisfy constraint (6b)
which can be rewritten as

H̄HHkFFFk = 000(
∑

i∈Kp di
)

×dk
, (26)

where H̄HHk ∈ C

(
∑

i∈Kp di
)

×Mk is given by

H̄HHk =
[

(

WWWH
1 HHH1,k

)H
, . . . ,

(

WWWH
Kp

HHHKp,k

)H
]H

. (27)

Constraint (26) ensures that FFFk lies in the null space of the
interference matrix H̄HHk , which is satisfied if

Mk ≥
∑

i∈Kp

di + dk, (28)

and, then we choose CCCk = N (H̄HHk).
In the next step, the matrices BBBk and the DMsWWWk of the

SUs are designed to suppress interference and to maximize
the EE. The optimization problem (6) can be equivalently
rewritten as

max
{QQQk }�0,{WWWk }

ηSEE =
∑

k∈Ks
Rk({QQQk}, {WWWk})

∑

k∈Ks

(〈CCCkQQQkCCCH
k 〉 + Pc

) (29a)

s.t. 〈CCCkQQQkCCC
H
k 〉 ≤ Pk,∀k ∈ Ks (29b)

where QQQk = BBBkBBBH
k ∈ C

dk×dk while the achievable data rate
Rk({QQQk}, {WWWk}) of SU k is given by

Rk(QQQk,WWWk)

= log2

∣

∣

∣III dk +WWWH
k HHHk,kCCCkQQQkCCC

H
k HHHH

k,kWWWkRRR
−1
k

∣

∣

∣ , (30)

where RRRk = WWWH
k (

∑

�∈K,� 	=k HHHk,�CCC�QQQ�CCCH
� HHHH

k,� + σ 2
k III dk )

WWWk .
Firstly, to deal with the coupling of PMs and DMs in the

design problem (29), we use an alternating optimization tech-
nique to iteratively solve problem (29). Particularly, at each
iteration, the DMs {WWWk} are updated by solving problem
(29) for fixed PMs {FFFk} and, then, {FFFk} are updated by solv-
ing problem (29) for given {WWWk}. It should be noted that for
fixed PMs {FFFk}, problem (29) with respect to {WWWk} is exactly
reduced to the sum rate maximization problem of Ks-user
MIMO channels. Therefore, for given {FFFk}, we invoke the
optimal DM solutions given in [35]

WWW [ j]
k = ΘΘΘ−1

k, j HHHk,kFFF
[ j]
k

∥

∥

∥ΘΘΘ−1
k, j HHHk,kFFF

[ j]
k

∥

∥

∥

(31)

whereWWW [ j]
k and FFF [ j]

k are the j-th column vectors ofWWWk and
FFFk , respectively; and

ΘΘΘk, j =
∑

�∈K

d�
∑

a=1

HHHk,�FFF
[a]
� (FFF [a]

� )HHHHH
k,�

− HHHk,kFFF
[ j]
k (FFF [ j]

k )HHHHH
k,k + σ 2

k III

is the interference plus noise covariancematrix of data stream
j at SRx k.
For fixed {WWWk}, we now update PM FFFk by solving the

precoding design problem as follows

max
{QQQk }�0

ηSEE =
∑

k∈Ks
Rk({QQQk})

∑

k∈Ks

(〈CCCkQQQkCCCH
k 〉 + Pc

) (32a)

s.t. 〈CCCkQQQkCCC
H
k 〉 ≤ Pk,∀k ∈ Ks . (32b)

It is worth noting the Dinkelbach method cannot be
directly applied to problem (32) since

∑

k∈Ks
Rk({QQQk}) is

not concave. To handle this difficulty, we rewrite the sum rate
as

∑

k∈Ks

Rk({QQQk}) = Rk(QQQk,QQQ−k) + fk(QQQk,QQQ−k), (33)

where Rk(QQQk,QQQ−k) and fk(QQQk,QQQ−k) denote the rate of
user k and the sum rate of all links except for link k, respec-
tively, which are expressed as

Rk(QQQk,QQQ−k) = log2

∣

∣

∣III dk + H̃HHk,kQQQkH̃HH
H
k,kRRR

−1
k

∣

∣

∣ (34)

fk(QQQk,QQQ−k) =
∑

�∈Ks\k
log2

∣

∣

∣III d�
+ H̃HH �,�QQQ�H̃HH

H
�,�RRR

−1
�

∣

∣

∣ (35)

where QQQ−k � {QQQ�|� ∈ K \ k}, RRR� = σ 2
� WWW

H
� WWW � +

∑

j∈K\� H̃HH �, j QQQ j H̃HH
H
�, j ∈ C

d�×d� , and H̃HHk,� = WWWH
k HHHk,�CCCk ∈
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C
dk×dk ,∀� ∈ K,∀k ∈ Ks . Notice thatRk(QQQk,QQQ−k) is con-

cave and fk(QQQk,QQQ−k) is a convex function in QQQk whenever
QQQ−k is fixed, as shown in “Appendix 1”. Hence, the sum rate
∑

k∈Ks
Rk({QQQk}) can be regarded as a DC function if only

one variable QQQk is optimized for given QQQ−k . Thus, to recast
the numerator of the objective function (32a) as a concave
function, we find a tight lower bound of the convex function
fk(QQQk,QQQ−k) around a feasible point Q̃QQk as follows

fk(QQQk,QQQ−k) ≥ fk(Q̃QQk,QQQ−k) + 〈DDDk(Q̃QQk)
H (QQQk − Q̃QQk)

〉

(36)

where

DDDk(QQQk) � ∇QQQk fk(QQQk,QQQ−k) = − 1

ln 2

∑

�∈Ks\k
H̃HH

H
�,k

[

RRR−1
�

−(RRR� + XXX�)
−1]

H̃HH �,k (37)

in which XXX� = H̃HH �,�QQQ�H̃HH
H
�,�. The derivation of (37) is pro-

vided in “Appendix 2”. Therefore, for given QQQ−k , the sum
data rate

∑

k∈Ks
Rk(QQQk) can be approximated by its lower

bound at Q̃QQk as follows.

∑

k∈Ks

Rk(QQQk) ≥ R̃sum(QQQk) (38)

where

R̃sum(QQQk) � log2

∣

∣

∣III + H̃HHk,kQQQkH̃HH
H
k,kRRR

−1
k

∣

∣

∣ + fk(Q̃QQk,QQQ−k)

+〈DDDk(Q̃QQk)
H (QQQk − Q̃QQk)

〉

. (39)

It should be emphasized that R̃sum(QQQk) is a concave function
in QQQk and the equality of (38) can be achieved at QQQk = Q̃QQk .
Defining

η̃SEE(QQQk,QQQ−k) = R̃sum(QQQk)
∑

k∈Ks

(〈CCCkQQQkCCCH
k 〉 + Pc

) (40)

inequality (38) results in

ηSEE(QQQk,QQQ−k) ≥ η̃SEE(QQQk,QQQ−k) (41)

for given QQQ−k , and (41) is meet at equality at QQQk = Q̃QQk .
Accordingly, problem (32) for givenQQQ−k canbe decomposed
into per-link problem at Q̃QQk as

max
QQQk�0

η̃SEE = R̃sum(QQQk)
∑

k∈Ks

(〈CCCkQQQkCCCH
k 〉 + Pc

) (42a)

s.t. 〈CCCkQQQkCCC
H
k 〉 ≤ Pk . (42b)

We exploit the technique of nonlinear fractional program-
ming, e.g., the Dinkelbach method, to solve problem (42).

Particularly,wefirst define a parametric problemwith respect
to τ as

max
QQQk�0

g(τ,QQQk) = R̃sum(QQQk) − τ
∑

k∈Ks

(

〈CCCkQQQkCCC
H
k 〉 + Pc

)

(43a)

s.t. 〈CCCkQQQkCCC
H
k 〉 ≤ Pk . (43b)

Let QQQ�
k(τ ) be an optimal solution to (43) for a given τ . As

shown in [21], there exists τ � such that g(τ �,QQQ�
k(τ

�)) = 0
and, then,QQQ�

k(τ
�) is also the optimal solution to (42).QQQ�

k(τ
�)

can be found by adopting the Dinkelbach method [21]. More
specially, for a fixed τ , we solve (43) to obtain QQQ�

k(τ ) and,
then, we use the Dinkelbach approach to update τ .

It is obvious that, for given τ , problem (43) is a con-
vex problem and can be solved by standard convex solver
packets, e.g., CVX [31]. However, to investigate insights to
the structure of solution, we next solve problem (43) with a
closed-form solution. Since problem (43) is convex and satis-
fies the Slater’s condition, it can be solved using the following
dual problem

min
νk≥0

max
QQQk�0

Ls (QQQk, νk) , (44)

where the dual Lagrangian function is defined as

Ls (QQQk, νk) = R̃sum(QQQk) − τ
∑

k∈Ks

(

〈CCCkQQQkCCC
H
k 〉 + Pc

)

+ νk

(

Pk − 〈CCCkQQQkCCC
H
k 〉

)

(45)

and νk is the Lagrangian multiplier corresponding to the con-
straints (43b). Substituting (39) to (45), we obtain

Ls (QQQk, νk)

= log2

∣

∣

∣III + H̃HHk,kQQQkH̃HH
H
k,kRRR

−1
k

∣

∣

∣

+ fk(Q̃QQk,QQQ−k) + 〈DDDk(Q̃QQk)
H (QQQk − Q̃QQk)

〉

− τ
∑

k∈Ks

(

〈CCCkQQQkCCC
H
k 〉 + Pc

)

+ νk

(

Pk − 〈CCCkQQQkCCC
H
k 〉

)

= log2

∣

∣

∣III + H̃HHk,kQQQkH̃HH
H
k,kRRR

−1
k

∣

∣

∣

− β(Q̃QQk) −
〈
(

(τ + νk)CCC
H
k CCCk −DDDk(Q̃QQk)

H )

QQQk

〉

(46)

where β(Q̃QQk) � − fk(Q̃QQk,QQQ−k) + 〈DDDk(Q̃QQk)
H Q̃QQk

〉 + τ
∑

�∈Ks\k
(〈CCC�QQQ�CCCH

� 〉 + Pc�
) − νk Pk .

Problem (44) is solved by iteratively solving the inner
maximization and outer minimization problems respectively.
For given νk the innermaximization problem can be rewritten
as
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max
QQQk�0

log2

∣

∣

∣III + H̃HHk,kQQQkH̃HH
H
k,kRRR

−1
k

∣

∣

∣ − 〈ΥΥΥ kQQQk〉, (47)

where ΥΥΥ k =
(

(τ + νk)CCCH
k CCCk −DDDk(Q̃QQk)

H
)

∈ C
dk×dk and

the constants having no effect on the optimal solution have
been eliminated. The closed-form solution to problem (47)
is derived in the following theorem.

Theorem 1 For given QQQ−k and νk , the optimal solution to
(47) has the following form

QQQ∗
k = ΥΥΥ

−1/2
k ΔΔΔkΓΓΓ kΔΔΔ

H
k ΥΥΥ

−1/2
k , (48)

where ΔΔΔk is obtained from SVD RRR−1/2
k H̃HHk,kΥΥΥ

−1/2
k =

ΞΞΞ kΦΦΦkΔΔΔ
H
k , with ΦΦΦk = diag(φk,1, . . . , φk,dk ), φk,1 ≥ . . . ≥

φk,dk , andΓΓΓ k = diag(γk,1, . . . , γk,dk ),γk,t =
[

1
ln 2 − 1

φ2
k,t

]+
,

∀t ∈ Sk = {1, . . . , dk}.
Proof See “Appendix 3”. ��

Now, for givenQQQk , the outerminimization problem in (44)
is solved by the subgradientmethod to obtain νk . Particularly,
at iteration (p + 1), one has

ν
(p+1)
k =

[

ν
(p)
k − �

(

Pk − 〈CCCkQQQkCCC
H 〉

)]+
, (49)

where � > 0 is the step size. νk is updated iteratively until
convergence [30]. Since the structure of the optimal solu-
tion to the inner maximization in (44) for each link has been
revealed in Theorem 1, the optimal solution {QQQ∗

k} can be
obtained by sequentially solving (47) for each STx until con-
vergence. Finally, for given {QQQk}k∈Ks , τ can be updated using
the Dinkelbach method.

According to the above analysis, we propose a three-layer
iterative algorithm to solve (32) until convergence. In the first
layer, parameter τ is calculated using theDinkelbachmethod.
In layer 2, the intermediate matrices Q̃QQk are updated. In layer
3, the Lagrangian multiplier νk and solutions QQQ∗

k to the inner
maximization problem in (44) are updated. The step-by-step
algorithms are summarized in Algorithm 2. The proof of the
convergence of Algorithm 2 is given in “Appendix 4”.

Finally, to recover FFFk from the optimal solution QQQk , we
take the SVD QQQopt

k = ΩΩΩkΨΨΨ kΩΩΩ
H
k . The optimal PM FFFk is

then obtained as

FFFopt
k = ΩΩΩkΨΨΨ

1
2
k . (50)

4 Simulation results

In this section, we evaluate the EE performance of our pro-
posed algorithms throughnumerical results. To the best of our

Algorithm 2 : The DC-based algorithm (DCA) to solve (29)
for the EE maximization of the secondary network

1: Initialize: randomize {QQQ(0)
k }, {ν(0)

k }, ∀k ∈ Ks , τ (0); set n = 0,m−0,
p = 0; given �, error tolerance {ε1, ε2, ε3} > 0;

2: repeat
3: Update n = n + 1;
4: UpdateWWW (n)

k ,∀k ∈ Ks as (31);
5: for k = 1 : Ks do
6: repeat
7: Update m = m + 1;
8: repeat
9: Update p = p + 1;
10: Calculate QQQ∗

k from (48);
11: Update νk (49);

12: until
∣

∣

∣νk

(

Pk − 〈CCCkQQQkCCCH
k 〉

)∣

∣

∣ ≤ ε3

13: Update Q̃QQ
(m)

k = QQQ∗
k

14: until ‖Q̃QQ(m)

k − Q̃QQ
(m−1)
k ‖2F ≤ ε2

15: end for
16: Update QQQ(n)

k = Q̃QQk ,∀k ∈ K;

17: Update τ (n) = η
(n)
SEE({Q(n)

k }, {W (n)
k }) as in (29a);

18: until |τ (n) − τ (n−1)| ≤ ε1;
19: Output: {QQQk} and {WWWk}.

knowledge, the EE maximization for the CR network model
considered in the paper has not been reported in the literature.
Thus, we compare the proposed method with ones in [4,32]
which aim atmaximizing the spectral efficiency. Particularly,
in the primary network, we compare the achievable EE of the
proposed scheme in Algorithm 1 (called IA-PAA) with that
of the method [32] using IA and the water-filling method
for the sum rate (SR) maximization (called IA-SRMax). In
the secondary network, the achievable EE of the proposed
scheme from Algorithm 2 (called ZF-DCA) is compared
with the the modified method in [4] for the sum rate maxi-
mization (SRMax). Simulation parameters are set as follows:
Ks = 3, Kp = 2, Mk = M = 9, Nk = N = 6, d = 2,
Pc = 5 dB, ε1 = ε2 = ε3 = 10−3, σ 2

k = 1, ρ = 0.05
and � = 0.01. The Rayleigh fading channel coefficients are
generated from the complex Gaussian distribution CN (0, 1).

First, we investigate the average achievable EE of our
proposed IA-PAA scheme and ZF-DCA scheme. The max-
imum transmit power at all Txs is set to be the same, i.e.,
Pk = Pt ,∀k ∈ K. It can be seen from Fig. 1 that in the
primary network, our proposed IA-PAA outperforms the IA-
SRMax [32] in terms of EE, especially in the high transmit
power region. When the maximum transmit power is small,
the EE maximization problem in (5) is equivalent to a sum
rate maximization problem and, hence, the achievable EE
increases with the transmit power. With regard to the sec-
ondary network, Fig. 2 shows that the achievable EE of our
proposed ZF-DCA scheme is also significantly higher than
that of the SRMaxmethod [4]. However, in the small transmit
power region, the achievableEEdecreaseswith an increase in
the maximum transmit power. This is because that increasing
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Fig. 1 The average achievable EE and sum rate of the primary network
versus the maximum transmit power
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Fig. 2 The average achievable EE and sum rate of the secondary net-
work versus the maximum transmit power

transmit power leads to a higher level of interference from the
PU Txs to the SU Rxs. For high maximum transmit power,
our proposedmethod still maintains the same level of the EE,
revealing that the EE will not be enhanced by increasing of
the transmit power over a certain threshold.

To investigate the mutual effect between the secondary
network and the primary network, we consider a scenario in
which the maximum transmit powers at the PTxs are kept
unchanged, i.e., Pk = Pp,∀k ∈ Kp, while the maximum
transmit powers at the STxs Pk = Ps,∀k ∈ Ks , will vary
from 0 dB to 20 dB in the simulation. We plot the EE and
sum rate versus Ps in Fig. 3 with Pp = {5, 10} dB. It can
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Fig. 3 The average achievable EE and sum rate versus the maximum
transmit power at the STxs

be seen from Fig. 3 that the EE and sum rate of the primary
network remains unchanged for all of the simulated config-
urations when increasing the maximum transmit power of
the secondary network. This confirms that the performance
of the primary network will not be degraded due to the SU
transmissions in the proposed ZF-DCA scheme. Figure 3
also demonstrates that increasing maximum transmit power
at PTxs leads to a reduction in the sum rate and EE perfor-
mance of the secondary network. This is because the SRxs
suffer more interference power from PTxs as Pp increases.

5 Conclusion

This paper has developed iterative algorithms for the
transceiver designs to maximize the EE in the multiuser
MIMO CR network. To address interference issues in the
CR network, the proposed method is to adopt full IA for the
primary network and partial IA for the secondary network.
Then, to tackle the mathematical challenges associated with
highly nonlinear and intractable fractional programming of
theEEmaximization problems, the proposedmethod invokes
the DC programming and Dinkelbach method to develop
iterative algorithms with provable convergence in which
the closed-form expressions are derived in each iteration.
The simulation results have demonstrated that the proposed
method is superior to the others in terms of the EE.
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Appendix 1: Proof of concavity and convexity of (34)
and (35)

For a given QQQ−k , the proof the concavity ofRk(QQQk,QQQ−k) in
QQQk is easily derived by the property of restriction of convex
function to a line as in [33]. Using this property, we next
prove the convexity of fk(QQQk,QQQ−k) in QQQk by showing that
fk(z) � (AAAk + zBBBk,QQQ−k) is convex in z ∈ [0, 1] where
AAAk, BBBk ∈ {QQQk |(29b)}. First, we recall some useful formulas
for the matrix differential calculus of a matrix function XXX(z)
as follows [34]

∂〈XXX〉
∂z

=
〈∂XXX

∂z

〉

(51)

∂ ln |XXX |
∂z

=
〈

XXX−1 ∂XXX

∂z

〉

(52)

∂XXX−1

∂z
= −XXX−1 ∂XXX

∂z
XXX−1. (53)

Applying (52) and (53) to (35) yields

∂ fk(AAAk + zBBBk,QQQ−k)

∂z
= 1

ln 2

∑

�∈Ks\k

〈

− (III + XXX�RRR
−1
� )−1XXX�RRR

−1
� YYY �RRR

−1
�

〉

= 1

ln 2

∑

�∈Ks\k

〈

− (RRR� + XXX�)
−1XXX�RRR

−1
� YYY �

〉

(54)

where XXX� = HHH �,�QQQ�HHH
H
�,� and YYY � = HHH �,kBBBkHHH

H
�,k,∀� ∈

Ks \ k. Applying to (51), (52) and (53) to (54), we then
obtain

∂2 fk(AAAk + zBBBk,QQQ−k)

∂z2

= 1

ln 2

∑

�∈Ks\k

〈

(RRR� + XXX�)
−1YYY �(RRR� + XXX�)

−1XXX�RRR
−1
� YYY �

+ (RRR� + XXX�)
−1XXX�RRR

−1
� YYY �RRR

−1
� YYY �

〉

= 1

ln 2

∑

�∈Ks\k

〈

(RRR� + XXX�)
−1YYY �CCC�YYY �

〉

(55)

where CCC� � (RRR� + XXX�)
−1XXX�RRR

−1
� = RRR−1

� − (RRR� + XXX�)
−1.

Since RRR� � 0 and XXX� � 0, RRR� +XXX� � 0, RRR� +XXX� � RRR�, we
have (RRR� + XXX�)

−1 � 0 andCCC� = RRR−1
� − (RRR� + XXX�)

−1 � 0.
Therefore, there always exist matrices MMM�, NNN � and KKK � such
that CCC� = MMM�MMMH

� , (RRR� + XXX�)
−1 = NNN �NNNH

� and RRR−1
� =

KKK �KKK H
� . Thus, we have

〈

(RRR� + XXX�)
−1YYY �CCC�YYY �

〉 = 〈

(NNNH
� YYY �MMM�)(NNN

H
� YYY �MMM�)

H 〉 ≥ 0
〈

CCC�YYY �RRR
−1
� YYY �

〉 = 〈

(MMMH
� YYY �KKK �)(MMM

H
� YYY �KKK �)

H 〉 ≥ 0

because (NNNH
� YYY �MMM�)(NNNH

� YYY �MMM�)
H � 0 and (MMMH

� YYY �KKK �)

(MMMH
� YYY �KKK �)

H � 0. Therefore, ∂2 fk (AAAk+zBBBk ,QQQ−k )

∂z2
≥ 0, which

means that fk(AAAk + zBBBk,QQQ−k) is convex in z and hence,
fk(QQQk,QQQ−k) is a convex function in QQQk . This completes the
proof.

Appendix 2: Derivation of (37)

Let us recall some useful formulas in the matrix differential
calculus for given matrix function XXX as [34]

∂(XXX−1) = −XXX−1(∂XXX)XXX−1 (56)

∂(ln |XXX |) = 〈

XXX−1∂XXX
〉

(57)

Applying (56) and (57) to (37), we have

∂( fk(QQQk)) = ∂
(

∑

�∈Ks\k
log2 |III + XXX�RRR

−1
� |

)

= 1

ln 2

〈
∑

�∈Ks\k
(III + XXX�RRR

−1
� )−1∂(III + XXX�RRR

−1
� )

〉

= 1

ln 2

〈
∑

�∈Ks\k
(III + XXX�RRR

−1
� )−1XXX�∂(RRR−1

� )
〉

= 1

ln 2

〈

−
∑

�∈Ks\k
(III + XXX�RRR

−1
� )−1XXX�RRR

−1
� HHH �,k∂(QQQk)HHH

H
�,kRRR

−1
�

〉

= 1

ln 2

〈

−
∑

�∈Ks\k
HHHH

�,k(RRR� + XXX�)
−1XXX�RRR

−1
� HHH �,k∂(QQQk)

〉

=
〈

− 1

ln 2

∑

�∈K\k
HHHH

�,k

[

RRR−1
� − (RRR� + XXX�)

−1]

HHH �,k∂(QQQk)
〉

(58)

=
〈

∇Qk fk(QQQk)∂(QQQk)
〉

. (59)

By comparing (58) and (59), the proof is completed.

Appendix 3: Proof of Theorem 1

We note that since RRR−1
� − (RRR� + XXX�)

−1 � 0 (see “Appendix

1”), it is readily to prove that −DDDk(Q̃QQk) � 0 and then
ΥΥΥ k � 0. Therefore, ΥΥΥ k is invertible. Let us define Q̄QQk =
ΥΥΥ

1/2
k QQQkΥΥΥ

1/2
k ∈ C

dk×dk . Problem (47) can be rewritten as

max
QQQk�0

log2

∣

∣

∣III +
(

RRR−1/2
k H̃HHk,kΥΥΥ

−1/2
k

)

Q̄QQk

(

RRR−1/2
k H̃HHk,kΥΥΥ

−1/2
k

)H ∣

∣

∣ − 〈Q̄QQk〉. (60)

Applying SVD RRR−1/2
k H̃HHk,kΥΥΥ

−1/2
k = ΞΞΞ kΦΦΦkΔΔΔ

H
k , whereΞΞΞ k ∈

C
dk×dk , ΔΔΔk ∈ C

dk×dk and ΦΦΦk = [diag(φk,1, . . . , φk,dk )],
φk,1 ≥ . . . ≥ φk,dk . Substituting these results into (47)
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and exploiting the Hadamard inquality, the optimal solu-
tion to problem (47) has the form Q̄QQ

∗
k = ΔΔΔkΓΓΓ kΔΔΔ

H
k

[15], where ΓΓΓ k = diag(γk,1, . . . , γk,dk ) where γk,t =
[

1
ln 2 − 1

φ2
k,t

]+
,∀t ∈ Sk = {1, . . . , dk}. Therefore, the opti-

mal solution to problem (47) has the form

QQQ∗
k = ΥΥΥ

−1/2
k ΔΔΔkΓΓΓ kΔΔΔ

H
k ΥΥΥ

−1/2
k . (61)

This finishes the proof.

Appendix 4: Proof of the convergence of Algorithm
2

Since the Dinkelbach method was proved to be converged
[21], the convergence of Algorithm 2 relies on the conver-
gence of (42). Suppose that Q̃QQk is an optimal solution from
the previous iteration and QQQ�

k is the optimal solution at the
current solution to (42). Then, at the current iteration, one
has

ηSEE(QQQ�
k, Q̃QQ−k) ≥ η̃SEE(QQQ�

k, Q̃QQ−k) (62a)

≥ η̃SEE(Q̃QQk, Q̃QQ−k) (62b)

= ηSEE(Q̃QQk, Q̃QQ−k) (62c)

where inequality (62a) is the result of (41); (62b) holds
because Q̃QQ

�

k is the optimal solution to problem (42) at the
current iteration; and (62c) is due to the fact that (41) is
meet with equality at QQQk = Q̃k . This means that function
ηSEE(QQQk,QQQ−k) is nondecreasing after updatingQQQk for given
QQQ−k at each link k iteratively. In addition, the objective ηSEE
is upper-bounded and, hence, Algorithm 2 must converge.
This completes the proof.
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