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Abstract By introducing orthogonal space-time coding
(STC) scheme in wireless cooperative relay network, two
distributed differential STC (DSTC) schemes based on the
amplify-and-forward (AF) and decode-and- forward (DF)
methods are, respectively, developed. The scheme perfor-
mance is investigated in symmetric and asymmetric wireless
relay networks. The presented schemes require no channel
information at both relay terminals and destination termi-
nal, and have linear decoding complexity when compared
with the existing scheme. Moreover, they are suitable for the
application of different constellation modulations and DSTC
schemes, and thus providemore freedoms of design. Besides,
the power allocations between source and relay terminals
are jointly optimized to minimize the system pairwise error
probability for symmetric and asymmetric networks, and two
practicalmethods are presented to solve the complicated opti-
mized problem from asymmetric network. Simulation results
show that the schemewithDFmethod has better performance
than that with AF method due to no amplification of noise
power, but the performance superiority will decrease at high
SNR due to the error propagation of decoding at the relays.
Furthermore, the distributed DSTC schemes with optimal
power allocation have better performance than those with
conventional fixed power allocation.
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1 Introduction

Recently, the cooperative diversity technique has attracted
much interest in wireless communications. This technique
can increase the achievable rate region over non-cooperative
schemes in fading channels, and provide a useful alternative
for fading mitigation by the means of cooperation among
multiple spatially distributed users or nodes [1–4]. However,
most of the previous works focus on coherent detection, and
assume that the destination has perfect knowledge of chan-
nel state information (CSI) of all transmission links, which
can be estimated by transmitting pilot sequences or adopting
blind estimation techniques [5].With channel estimation, the
system will be complicated and the transmission efficiency
will also be reduced, especially in fast fading environments
and multi-antenna or multi-node wireless systems since the
amount of pilot or convergence time grows with the number
of links [6]. Based on this, several differential cooperative
diversity schemes have been proposed in the absence of CSI
case. In [7], a differential modulation scheme with amplify-
and-forward (AF) method for two-user cooperative diversity
systems is presented, where the relay terminals utilize QPSK
modulation to implement two BPSK streams transmission.
The decode-and-forward (DF)method based coherentmodu-
lation and non-coherent modulation schemes for cooperative
relay systems are proposed in [8] and [9], respectively, where
two relays and multiple relays are, respectively, considered.
By employing AF and DF methods, two repetition-based
binary differentialmodulation schemeswithBPSKare devel-
oped in [5]. According to the noncoherent orthogonal AF
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half-duplex protocol, the nonunitary and unitary diagonal
distributed space-time coding (STC) schemes for coopera-
tive relay systems are designed in [10], and full diversity
can be obtained. However, the above schemes in [5,10] are
suitable for single relay only. By extending the scheme [5]
to MPSK symbols case, [11] gives a distributed differential
scheme for a two-user cooperative communication system
employing the AF method, but this scheme is limited in
one relay and repetition-based diversity. For this reason,
[6] develops a distributed differential space-time modulation
scheme for two-relay cooperative systems, but the decoding
complexity is much higher (i.e. it needs M2 matrix calcula-
tion and comparison, M is constellation size). In [12] and
[13], based on the network model in [6], two distributed
differential STC (DSTC) schemes are designed for the DF
based relay systems, respectively, where the relay selection
are considered. With the DF method, a distributed differen-
tial encoding/decoding scheme in terms of Alamouti STC
is developed in [14], where only single relay is considered.
By introducing two specific STC schemes, [15] presents a
partially-coherent distributed STC scheme with differential
encoder and decoder, but the large-scale fading is neglected,
and the presented DSTC needs to be constructed in terms
of specific construction criteria, which will make it hard to
use the existing DSTC schemes. Considering the same net-
work model as [15,16] gives distributed differential schemes
in terms of AF and DF methods respectively, where the uni-
tary STC (USTC) is adopted for differential encoding and
decoding, but the schemes only work for the differential
USTC whose code matrix is diagonal, and have exponential
decoding complexity for DF schemes [17]. Based on ana-
log network coding, a distributed DSTC scheme is proposed
for two-way relay network in [18], and the corresponding
pairwise error probability (PEP) and block error rate are ana-
lyzed. However, the proposed scheme is suitable for USTC
andAFmethod only, and the analysis is limited in symmetric
network.

According to the analysis above, the DSTC scheme in
cooperative relay network is not studied well, especially in
asymmetric network, the related study is much less. For
this reason, we will investigate the performance of DSTC
in asymmetry relay network and composite fading channel,
where large-scale and small-scale fading are both considered.

Firstly, we develop an AF method based DSTC scheme
with low complexity for wireless relay networks by introduc-
ing the orthogonal STC scheme. The differential space-time
code matrices are produced by the source terminal, and each
column of a code matrix is relayed by a relay user to the
destination. The scheme does not require CSI both at the
transmitter and receiver, and has linear decoding complex-
ity. Thus, it avoids the exponential decoding complexity of
some existing schemes.

Secondly, the existing DSTCs can be used for the devel-
oped scheme. Unlike some existing schemes that the data
symbols for encoding matrix are limited in specific constel-
lation, such as PSK or FSK, the data symbols in our scheme
can be from different constellations.

Thirdly, according to the performance analysis, the power
allocation (PA) between source and relay terminals is opti-
mized to minimize the system PEP. The optimization is not
only for symmetric network, but also for asymmetric net-
work. Considering the complexity of optimized problems
in asymmetric network, two practical calculation methods
are proposed. With these methods, the optimized power is
allocated and the resulting system performance is improved
greatly.

Fourthly, another distributed DSTC scheme based on DF
method is developed for cooperative relay network. Com-
pared to the AF based scheme, the DF based scheme has
better performance because no noise power is amplified at
relay determines. At high SNR, however, the performance
superiority will decrease due to the error propagation from
the relay terminals.

The notations throughout this paper are as follows. Bold
upper case and lower case letters denote matrices and col-
umn vectors, respectively. The superscripts (·)T , (·)∗, and
(·)H are used to stand for the transpose, complex conju-
gate, and Hermitian transpose, respectively. The E{·} and
IN denote statistical expectation and N × N identity matrix,
respectively. Re{·}and Im{·}denote real part and imaginary
part operator, respectively. diag{·} denotes diagonal matrix.

2 System model and AF protocol based DSTC
scheme

The system model for wireless relay network is shown in
Fig. 1. In Fig. 1, the network consists of a source user, a des-
tination user and R relay users, and the source user has no
path access to the destination, but it can transmit the infor-
mation to destination by the means of the relays. Every relay
user has a single antenna, which can be used for both trans-
mission and reception. For the source/destination user, its
antenna is used for transmission/reception only. The channel
from the source to the relays, and the channel from the relays
to the destination are assumed to be independent flat fading,
and both effects of large-scale and short-scale propagations
are considered. The channel from the source to the kth relay
is denoted as αkρsk , and the channel from the kth relay to
the destination is denoted as βkρkd , where ρsk and αk are the
large-scale attenuation factor and small-scale fading coeffi-
cients between the source and the kth relay, respectively. ρkd
and βk are the large-scale attenuation factor and small-scale
fading coefficients between the kth relay and the destination,
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Fig. 1 System model for wireless relay network

respectively. αk and βk are assumed to be independent Gaus-
sian random variables with unit-variance and zero-mean for
different k.

In the following, we will give the distributed DSTC
scheme in terms ofAFmethod. Firstly, based on the transmit-
ted symbols, using the orthogonal STC, differential coding
matrices are generated for cooperative diversity. Then, each
column of a coding matrix is transmitted to one relay user at
different times.After that, the relay users amplify and retrans-
mit the received signals with noise to the destination. At the
receiver, the destination user collects the information sent by
the relay users, and makes a final decision on the transmitted
symbols or bits by differential space-time decoding.

Considering that the orthogonal STC matrix is easily
constructed and has low-complexity decoding, and its differ-
ential form has better performance than differential USTC
schemes [17], we introduce STC from amicable orthogonal
design, and the corresponding code matrix is given by

Di = 1√
L

L∑

l=1

(
Uld

R
l + jVld

I
l

)
(1)

where {Ul}Ll=1and {Vl}Ll=1 are a set of 2L matrices of size
K×K which satisfy the orthogonal conditions in [17,Eq.(2)],
and they constitute an amicable orthogonal design of order
K in L variables. dR

l and d I
l denote the real and imaginary

parts of complex symbol dl , respectively. The unitary signal
constellation such asMPSK(similar analysis canbe extended
to other constellation) is first considered. Let {dl}Ll=1 be a
block of L symbols to be transmitted at a time i , and they
are from MPSK constellation �, then we have: DiDH

i =∑L
l=1 |dl |2/LIK = IK . Thus, Di is a unitary matrix.
With (1), the information matrix Di is firstly generated.

Then, the differential encoding at the source terminal is
performed. Namely, at the start of the transmission, the trans-
mitter sends a initial code matrix S0 (usually S0 = IK )
that does not carry information, the Di is then differentially
encoded, and the corresponding encoded matrix Si at i-th
time block is written as

Si = DiSi−1. (2)

SincematrixDi is unitary, Si is also unitary if Si−1 is unitary.
BecauseS0 is unitary, it follows thatSi is unitary for any i . Let

the code matrix Si be [si1, si2, . . ., si K ], where si1, . . ., si K
are the columns ofSi, respectively. Then,we extend the above
differential STC scheme to the wireless relay network. Here
we assume that K relay users are available for cooperative
communication, and the transmitted signals from different
relays are synchronized at the destination terminal. Firstly,
the first column si1 = [s11. . ., sK1]T is transmitted to relay
user 1 at the first time block. Secondly, the second column is
transmitted to relay user 2 at the second time block, and so
on, the K -th column si K = [s1K . . ., sKK ]T is finally trans-
mitted to the K -th relay user. After that, at every relay, the
received signals are amplified and power-normalized. These
relayed signals s̃ik(k = 1, . . ., K ) are transmitted to the des-
tination user simultaneously. At the destination terminal, the
receiver obtains the transmitted data by combining two adja-
cent received signals x(i − 1) and x(i).

In what follows, we consider that the information symbols
are fromMQAM constellation. Under this case, the differen-
tial matrix Si is produced at the source terminal as follows:

Si = Di S̃i−1 = DiSi−1/ξi−1 (3)

where S̃i−1 is the normalized value of Si−1, and ξi−1 is
the amplitude of Si−1. For the matrix Si−1, it satisfies that
SH
i−1Si−1 = Si−1SH

i−1 = ξ2i−1IK , and ξ0 = 1 for S0 = IK .
Thus, S̃H

i−1S̃i−1 = IK is a unitary matrix.

From (3), and considering thatDiDH
i = ∑L

l=1 |dl |2/LIK ,
we can obtain:

SH
i Si = S̃H

i−1D
H
i Di S̃i−1 = S̃H

i−1ξ
2
Di

IK S̃i−1 = ξ2Di
IK (4)

where ξ2Di
= ∑L

l=1(|dl |2 /L) is the amplitude of information
matrix Di . Hence, Si and Di have the same amplitude. After
differential encoding, each column of Si is transmitted to the
corresponding relay user.

3 Differential detection

In this section, we will give the differential detection scheme
of distributed DSTC in composite fading channel. Firstly, we
consider that the transmitted data symbols are from simple
MPSK constellation, the initial codeword is set as S0 = IK ,
and thus Si is a unitary matrix according to the analysis in
Sect. 2. As shown in Fig. 1, in the first transmission phase
(i.e. Source to Relay), the received signal at the k-th relay
terminal (k = 1, . . ., K ) is written as
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⎡

⎢⎣
ri,k1

...

ri,kK

⎤

⎥⎦ = √
P0ρskαiksi,k +

⎡

⎢⎣
zi,k1

...

zi,kK

⎤

⎥⎦

= √
P0ρskαik

⎡

⎢⎣
s1k
...

sKk

⎤

⎥⎦ +
⎡

⎢⎣
zi,k1

...

zi,kK

⎤

⎥⎦ , (5)

where zi,k j is the channel noise at the relay k at time slot
j ( j = 1, . . ., K ) within i-th time block, P0 is the transmit
power of source terminal.

In the second transmission phase (i.e. Relay to Destina-
tion), the relay k amplifies the received signal and forwards
it to the destination with transmit power Pk . So the received
signals at time slot j at the destination terminal are

xi j =
√
P̃1βi1ρ1dri,1 j + · · · +

√
P̃Kβi KρKdri,K j + zi,d j

= √
P1βi1ρ1d s̃ j1 + · · · + √

PKβi KρKd s̃ j K + zi,d j , (6)

where zi,d j ( j = 1, . . ., K ) is the channel noise at time slot
j at the destination terminal. The noises {zi,d j } and {zi,k j }
are modeled as independent complex Gaussian random vari-
ables with zero-mean and variances N0. P̃k = μk Pk (μk =
1/(P0ρ2

sk + 2N0)) is the normalized transmit power, and it
ensures that the average transmit power of the relay k is Pk .
So after the normalized processing, the relay signals {s̃uv} in
(6) can be expressed as s̃uv = √

μvri,vu, u, v = 1, . . ., K .
Based on the analysis above, the total transmitted power

is given by Pt = KP0 + P1 + . . . + PK . With (5) and (6),
using the equivalent transformation, the following received
signal vector can be obtained as

xi = SiPGhi + zi = SiPf i + zi (7)

where xi =[xi1, . . . , xiK ]T , P=diag{(P0P1μ1)
1/2, . . . , (P0

PKμK )1/2}, hi = [h1, . . ., hK ]T = [α1iβ1i , . . ., αKiβKi ]T
is a vector that reflects small-scale fading, while G =
diag{ρs1ρ1d , . . ., ρsKρKd} is a diagonal matrix that reflects
large-scale fading, and f = Ghi = [α1iβ1iρs1ρ1d , . . . , αKi

βKiρsKρKd ]T is a composite channel vector.As it is common
to all differential schemes, here we assume that channel vari-
ation is negligible from one time block to the next, and thus
we have: fi = fi−1. zi = [zi1, . . . , ziK ]T is K × 1 Gaussian
noise vectorwith zeromean.Using the independentGaussian
distribution property of noises {zi,d j } and {zi,k j }, the variance
of the element of zi , zi j = ∑K

k=1
√
Pkμkβikρkd zi,k j + zi,d j ,

can be calculated as

E
{
zi j z

∗
i j

}
=
(∑K

k=1
Pkρ

2
kdμk+1

)
N0=κN0=σ 2

z , j =1, . . ., K . (8)

whereκ = ∑K
k=1 Pkρ

2
kdμk+1, and thuswehave: E{zizHi } =

σ 2
z IK .

From (7), the received signal vector at time block i-1 can
be expressed as

xi−1 = Si−1Pf i + zi−1. (9)

with the obtained xi and xi−1, Di can be detected. Specifi-
cally, substituting (4) and (9) into (7) gives

xi = DiSi−1Pf + zi = Di (xi−1 − zi−1)+ zi = Dixi−1 + z̃i
(10)

where z̃i = zi − Dizi−1 is an equivalent Gaussian noise
vector with zero mean and covariance 2σ 2

z IK , which utilizes
the fact that the Di is an unitary matrix. According to this,
we can see that the differential detection doubles the noise
power, and thus the SNR loss of 3db happens, which is also
in agreement with the conventional differential modulation
scheme.

Using (10), the differential detection for the information
matrix Di can be given by

D̂i = argmin
Di

‖xi − Dixi−1‖2

= argmin
Di

tr
{
(xi − Dixi−1)(xi − Dixi−1)

H
}

= argmaxRe{
Di

tr(xi−1xHi Di )}. (11)

Substituting (1) into (11) yields theMLdetector for the trans-
mitted symbols {dl} (l = 1, . . ., L), i.e.,

{
d̂l
}L
l=1

= argmax
{dl }∈�

L∑

l=1

{
Re

{
tr
(
xi−1xHi Ul

)}
dR
l

+ Im
{
tr
(
−xi−1xHi Vl

)}
d I
l

}
. (12)

Thus, the ML detector of each symbol dl (l = 1, . . ., L) can
be expressed as

d̂l = argmax
dl∈�

Re
{
tr
(
xi−1xHi Ul

)}
dR
l

+ Im
{
tr
(
−xi−1xHi Vl

)}
d I
l . (13)

Equation (13) not only has linear decoding complexity, but
also can be further changed into the detection of real part and
imaginary part in parallel. Thus, this detector has a decoupled
format, one scalar detector for eachof the symbols {dl}.When
compared with the detectionmethod of other DSTC schemes
for cooperative communication, our detection scheme has
lower computational complexity. It is also due to the fact
that our scheme can easily make use of the orthogonality of
differential space-time code scheme. Besides, the analysis
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above can be extended to MQAM constellation modulation,
but the encoding and decoding methods need to be changed
accordingly. Namely, the encoding at the source terminal
is performed in terms of Eq. (3), and the decoding at the
destination terminal is done as follows:

⎧
⎪⎨

⎪⎩

d̂ R
l = argmax

dl∈�

{
Re

{
tr
(
xi−1xHi Ul

)}
dR
l − tr

(
xi−1xHi−1

) |dR
l |2/

(
ξi−1

√
L
)}

d̂ I
l = argmax

dl∈�

{
Im

{−tr
(
xi−1xHi Vl

)}
d I
l − tr

(
xi−1xHi−1

) |d I
l |2/

(
ξi−1

√
L
)} (14)

where the amplitude ξi−1 can be estimated by Eq. (4) and the
data symbols which have detected at the previous (i − 1)-th
time block.

4 Power allocation for different network cases

4.1 Symmetric network case

In this section, we will give the power allocation between
the source terminal and relay terminal by means of the PEP
analysis. According to the analysis in Refs. [13,19,20], a
differentially-coded system performance is well approxi-
mated at high SNR by using an equivalent coherent receiver
model [i.e. Eq. (11)] with known channel matrix xi−1 and
enhanced noise power, and the corresponding performance
analysis can also be obtained in terms of the PEP.

Let Pr(D → E) be the PEP of the system, which is the
probability of incorrectly decoding D as E, i.e., the proba-
bility of transmitting D and deciding in favor of another E
at the detector [13,20], and then this PEP can be given by
the following (15) conditioned on equivalent channel vector
xi−1.

Pr (D → E|xi−1) = Q

(√
Esd2(D,E)/(2N0)

)

≤ exp
{
−d2 (D,E) Es/

(
4σ 2

z

)}

= exp
{
−d2 (D,E) Es/ (4κN0)

}
(15)

where Es is the averaged power per symbol period, and
d2(D,E) = xHi−1C

HCxi−1, C = Di − Ei .
For high SNR, (10) can be approximately equivalent to

xi−1 ≈ Si−1Pf i = Si−1PGhi (16)

With (16), we have:

d2 (D,E) ≈ fHPSH
i−1C

HCSi−1Pf i

= hH
i GHPSH

i−1C
HCSi−1PGhi (17)

Substituting (17) into (15) yields

Pr (D → E|xi−1)

≤ exp
{
−hH

i GHPSH
i−1C

HCSi−1PGhi Es/(4κN0)
}

(18)

Based on the analysis in Refs. [13,19,21], the received signal
vector xi can be approximated as a linear combination of hi ,
so it constitutes a set of dependent channel coefficients. As a
result, xi is also a Gaussian vector conditioned on {βik}.

With the derivation results under two-relay cases in
“Appendix 1”, we can establish the corresponding optimized
objective function on PA under the total power Pt constraint
as

L (P0, P1, P2) = μ1μ2P
2
0 P1P2/

(
P1ρ

2
1dμ1 + P2ρ

2
2dμ2 + 1

)2

+ η (Pt − 2P0 − P1 − P2) (19)

where η is a Lagrange multiplier. Besides, according to the
analysis in “Appendix 1”, the systemmayobtain full diversity
order, as expected.

In the following, we firstly consider the symmetric net-
work case, where the distances between source and relay
terminals are the same, and the distances between relays
and destination terminal are also the same. Correspondingly,
ρs1 = ρs2 and ρ1d = ρ2d . Thus, we have:

μ1 = 1/
(
P0ρ

2
s1 + 2N0

)
= 1/

(
P0ρ

2
s2 + 2N0

)
= μ2 (20)

Substituting (20) into (19) gives

L (P0, P1, P2) = P2
0 P1P2/

(
P1ρ

2
1d + P2ρ

2
1d + 1/μ1

)2

+ η (Pt − 2P0 − P1 − P2)

= P2
0 P1P2/

(
P1ρ

2
1d + P2ρ

2
1d + P0ρ

2
s1 + 2N0

)2

+η (Pt − 2P0 − P1 − P2) (21)

Due to the symmetry of P1 and P2 in (21), it is easily achiev-
able that P1 = P2. Thus (21) is reduced to

L (P0, P1) = P2
0 P

2
1 /

[
2P1ρ

2
1d + P0ρ

2
s1 + 2N0

]2

+η (Pt − 2P0 − 2P1) (22)
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By taking the derivatives of (22) with respect to {Pk, k =
0, 1} and equating to zero yields

⎧
⎪⎪⎨

⎪⎪⎩

∂L
∂P0

= 2P0P2
1

(
2P1ρ2

1d+P0ρ2
s1+2N0

)−2P2
0 P

2
1 ρ2

s1[
2P1ρ2

1d+P0ρ2
s1+2N0

]3 − 2η = 0

∂L
∂P1

= 2P2
0 P1

(
2P1ρ2

1d+P0ρ2
s1+2N0

)−4P2
0 P

2
1 ρ2

1d[
2P1ρ2

1d+P0ρ2
s1+2N0

]3 − 2η = 0
(23)

With (23), the following equation is obtained, i.e.,

P2
0 ρ2

s1 + 2N0P0 − 2P2
1 ρ2

1d − 2N0P1 = 0 (24)

Utilizing (24) and the condition 2P0 + 2P1 = Pt , one
quadratic equation on P0 or P1 is established. After solv-
ing this equation, we have the following optimal PA, i.e.,

⎧
⎪⎨

⎪⎩

P0 =
[√(

Ptρ2
1d + 2N0

) (
Ptρ2

s1/2 + 2N0
) − (

2N0 + Ptρ2
1d

)] / (
ρ2
s1 − 2ρ2

1d

)

P1 = P2 =
[(
2N0 + Ptρ2

s1/2
) −

√(
Ptρ2

1d + 2N0
) (

Ptρ2
s1/2 + 2N0

)] / (
ρ2
s1 − 2ρ2

1d

) (25)

Similarly, by using the above analysis and derivationmethod,
we can achieve the optimal PA for three and four relays under
symmetric network, respectively. Specifically,

(1) for three relays

⎧
⎪⎨

⎪⎩

P0 =
[√(

Ptρ2
1d + 2N0

) (
Ptρ2

s1/3 + 2N0
) − (

2N0 + Ptρ2
1d

)] / (
ρ2
s1 − 3ρ2

1d

)

P1 = P2 = P3 =
[(
2N0 + Ptρ2

s1/3
) −

√(
Ptρ2

1d + 2N0
) (

Ptρ2
s1/3 + 2N0

)] / (
ρ2
s1 − 3ρ2

1d

) (26)

(2) for four relays

⎧
⎪⎨

⎪⎩

P0 =
[√(

Ptρ2
1d + 2N0

) (
Ptρ2

s1/4 + 2N0
) − (

2N0 + Ptρ2
1d

)] / (
ρ2
s1 − 4ρ2

1d

)

P1 = P2 = P3 = P4 =
[(
2N0 + Ptρ2

s1/4
) −

√(
Ptρ2

1d + 2N0
) (

Ptρ2
s1/4 + 2N0

)] / (
ρ2
s1 − 4ρ2

1d

) (27)

Based on the optimal PA above, the system performance will
be improved greatly, and is obviously superior to the perfor-
mance with conventional fixed PA.

4.2 Asymmetric network case

In the subsection above, the PA of the distributed DSTC
under symmetric network is presented. In practice, however,
the network may be asymmetric, i.e., the distances between
source and relay terminals are different, or the distances
between relays and destination terminal are different. Thus,
we have: ρsk 	= ρsu or ρkd 	= ρud for relay k and u (k 	= u).
According to this, it is necessary to extend the above PA
to asymmetric case. Unfortunately, the related analysis and
optimized design are much less due to the difficulty of opti-
mization. For this reason, we will provide the optimization
of PA to meet practical asymmetric network. For simplicity,
two-relay asymmetry network (i.e. ρs1 	= ρs2, ρ1d 	= ρ2d )
is firstly considered.

Utilizing μk = 1/(P0ρ2
sk + 2N0), k = 1, 2, (19) is

changed to

L (P0, P1, P2) = P2
0 P1P2

[
P2
0 ρ2

s1ρ
2
s2 + 2N0P0

(
ρ2
s1 + ρ2

s2

) + 4N 2
0

]

[
P1P0ρ2

1dρ
2
s2 + P2P0ρ2

2dρ
2
s1 + P2

0 ρ2
s1ρ

2
s2 + 2N0

(
P1ρ2

1d + P2ρ2
2d + P0ρ2

s1 + P0ρ2
s2

) + 4N 2
0

]2

+η (Pt − 2P0 − P1 − P2) (28)

With (28), using the derivation in “Appendix 2”, we can
obtain a cubic equation on P0 as follows:

(
4ρ2

s1ρ
2
s2 − 8ρ2

s1ρ
2
2d − 8ρ2

s2ρ
2
1d

+ 16ρ2
1dρ

2
2d

)
P3
0 +

(
12ρ2

s1N0 + 12ρ2
s2N0 + 6ρ2

s1ρ
2
2d Pt
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+ 6ρ2
s2ρ

2
1d Pt − 24ρ2

2d N0 − 24ρ2
1d N0

− 24ρ2
1dρ

2
2d Pt

)
P2
0 +

(
20ρ2

2d N0Pt + 20ρ2
1d N0Pt

+ 32N 2
0 − 2ρ2

s1N0Pt − 2ρ2
s2N0Pt

− ρ2
s1ρ

2
2d P

2
t − ρ2

s2ρ
2
1d P

2
t

+ 12ρ2
1dρ

2
2d P

2
t

)
P0 − 4ρ2

1d N0P
2
t

− 4ρ2
2d N0P

2
t − 8N 2

0 Pt − 2ρ2
1dρ

2
2d P

3
t = 0 (29)

To obtain the solution of this cubic equation, we will resort to
the Shengjin’s Formulas in [22]. For a cubic equation in one
variable: aX3 + bX2 + cX + d = 0, a 	= 0, the Shengjin’s
Formulas provide the closed-form solutions. Firstly, we may
use the following Shengjin’s discriminant � to decide the
existence condition of solutions. i.e.,

� = B2 − 4AC, and A = b2 − 3ac, B = bc − 9ad,

C = c2 − 3bd. (30)

From (29), the coefficients {a, b, c, d} in cubic equation
can be given by

a = 4ρ2
s1ρ

2
s2 − 8ρ2

s1ρ
2
2d − 8ρ2

s2ρ
2
1d + 16ρ2

1dρ
2
2d ,

d = −4ρ2
1d N0P

2
t − 4ρ2

2d N0P
2
t − 8N 2

0 Pt − 2ρ2
1dρ

2
2d P

3
t ,

b = 12ρ2
s1N0 + 12ρ2

s2N0 + 6ρ2
s1ρ

2
2d Pt + 6ρ2

s2ρ
2
1d Pt

− 24ρ2
2d N0 − 24ρ2

1d N0 − 24ρ2
1dρ

2
2d Pt ,

c = 20ρ2
2d N0Pt + 20ρ2

1d N0Pt + 32N 2
0 − 2ρ2

s1N0Pt

−, 2ρ2
s2N0Pt − ρ2

s1ρ
2
2d P

2
t − ρ2

s2ρ
2
1d P

2
t + 12ρ2

1dρ
2
2d P

2
t .

Then, according to different values of �, we may use the
corresponding Shengjin’s Formulas to evaluate the solutions
of P0. Considering the power constraint (2P0 + P1 + P2 =
Pt ), P1 > 0, P2 > 0, and P0 > 0, we have: P0 < Pt/2.
Utilizing these constraint conditions, we can easily obtain the
appropriate solution of P0. With the obtained P0, using (56)
and (55) in “Appendix 2”, P1 and P2 can be finally achieved.

For two special asymmetric network cases (1) ρs1 	= ρs2,
ρ1d = ρ2d ; and (2) ρs1 = ρs2, ρ1d 	= ρ2d , we can employ
the above formulas to obtain the corresponding optimal PA as
well. Moreover, the related calculations will become simpler
due to special network cases.

In addition, considering that the relay terminals are often
close to the source terminal (i.e., the distances between source
and relay terminals are smaller than those between relays
and destination terminal), ρsk is larger than ρkd in general.
Correspondingly, the value of � in (30) is often smaller than
zero. Hence, Shengjin’s Formula 4 [22] is used to evaluate
the solution of P0. Based on the previous constraint condition
(0 < P0 < Pt/2), P0 will take the value of X2 in Formula 4
[22], i.e.,

P0 = −b + A1/2
[
cos(θ/3) + 31/2 sin(θ/3)

]

3a
(31)

where θ = arccosT, T = (2Ab− 3aB)/(2A3/2), and a, b, c
and d are coefficients of cubic equation. In “Appendix 3”, the
derivation on Shengjin’s Formula 4 is provided, and based
on this, (31) is obtained. Substituting (31) into (56) yields the
P1, and then substituting the obtained P0 and P1 into (55),
the P2 is finally achieved.

For the asymmetric network with more than two relay
users, we employ similar analytical method above for the
corresponding power optimization, and the resultant superior
performance is attained. However, the related computation
will be much complicated because it needs to evaluate the
solution of high-order equation. For this, we will resort to the
Newton method to obtain the suboptimal solution. For three
relays case, the objective function corresponding to (19) is
changed to

L (P0, P1, P2, P3) = μ1μ2μ3P
3
0 P1P2P3/

(
P1ρ

2
1dμ1

+P2ρ
2
2dμ2 + P3ρ

2
3dμ3 + 1

)3

+η (Pt − 3P0 − P1 − P2 − P3) .

(32)

With (32), we can use the quasi-Newton method to find the
solution on {P0, P1, P2, P3}, i.e.,

y(n+1) = y(n) − γH−1gT (33)

where y = [y1, y2, y3, y4, y5]T , and y1 = P0, y2 =
P1, y3 = P2, y4 = P3, y5 = η. The initial value y(0) may
take some small positive values. n is the iterative index, and
the iterative times depend on the given tolerance. Once the
difference of y(n+1) and y(n) is very small and satisfies the
tolerance requirement, and the iteration is terminated. γ is
adjustment step. The gradient vector g and Hessian matrixH
are defined as follows:

g =
[

∂L
∂y1

,
∂L
∂y2

,
∂L
∂y3

,
∂L
∂y4

,
∂L
∂y5

]T
,

H =

⎡

⎢⎢⎢⎣

∂2L
∂y21

· · · ∂2L
∂y1∂y5

...
. . .

...
∂2L

∂y5∂y1
· · · ∂2L

∂y25

⎤

⎥⎥⎥⎦ . (34)

By using the iterative calculation above, the suboptimal PA
for three-relay case can be obtained. With these PAs, the
system performance will be improved greatly. Similarly, for
more than three relay asymmetric case, we can also employ
the Newton method above to find suboptimal PA to achieve
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the superior performance. All these results will provide use-
ful guideline for the system design.

5 DF protocol based DSTC scheme

In this section, we will give another DSTC scheme based on
the DF method. According to the principle of DF method,
and considering that the CSI is absent at both relay termi-
nals and destination terminal, two differential schemes are
employed for decoding at relay terminals and destination
terminal, respectively. Moreover, these two schemes will be
different, i.e., one is based on the single-symbol differential
modulation, and the other is based on differential space-time
modulation.

With the analysis in Sect. 1, L information symbols
{dl,l = 1, . . .L} used for space-time coding will be trans-
mitted at the source terminal (the information symbols will
depend on different STC schemes). Firstly, these symbols are
differentially encoded in terms of the following differential
PSK modulation.

sl = sl−1dl , l = 1, . . .L , (35)

where the initial value s0 = 1, {dl} are from MPSK
constellation�. Then, these encoded symbols are transmitted
to all relay terminals by broadcasting from (L + 1) different
slots. Thus, according to (5), at k relay terminal, the received
signals at the l−1 and l time slots can be, respectively,written
as

rl−1,k = √
P0ρskαl−1,ksl−1,k + zl−1,k (36)

rl,k = √
P0ρskαl,ksl,k + zl,k (37)

where zl−1,k and zl,k are relay noises at the time slot l−1 and
l, respectively, and they aremodeled as independent complex
Gaussian random variables with zero-mean and variances
N0. P0 is transmit power of source terminal. Here, we assume
that channel variation is negligible from one time slot to the
next. Thus, we have: αl−1,k = αl,k , k = 1, . . .K . Based on
this, using (35) and (36), (37) can be changed to

rl,k = (
rl−1,k − zl−1,k

)
dl + zl,k = rl−1,kdl + z̃l,k (38)

where z̃l,k = zl,k − zl−1,kdl is an equivalent noise with zero-
mean and variance 2N0.

With (38), we can obtain the decision of symbol dl . i.e.,

d̂l = argmax
dl∈�

Re
{
r∗
l,krl−1,kdl

}
(39)

Since K relays perform independent decoding, the K deci-
sion values d̂l,k (k = 1, . . ., K ) for {dl} will be produced.

At low SNR, the noise becomes a dominant factor to affect
the bit error rate (BER) performance, so these K decision
values will be approximately identical. Moreover, for sym-
metric network, these K values are also approximately the
same because K channels from source to relay terminals
will experience almost the same fading. For asymmetric
network, at high SNR, the above K decision values may
have some differences due to different fading cases, but the
differences will be small since the probability of decoding
error has become low at high SNR. So these decision val-
ues will be asymptotically identical, and the corresponding
performance is influenced less. After that, with the obtained
decision symbols, the information bits are generated by the
symbol demapping accordingly, which will be employed for
the space-time coding at the relay terminals.

In the second transmission phase, each relay (such as relay
k) re-encodes the decoded information data in terms of the
given modulation mode (this mode may be different with
that at source terminal) and generates the corresponding data
symbols {clk}, and then these symbols are space-time coded
according to the given STC scheme. Here, the STC matrix
is constructed by (1). Thus, for relay k (k = 1, . . ., K ), the
information code matrix at time block i is written as

Ci,k = 1√
L

L∑

l=1

(
Ul c

R
lk + jVl c

I
lk

)
(40)

where cRlk and cIlk denote the real and imaginary parts of
clk , respectively. To transmit the data in absence of CSI, the
differential space-time modulation is employed, i.e.,

Si,k = Ci,kSi−1,k (41)

where S0,k = IK is the initial code matrix. After differential
modulation, the relay k only transmits the kth column si,k
of Si,k , and these columns are transmitted simultaneously.
From (41), si,k = Ci,ksi−1,k is obtained.

At the destination terminal, the received signal vector at
time i can be expressed as

ri,d =
[√

P1si,1
√
P2si,2 · · · √

PK si,K
]

[
hi,1 hi,2 · · · hi,K

]T + zi,d = YiPhi + zi,d (42)

where Pk(k = 1, . . ., K ) is the transmit power of relay k,P =
diag{P1/2

1 , . . ., P1/2
K }, hi,k = ρkdβi,k,hi = [hi,1, . . .hi,K ]T ,

Yi = [si,1, si,2, . . .si,K ]. Note that Yi is different with
Si,k in that its columns are from different relays, whereas
the columns of Si,k are from the same relay k. zi,d =
[zi1,d , . . . , ziK ,d ]T is the noise vector, and its elements
are independent complex Gaussian random variables with
zero-mean and variances N0. Similarly, at time i − 1, the
corresponding received signal vector is written as
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ri−1,d =
[√

P1si−1,1

√
P2si−1,2 · · · √

PK si−1,K

]

hi + zi−1,d = Yi−1Phi + zi−1,d (43)

where the channel is assumed to keep unchanged at two con-
secutive time blocks, i.e., hi−1 = hi is utilized.

With the above analytical results, wemay assume thatCi,k

is approximately equal toCi,u for different k and u, and thus
the index k of Ci,k may be dropped for analysis simplicity.
Hence, with (42) and (43), using si,k ≈ Ci si−1,k for different
k, we have:

ri,d ≈ Ciri−1,d + z̃i,d (44)

where z̃i,d ≈ zi,d −Cizi−1,d is an equivalent Gaussian noise
matrix with zero mean and covariance 2N0IK . Employing
the analytical method in Eqs. (12) and (13), the approximate
expression similar to (14) forMLdetector of each transmitted
symbol cl can be obtained as

ĉl ≈ argmax
cl∈�

{
tr
(
ri−1,drHi,dUl

)}
cRl

+Im
{
tr
(
−ri−1,drHi,dVl

)}
cIl (45)

Using the symbol demapper, the information bits are finally
attained. If the decoded data are almost inerrable at relays, the
decision of (45) will be more accurate, and the resulting BER
becomes lower due to the full utilization of diversity gains.
Considering that the decoding error does exist at the relay, the
decision of (45) will be affected. Correspondingly, the BER
will be increased to some extent, especially at high SNR.
Besides, for symmetric network, (45) is effective. However,
for asymmetric network at high SNR, it will produce some
decoding errors since the approximation Ci,k ≈ Ci,u is not
strict under this case.

Based on the analysis above, the DF method will increase
the computational complexity at relays due to the require-
ment of timely decoding, but this method can effectively
avoid the amplification of relay noise from AF method.
Hence, its performance will outperform that of AF method.
Moreover, it can provide the flexibility of encoding scheme
for the information bits at the relays in a spectrum efficient
manner, which is also not implemented by the AF method.
Besides, the above differential scheme is also suitable for
the application of other STC schemes to implement differ-
ent cooperative diversity. For example, when USTC [20] is
employed, the presented scheme above will correspond to
the distributed differential USTC (DDUSTC). Although [16]
also gives a DDUSTC scheme, the scheme is only designed
for the diagonalUSTC,whereas ourDDUSTCschemehas no
this limitation. Thus, it will have generality. Moreover, from
the view of complexity, the former needs MK search times
for decoding, while our DDUSTC scheme needs KM + M

search times, where M is the symbol constellation size and
often chosen to equal the cardinality of G (i.e., the number of
USTC matrix in G, where G represents a group which con-
sists of K ×K USTCmatrices {Cm} [20]). Thus, our scheme
will have lower complexity.

6 Simulation results

In this section, we will use computer simulation to verify the
effectiveness of the developed distributed DSTC schemes
and PA scheme in composite Rayleigh channel including
large-scale and small-scale fading. In simulation, Gray code
is employed to map the data bits to symbol constellations.
The symmetric and asymmetric networks are both considered
for performance evaluation. The 2-antenna and 3-antenna
orthogonal STC from amicable orthogonality are used for
different STC schemes, and correspondingly, two and three
relays are employed. The average BER is obtained by aver-
aging the 107 Monte Carlo simulations, and the results are
illustrated in Figs. 2, 3, 4, 5 and 6. In these figures, the noise
variance is normalized to unit, and the total transmit power
Pt is defined as the SNR accordingly.

Figure 2 shows the BER performance of the developed
distributed DSTC schemes based on AF method with coher-
ent detection and differential detection for two relays. To
testify the validity of the optimized PA scheme, we also give
the comparison of fixed PA (FPA) and optimal PA (OPA),
where the OPA scheme is from Eq.(25), and the FPA scheme
corresponds to equal PA (i.e., P0 = P1 = P2 = Pt/4).
In Fig. 2, the symmetric network situation that the distance
between source and relay terminals is the one-third of the

Fig. 2 BER of AF based differential and coherent DTC scheme with
FPA and OPA for 2-relay symmetric network case
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Fig. 3 BER of AF based differential and coherent DTC scheme with
FPA and OPA for 3-relay symmetric network case

Fig. 4 BER of AF based differential and coherent DTC scheme with
FPA and OPA for 2-relay asymmetric network

distance between relays and destination terminal is consid-
ered, and thus we may assume that ρ1d = ρ2d = 1 and
ρs1 = ρs2 = √

27, where the path-loss exponent is set as
3. QPSK and 16PSK are employed for modulations. From
Fig. 2, it can be seen that our differential scheme has perfor-
mance loss of about 3dB as expectedwhen comparedwith the
corresponding coherent scheme. To implement the coherent
scheme, however, the perfect CSI is required at the receiver,
whereas our differential scheme does not need CSI at both
receiver and transmitter, which will greatly decrease the real-
ization complexity and increases the transmission efficiency.
Moreover, it is found that the derived OPA scheme obtains

Fig. 5 BER of AF based differential and coherent DTC scheme with
FPA and OPA for 3-relay asymmetric network

better performance than the FPA scheme, at theBERof 10−3,
it achieves close to 2dBgain for bothQPSKand 16PSKmod-
ulations. Besides, the systems with QPSK outperform those
with 16PSK. This is because the constellation points of high-
order constellation are densely packed and prone to errors in
fading channel.

Figure 3 gives theBERperformance comparison of theAF
method based distributed DSTC schemes with three relays
under symmetric network, the channel parameters are set
similar to those in Fig. 2, i.e., ρ1d = ρ2d = ρ3d = 1 and
ρs1 = ρs2 = ρs3 = √

27. The OPA scheme is from Eq. (26).
The FPA scheme corresponds to equal PA (i.e. P0 = P1 =
P2 = P3 = Pt/6). The QPSK and 16PSK are used for
modulations. As shown in Fig. 3, we can obtain the same
conclusions as Fig. 2. Compared to the differential scheme
withOPA, the coherent schemewithOPAhas about 3dBgain
at the sameBER,which accordswith the existing knowledge.
The results indicate that our OPA scheme can be applied to
coherent case and obtain superior performance. Besides, by
comparingFigs. 2 and 3, it is found that theBERperformance
with 3 relays is better than that with 2 relays because of more
cooperative diversity gains. Moreover, with the growth of
the modulation size, the BER performance decreases due to
the reason analyzed in Fig. 2. The above results show that
the proposed DSTC scheme and optimal PA for symmetric
network are valid and reasonable.

To testify the validity of the proposed PA scheme under
asymmetric network,wegive theBERperformance compari-
son for distributed DSTC scheme with AF method in Figs. 4
and 5, where QPSK and 16PSK modulations are used. In
Fig. 4, two-relay asymmetric network with ρ1d = 1, ρ2d =
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Fig. 6 BER of distributed differential DTC schemes with AF and DF
methods for different network cases. a Symmetric network. b Asym-
metric network

√
3 and ρs1 = √

27, ρs2 = √
125 is considered. The FPA

scheme is set as to equal PA (i.e. P0 = P1 = P2 = Pt/4),
and the OPA scheme is based on the derivation in Sect. 4.2
[i.e., (31), (56) and (55) are used]. It is observed that the
OPA scheme has obvious performance superiority over FPA
scheme, and gives about 2dB gain over the latter. Moreover,
the performance of OPA scheme with 16PSK is worse than
that with QPSK as expected. For further comparison, we
provide the performance results under three-relay asymmet-
ric network in Fig. 5, where ρ1d = 1, ρ2d = √

2, ρ3d = √
3

and ρs1 = √
27, ρs2 = √

64, ρs3 = √
125 are considered.

The optimal PA scheme is obtained by (33) and (34), i.e., it is

from the iterative calculation of Newton method. As shown
in Fig. 5, the derived PA scheme is also effective for three-
relay asymmetric network, and its performance is superior
to that with FPA scheme. At BER of 10−4, it achieves close
to 2dB gain for QPSK or 16PSK modulation. By comparing
Figs. 4 and 5, it is found that the system with 3 relays has
better BER performance than that with 2 relays due to greater
cooperative diversity gains. All these results indicate that the
derived two OPA schemes for asymmetric network are valid
and reasonable, which will provide helpful guideline for the
practical system design.

Figure 6 shows the BER performance of the distributed
DSTC scheme based on DF method under different fading
cases, where two and three relays are considered, QPSK and
equal PA are employed. For comparison, the performance
of the AF method based DSTC scheme is also provided.
In Fig. 6a, the symmetric network is considered, where
ρ1d = ρ2d = 1 and ρs1 = ρs2 = √

64 for two relays, and
ρ1d = ρ2d = ρ3d = 1 and ρs1 = ρs2 = ρs3 = √

64 for three
relays. It is observed that the schemewith DFmethod outper-
forms that with AFmethod. Especially at low SNR, the noise
becomes the dominant factor to affect the performance, and
the performance superiority from the DF scheme becomes
very obvious because no noise power is amplified. Under this
case, the performance of scheme with AF method becomes
worse due to the amplification of noise power. At high SNR,
however, the performance superiority will decrease because
of the decoding error propagation from the relay terminals for
DF scheme. Besides, by comparing the BERs of two relays
and three relays, three-relay system has better BER perfor-
mance than two-relay system for both DF and AF schemes.
This is because more cooperative diversity gains are avail-
able.

In Fig. 6b, the asymmetric network is considered, where
ρ1d = 1, ρ2d = √

2 and ρs1 = √
27, ρs2 = √

64 for
two-relay cases, and ρ1d = 1, ρ2d = √

2, ρ3d = √
3

and ρs1 = √
27, ρs2 = √

64, ρs3 = √
125 for three-relay

cases. As shown in Fig. 6b, the developed DSTC scheme
with DF method still outperforms that with AF method for
two relays or three relays because of no noise power ampli-
fication, especially at low SNR. At high SNR, however, the
performance superiority of the former (i.e. DF scheme) drops
due to the decoding error propagation at relay terminals
and approximate decoding scheme at the destination termi-
nal. Moreover, the latter (i.e. AF scheme) can utilize the
diversity gain to achieve better performance at high SNR
due to less noise influence, and thus the decreasing rate
of BER curve of AF scheme is faster than that of the DF
scheme. The results above show that the proposed differ-
ential scheme with DF method outperforms that with AF
method, but the performance superioritywill decrease at high
SNR.

123



442 W. Xu et al.

7 Conclusions

Based on theAF andDFmethods, we have presented two dis-
tributed DSTC schemes for symmetric and asymmetric relay
networks, respectively. The system performance is inves-
tigated in composite fading channels with large-scale and
small-scale fading. The schemes do not require the CSI
at both transmitter and receivers, and have low decoding
complexity. Thus, they avoid high implementation complex-
ity and low efficiency by conventional channel estimation.
Moreover, different DSTC schemes and modulation modes
can be applied to the proposed schemes, and thus the flexi-
bility of system design is increased greatly. According to the
PEP analysis, the powers of source terminal and relay termi-
nals are jointly optimized for symmetric/asymmetric network
so that the PEP is minimized. Especially, for the compli-
cated optimization problem under asymmetric network, two
practical methods (one is based on Shengjin’s Formulas, the
other is based on Newton method) are presented to obtain
the optimal/suboptimal PA, which is seldom studied due to
the optimization difficulty. Simulation results and numeri-
cal analysis indicate that the application of optimal PA does
improve the performance of the proposed scheme, and the
corresponding performance is superior to that with fixed
PA. Besides, compared with the scheme with AF method,
the scheme with DF method has better performance since
no noise power is amplified. However, at high SNR, the
performance superiority decreases due to the influence of
error propagation from the relay terminals. Besides, in the
future work, we will continue to study the performance
of distributed DSTC schemes with power allocation over
composite fading channels, and derive the theoretical BER
expressions so that the system performance may be effec-
tively evaluated in theory.
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Appendix 1

In this appendix, we will give the derivation of the optimized
objective function in (19). For analysis simplicity, we con-
sider two-relay cases (the extension to multi-relay cases will
be straightforward).

By using the related results from [2] and [21], and aver-
aging the above (18) on xi−1, the following inequality will
be obtained.

Pr (D → E) ≤ E{βik }

{
det−1 [I2 + Es/ (4κN0)BF]

}
(46)

whereF=diag{|βi1|2, |βi2|2}, B = GHPSH
i−1C

HCSi−1PG.
Since B = BH , B is a Hermitian matrix. Let λv(v = 1, 2)
be the two eigenvalues of matrix B, then det (B) = λ1λ2
.Thus according to the analysis of [21], there exists an uni-
tary matrixW such thatWBWH = diag{λ1, λ2}. Moreover,
λ1 and λ2 are nonnegative real values due to the fact that B is
also a nonnegative-definite Hermitian matrix. Based on the
analysis above, we will have:

det [I2 + Es/(4κN0)BF]

= det
[
I2 + Es/(4κN0)WHdiag {λ1, λ2}WF

]

= det
[
I2 + Es/ (4κN0) diag {λ1, λ2}Q

]
(47)

where Q = WFWH = [q11 q12; q21 q22]. Let w1 =
[w11, w21]T and w2 = [w12, w22]T be two column vec-
tors of W, then q11 = |βi1|2|w11|2 + |βi2|2|w12|2 > 0, and
q22 = |βi1|2|w21|2 + |βi2|2|w22|2 > 0. Considering that
λ1, λ2 and Es/(4κN0) are nonnegative, (47) can be changed
to

det [I2 + Es/(4κN0)BF]

= [1 + q11λ1Es/(4κN0)] [1 + q22λ2Es/(4κN0)]

− λ1λ2 [Es/(4κN0)]
2 q12q21

≥ q11λ1Es/(4κN0)q22λ2Es/(4κN0)

− λ1λ2 [Es/(4κN0)]
2 q12q21

= λ1λ2 [Es/(4κN0)]
2 det(Q) (48)

Substituting (48) into (46), the PEP is rewritten as

Pr (D → E) ≤ E{βik }

{[
(Es/ (4N0))

2 λ1λ2/κ
2
]−1 −1

det(Q)

}

= (Es/N0)
−2 E{βik }

{[
4−2λ1λ2/κ

2
]−1 −1

det(Q)

}

(49)

According to the definition of the diversity gain [24], using
(49), we can evaluate the diversity gain Gd as follows:

Gd = lim
Es/N0→∞ − log (Pr (D → E))

log(Es/N0)
= 2 + 0 = 2 (50)

Hence, the system achieves full diversity order of 2 for two-
relay case. Similarly, we can use the above analytical method
to derive the diversity gain of the systemwithmultiple relays.
Namely, full diversity order of K will be obtained.

Besides, from (49), it is found that the PEP will be
minimized when λ1λ2/κ

2 (i.e. det(B)/κ2) is maximized.
According to the definition of matrix G and B, we have:
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det(B) = det
(
GHPSH

i−1C
HCSi−1PG

)

= det
(
GHG

)
det

(
P2
)
det(CHC)

= ρ2
s1ρ

2
s2ρ

2
1dρ

2
2dμ1μ2P

2
0 P1P2 det

(
CHC

)

= ζμ1μ2P
2
0 P1P2 det

(
CHC

)
(51)

where ζ = ρ2
s1ρ

2
s2ρ

2
1dρ

2
2d , and SH

i−1Si−1 = I2 is utilized.
Since ζ and det(CHC) are independent of the power opti-
mization, we only need to optimizeμ1μ2P2

0 P1P2/κ
2. Based

on this, subject to the total power constraint, wemay establish
the optimized objective function shown as (19).

Appendix 2

In this appendix, we give the derivation of (29). With (28),
setting ∂L/∂Pv = 0 (v = 0, 1, 2) yields

∂L
∂P0

=
2P0P1P2

[
2P2

0 ρ2s1ρ
2
s2 + 3N0P0

(
ρ2s1 + ρ2s2

)
+ 4N2

0

]

[
P1P0ρ

2
1dρ2s2 + P2P0ρ

2
2dρ2s1 + P2

0 ρ2s1ρ
2
s2 + 2N0

(
P1ρ

2
1d + P2ρ

2
2d + P0ρ

2
s1 + P0ρ

2
s2

)
+ 4N2

0

]2

−
2P2

0 P1P2
[
P2
0 ρ2s1ρ

2
s2 + 2N0P0

(
ρ2s1 + ρ2s2

)
+ 4N2

0

] [
P1ρ

2
1dρ2s2 + P2ρ

2
2dρ2s1 + 2P0ρ

2
s1ρ

2
s2 + 2N0

(
ρ2s1 + ρ2s2

)]

[
P1P0ρ

2
1dρ2s2 + P2P0ρ

2
2dρ2s1 + P2

0 ρ2s1ρ
2
s2 + 2N0

(
P1ρ

2
1d + P2ρ

2
2d + P0ρ

2
s1 + P0ρ

2
s2

)
+ 4N2

0

]3 − 2η = 0

(52a)

∂L
∂P1

=
P2
0 P2

[
P2
0 ρ2s1ρ

2
s2 + 2N0P0

(
ρ2s1 + ρ2s2

)
+ 4N2

0

]

[
P1P0ρ

2
1dρ2s2 + P2P0ρ

2
2dρ2s1 + P2

0 ρ2s1ρ
2
s2 + 2N0

(
P1ρ

2
1d + P2ρ

2
2d + P0ρ

2
s1 + P0ρ

2
s2

)
+ 4N2

0

]2

−
2P2

0 P1P2
[
P2
0 ρ2s1ρ

2
s2 + 2N0P0

(
ρ2s1 + ρ2s2

)
+ 4N2

0

] [
P0ρ

2
1dρ2s2 + 2N0ρ

2
1d )

]

[
P1P0ρ

2
1dρ2s2 + P2P0ρ

2
2dρ2s1 + P2

0 ρ2s1ρ
2
s2 + 2N0

(
P1ρ

2
1d + P2ρ

2
2d + P0ρ

2
s1 + P0ρ

2
s2

)
+ 4N2

0

]3 − η = 0 (52b)

∂L
∂P2

=
P2
0 P1

[
P2
0 ρ2s1ρ

2
s2 + 2N0P0

(
ρ2s1 + ρ2s2

)
+ 4N2

0

]

[
P1P0ρ

2
1dρ2s2 + P2P0ρ

2
2dρ2s1 + P2

0 ρ2s1ρ
2
s2 + 2N0

(
P1ρ

2
1d + P2ρ

2
2d + P0ρ

2
s1 + P0ρ

2
s2

)
+ 4N2

0

]2

−
2P2

0 P1P2
[
P2
0 ρ2s1ρ

2
s2 + 2N0P0

(
ρ2s1 + ρ2s2

)
+ 4N2

0

] [
P0ρ

2
2dρ2s1 + 2N0ρ

2
2d )

]

[
P1P0ρ

2
1dρ2s2 + P2P0ρ

2
2dρ2s1 + P2

0 ρ2s1ρ
2
s2 + 2N0

(
P1ρ

2
1d + P2ρ

2
2d + P0ρ

2
s1 + P0ρ

2
s2

)
+ 4N2

0

]3 − η = 0 (52c)

Using Eqs. (52a) and (52b), we have:

(
P0ρ

2
s1 + 2N0

)
ρ2
2d

[(
ρ2
s1ρ

2
s2P

2
0 + 4N 2

0

)
(P0 − P1)

+ 2P2
0 N0

(
ρ2
s1 + ρ2

s2

)
− P0P1N0

(
ρ2
s1 + 3ρ2

s2

)]
P2

=
(
P0ρ

2
s2 + 2N0

) [(
P0ρ

2
s1 + 2N0

) (
ρ2
s2ρ

2
1d P

2
0

+ ρ2
s1P0N0 + ρ2

s2P0N0 + 2ρ2
1d P0N0 + 4N 2

0

)
P1

+
(
ρ2
s1ρ

2
s2P

2
0 + ρ2

s2P0N0 + 3ρ2
s1P0N0 + 4N 2

0

)
ρ2
1d P

2
1

−
(
P0ρ

2
s2 + 2N0

) (
P0ρ

2
s1 + 2N0

)2
P0

]
(53)

With equations (52b) and (52c), we can further obtain:

(
P0ρ

2
s1 + 2N0

)
ρ2
2d P

2
2 +

[
2N0P0

(
ρ2
s1 + ρ2

s2

)

+ 2N0P1
(
ρ2
2d − ρ2

1d

)
+ P0P1

(
ρ2
s1ρ

2
2d − ρ2

s2ρ
2
1d

)

+ P2
0 ρ2

s1ρ
2
s2

]
P2

=
(
P0ρ

2
s2 + 2N0

) (
P0ρ

2
s1 + 2N0 + P1ρ

2
1d

)
P1 (54)

According to the power constraint condition 2P0+P1+P2 =
Pt , P2 is rewritten as

P2 = Pt − 2P0 − P1. (55)

Substituting (55) into (54) gives

[
2
(
ρ2
s1ρ

2
2d + ρ2

s2ρ
2
1d − ρ2

s1ρ
2
s2

)
P2
0

+ 4P0N0

(
ρ2
1d+ρ2

2d − ρ2
s1−ρ2

s2

)
−2Pt N0

(
ρ2
1d + ρ2

2d

)

− P0Pt
(
ρ2
s1ρ

2
2d+ρ2

s2ρ
2
1d

)
−8N 2

0

]
P1=

(
P0ρ

2
s1 + 2N0

)

(−Pt + 2P0)
(
P0ρ

2
s2 + Ptρ

2
2d − 2P0ρ

2
2d + 2N0

)
(56)

Substituting (55) and (56) into (53) yields:
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(
P0ρ

2
s1 + 2N0

) (
P0ρ

2
s2 + 2N0

) (
P0ρ

2
s2 + Ptρ

2
2d

− 2P0ρ
2
2d + 2N0

) (
4ρ2

s1ρ
2
s2P

3
0

− 8ρ2
s1ρ

2
2d P

3
0 − 8ρ2

s2ρ
2
1d P

3
0

+ 16ρ2
1dρ

2
2d P

3
0 + 12ρ2

s1N0P
2
0 + 12ρ2

s2N0P
2
0

+ 6ρ2
s1ρ

2
2d Pt P

2
0 + 6ρ2

s2ρ
2
1d Pt P

2
0

− 24ρ2
2d N0P

2
0 − 24ρ2

1d N0P
2
0

− 24ρ2
1dρ

2
2d Pt P

2
0 − 2ρ2

s1N0Pt P0 − 2ρ2
s2N0Pt P0

− ρ2
s1ρ

2
2d P

2
t P0 − ρ2

s2ρ
2
1d P

2
t P0 + 20ρ2

2d N0Pt P0

+ 20ρ2
1d N0Pt P0 + 32N 2

0 P0 + 12ρ2
1dρ

2
2d P

2
t P0

− 4ρ2
1d N0P

2
t − 4ρ2

2d N0P
2
t − 8N 2

0 Pt − 2ρ2
1dρ

2
2d P

3
t

)
= 0

(57)

Considering that P0, ρs1, ρs2, and N0 are positive, the first
factor (P0ρ2

s1+2N0) and the second factor (P0ρ2
s2+2N0) as

well as the third factor (P0ρ2
s2 + Ptρ2

2d −2P0ρ2
2d +2N0) are

all not equal to zero, otherwise P1 will become zero in terms
of Eq. (56). Hence, (57) can be further simplified as (29).

Appendix 3

In this appendix, wewill give the derivation of (31) and proof
of the Shengjin’s Formula 4.

By means of variable transformation x = t − b/(3a), the
general cubic equation ax3+bx2+cx+d = 0 can be changed
as

t3 + pt + q = 0 (58)

where p = (3ac − b2)/(3a2), q = (2b3 − 9abc +
27a2d)/(27a3), and � is given by (30). For � < 0, there
exist three distinct real roots for cubic equation, so Eq. (58)
will have three real roots accordingly. Based on this, we may
employ the trigonometric method in [23] to obtain the three
roots for Eq. (58). i.e.,

tk = 2
√−p/3 cos

(
1

3
arccos

(
3q

2p

√
−3

p

)
− 2πk

3

)
, k = 0, 1, 2

(59)

Substituting p = (3ac − b2)/(3a2) and q = (2b3 −
9abc + 27a2d)/(27a3) into (59) gives

tk = 2
√
b2 − 3ac

3|a| cos

(
1

3
arccos

(
−2b3 − 9abc + 27a2d

2(b2 − 3ac)3/2a
|a|

)
− 2πk

3

)

(60)

Considering T = (2Ab− 3aB)/(2A3/2), A = b2 − 3ac, and
B = bc − 9ad, we have:

T =
(
2b3 − 9abc + 27a2d

)
/

[
2
(
b2 − 3ac

)3/2]
(61)

Substituting (61) and A = b2−3ac as well as x = t−b/(3a)

into (60) yields final three roots:

xk =
[
−b − 2

√
A cos ((θ − 2πk) /3)

]
/(3a), k = 0, 1, 2

(62)

where θ = arccosT . This is the Shengjin’s Formula 4.
With (62), considering the constrain condition of P0, P0

can be expressed as (31).
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