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Abstract This paper provides the detailed simulation analy-
sis of Filter Bank Multicarrier Cognitive Radio for doing
tradeoff between the parameters of cognitive radio for achiev-
ing optimum performance. An attempt for tradeoff between
different transmission-radio environment parameters has
been done as this leads to an increase in spectrum efficiency
by decreasing the spectral leakage which provides optimal
performance. The optimization-tradeoff between different
radio environment parameters is necessary for prediction and
planning of future wireless communication systems. Trans-
mission, reception and radio environment parameters play a
key role in the performance enhancement of FBMC cognitive
radio.

Keywords FBMC - Cognitive radio - Filter Bank -
Multicarrier

1 Introduction: role of cognitive radio in next
generation wireless communication

A cognitive radio is essentially a software defined radio run-
ning under the control of an intelligent software package
called a “cognitive engine”. The term cognitive radio (CR)
was first defined by Joseph Mitola III [1-3]. According to
Mitola, CR technology is the “intersection of personal wire-
less technology and computational intelligence, “where CR is
defined as a smart radio that would be self-aware, RF-aware,
user-aware, with a lot of high-fidelity knowledge of the radio
environment”. Cognitive radios are aware of their surround-
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ing environment and bandwidth availability, and are able to
dynamically tune the spectrum usage on the basis of location,
nearby radios, time of day and other factors. This provides
for better use of the spectrum as well as reduced power con-
sumption. Various devices will be able to detect other radios
around them and work together to optimize the use of spec-
trum, allocate resources, and ultimately communicate with
their peers [4]. Cognitive radio offers new opportunities for
the wireless industry and consumers to cope with the ever
increasing mobile data traffic. Cognitive technologies can
significantly enhance the overall utilization of spectrum, by
allowing sharing in bands where it was earlier not possi-
ble [5].

2 Drivers of the present problem

A fundamental problem facing the future wireless com-
munication systems is where to find the suitable spectrum
bands to meet the demand of future services [6]. In order
to overcome this problem and improve spectrum utilization,
cognitive radio concept has evolved. To build a highly adap-
tive radio technology that learns from the environment to best
serve its user, multi rate signal processing techniques need to
be developed for different functionalities of cognitive radio
[7,8].

2.1 Role of FBMC over OFDM in cognitive radio
physical layer

Multi rate systems and filter banks have played an impor-
tant role in source coding and compression for contempo-
rary communication applications [9,10]. Multi rate DSP is
applied in digital systems where more than single sampling
rate is the requirement [ 11]. Filter Bank Multicarrier (FBMC)
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Spectrum Sensing

Fig. 1 Optimization-tradeoff between different radio environment parameters for future wireless cognitive radio

has advantages over OFDM such as reduced guard bands
between users and improved spectral efficiency due to lack
of Cyclic Prefix and reduced synchronization requirements
due to very good spectral containment. Hence, this Filter
Bank Multicarrier Technique is used in spectrum sensing
in cognitive radio. Various applications of multi rate sig-
nal processing are in the field of Communication Systems,
Speech & Audio Processing Systems, Antenna & Radar Sys-
tems. Advanced techniques on multi rate signal processing
can be applied for digital information processing due to the
advantages like lesser computational requirements, less stor-
age for filter coefficients, less finite arithmetic effects, low
requirement of filter order in multi rate application, less sensi-
tivity to filter coefficient length [12]. Filter Bank Multicarrier
System (FBMC) with offset quadrature amplitude modula-
tion (OQAM) can achieve smaller inter symbol interference
(IST) and Inter Carrier Interference (ICI) without using the CP
by utilizing well designed pulse shapes that satisfy the perfect
reconstruction conditions [13, 14]. Moreover, the problem of
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the spectral leakage can be solved by minimizing the side
lobes of each sub carriers which leads to high efficiency
(in terms of spectrum and interference). Filter Bank Mul-
ticarrier (evolving OFDM-OQAM) techniques have been
recommended to replace conventional OFDM multicarrier
technique for CR transmission [15] (Fig. 1).

3 Flowchart for present study: Lp = KM + 1
(performance analysis of modified FBMC)

A Flowchart has been prepared for study of effect of sub
channels M on prototype filter length Lp for FBMC cog-
nitive radio has been discussed. The distinctive feature of
the FBMC design technique has ability to provide improved
frequency selectivity through the use of longer and spec-
trally well shaped prototype filters. In the present case, more
emphasis has been laid on the Lp = KM, KM —1—-D, KM+
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Bit Error Rate (BER)

Fig. 3 BER versus SNRatK =4,Lp=KM +1

Fig. 4 Staircase Plot between Lp and BER
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1 — D as a specific prototype filter length, under the assump-
tion of Group Delay D of filter as zero in all the cases (Fig. 2).

3.1 Results and discussion

Different graphic plots have been obtained between the var-
ious parameters namely number of sub channels M, bit error
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rate (BER), signal to noise ratio (SNR), prototype filter length
Lp = K x M + 1 at a fix value of Overlapping factor K = 4.
The spectrum sensing is performed by measuring the sig-
nal strength at the outputs of the subcarrier channels at the
receiver. The cognitive radio system is able to transmit over
the direct link more than that when the direct link is blocked
for all subcarriers in the source side. The impact of the present
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Mversus Lp

Fig. 8 Plot obtained between M and Lp
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Fig. 9 Plot obtained between M and SNR

study of FBMC CR is highlighted through the role of number
of sub channels. Readjustment of various parameter levels
leads to optimization between different radio environment
parameters under varying strategic conditions. The compu-
tational complexity of the FBMC cognitive radio is studied
under the effect of K, M and Lp. For FBMC system, the
prototype filter coefficients are assumed to be matching the
Physical Layer for Dynamic Spectrum Access (PHYDAS)
coefficients with overlapping factor K = 4 (optimum). Actu-
ally, the entire process here involves the three steps. fixing
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the subcarriers, matching the subcarriers and re-adjusting
the assigned subcarriers as per the system requirement on
an average basis. For optimization and tradeoff sake, the
number of subcarriers is taken to be greater than 64. The
literature survey on FBMC shows that the different subcar-
riers are adjusted in such a way that the interference to the
primary user by secondary users is kept to a minimum. More-
over, the impact of different constraint values on the system
performance is investigated. This section formulates a prob-
lem to select and match some subcarriers for transmission
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Fig. 10 Plot between BER and SNR at K = 4, Lp = KM with M = 64, 128, 256, 512

Lp versus BER

Fig. 11 Plot between Lp and BER

and use the rest only for direct transmission. The FBMC CR
in physical layer is a potential candidate for future wireless
communication system. A Bandwidth of 10 MHz (within a
useful BW range of 6-10 MHz) with M = 64, 128, 256, 512
subcarriers has been taken into consideration in the present
scenario. The subcarriers are allocated sequentially to the
users with optimum results. In Fig. 3 BER is found to
be decreasing with increasing values of SNR. A staircase
plot between Lp and BER has been shown in Fig. 4. Plots
between various performance parameters have been depicted
in Figs. 5, 6,7, 8 and 9.

3.2 Results and discussion: Lp = KM
Figure 10 shows BER versus SNR plot at different values

of M. The trend for M values has been clearly shown here.
AtM = 64, BER = 1.45 at SNR = 0 dB, BER = 1.1 at

SNR = 1 dB, BER = 0.75 at SNR = 2 dB, BER = 0.45
at SNR = 3 dB, BER = 0.3 at SNR = 4 dB, BER = 0.1
at SNR = 5 dB. It is very clear that at higher values of M
initial values of BER are found to be higher than 1.45 at
SNR = 0 dB. The values of SNR chosen are well within the
range (—5 to +30 dB) as per specifications of IEEE 802.22
Standard for FBMC cognitive radio. Figure 11 shows the
plot between Lp and BER which shows that beyond Lp =
500, BER is found to rise to a value 107%2 till Lp = 2000.
Figure 12 shows plot between Lp and SNR which clearly
shows SNR decrease beyond Lp = 10°. Figure 13 shows
the plot between M and BER which indicates that beyond
M = 102, BER increases to 10702, Figure 14 shows with M
more than 102, Lp becomes more than 103. In Fig. 15, SNR
decreases to 2 dB beyond M = 10%. Various performance
parameters have shown that with increasing BER, SNR is
found to decrease and vice versa.
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Fig. 14 Plot between M and Lp

M versus SNR

Fig. 15 Plot between M and SNR

33Lp=KM—1

The plots obtained between various parameters, number of
sub channels M, BER, SNR, prototype filter length Lp =
K x M + 1 at a fix value of overlapping factor K = 4 here
(Figs. 16, 17, 18, 19, 20, 21, 22).

Below are the Matlab graphs obtained between various
performance parameters namely, channel capacity, spectral
efficiency, BER, Eb/No, interference, power, bandwidth for
performance analysis of FBMC cognitive radio (Figs. 23, 24,
25, 26, 27, 28, 29, 30, 31).

The spectral efficiency M =P - R,G/B (1)

where P is the peak data rate taken as 15.36 x 106 and Raverage
is the modulating and coding scheme average factor while B
represents the Channel Bandwidth=6, 7, 8, 9, 10 MHz in
the useful range as per the PHYDAS (Physical Layer for
Dynamic Spectrum Access) Specifications D5.1 [14]. The
well known formula for calculating Channel Capacity C, as
per Shanon Hartley Theorem, is stated as
C = Blog, (1 4+ SNR)Bits/ sec /Hz 2)

Table 1 shows the BER values computed in FBMC CR
Simulink model using AWGN channel at different values of
Eb/No. At a decimation factor 1/3 in FIR decimation filter
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Fig. 17 Plot between Lp and BER

and interpolation factor of 3 in FIR interpolation filter, it has
been found that BER comes out to be 0.1223 approximately.
While for the same model at a decimation factor 1/2 and
interpolation factor of 2, the BER comes out to be around
0.01235. At a decimation factor of 1/8 and interpolation fac-
tor of 8, BER calculated through Simulink model is approx
0.01224.

Table 2 shows the calculated values of AWGN channel
capacity for FBMC-CR system under the effect of varying
Eb/No (dB)as 12, 13, 14, 15, 16 for different values of BW =
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6,7,8,9, 10 MHz when sample time Ts = 1/4000 (Figs. 32,
33,34, 35, 36, 37, 38, 39, 40; Tables 3, 4, 5, 6, 7, 8).

3.4 OFDM: BER-SNR performance analysis

4 Evaluation of experimental environment and
future scope of work

The comparative BER performance analysis of FBMC CR
based Simulink model under binary symmetric channel
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Fig. 19 Plot between M versus BER

(BSC) with different error probabilities and under the effect
of band filter and Two Channel Synthesis Sub band filter with
AWGN channel in between has been shown in Table 9.

The study is useful to improve the performance of CR sys-
tem under different signal impairments, channel modulation
techniques for Physical layer CR. The computer modeling
and simulation of interference analysis by using different
techniques in Physical layer CR wireless environment has

led to the improvement in terms of gain for channel capac-
ity and spectral efficiency with minimum BER and least
power requirements. Better utilization of available spectrum
rf bandwidth is possible by reduction of multiple access
interference, a major factor in system capacity and quality
of communication at a minimum power level. The pro-
posed CR simulators can be used for capacity, coverage and
quality analysis. It works on a trade-off algorithm of chan-
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Fig. 21 Plot between M and Lp

nel capacity, spectral efficiency, BER, power, interference,
bandwidth, SNR (Eb/No), overlapping-factor/prototype fil-
ter length, number of sub channels used, power spectral den-
sity, interpolation, decimation, single channel/multi channel
sub band processing through multirate filter banks in a
TMUX configuration. So, this study is useful for CR wireless
network planning, optimization with various mobile services.
Rayleigh, Rician, Nakagami, Weibull fading channels are
available to replace AWGN and binary symmetric channel
models to simulate the system under mobility radio channel.
The performance higher than optimal can be achieved by
incorporating more influential parameters of interest in sys-
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tem level simulation models using adaptive signal processing
approach. Attempts should be made to develop newer mod-
els of CR on lab view, system view within SNR range for
cognitive radio operation —5 to +40 dB. Radio Spectrum
Management at Physical Layer CR still may not provide suf-
ficient Bandwidth. Spectrum sensing in cognitive radio under
media access control layer of OSI Model can be done as spec-
trum sensing cognitive radio enhancement to ProToMAC
(Proactive Transmit Opportunity Detection at MAC Layer).
The work can be extended to develop algorithms which fur-
ther enhance the network coverage and higher interference
suppression in a cognitive radio network.
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SNR versus BW for AWGN Channel
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BER versus Spectral Efficiency
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Fig. 31 BER versus spectral efficiency

Table 1 BER values computed in FBMC CR Simulink model using
AWGN channel at different values of Eb/No

BER computed from FBMC CR Simulink Eb/No (SNR)
model using AWGN channel

0.01223 12

0.01236 10

0.99 5

1.0

1.0 =5

5 Conclusion

This BER versus SNR plot clearly depicts that in Filter Bank
Multicarrier approach, followed for AWGN Channel State
Estimation purpose shows that at SNR = 0 dB, BER is at
peak while with increase in SNR beyond 0 dB, BER con-
sistently remains minimal i.e. approximately zero which is
good trend from efficient communication signal processing
and Nyquist pulse shaping point of view. In this section, the
problem of capacity maximization and Spectral Efficiency
Enhancement for FBMC-CR multi-user resource allocation
based on channel type is considered. Maximization of system
capacity, based on available error-free instantaneous esti-
mated channel state information at the transmitter, is the goal.
Moreover, it is shown, through Monte Carlo simulations, that
numerical results absolutely coincides the analytical compu-
tations.
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Table 2 The calculated values of AWGN channel capacity for FBMC-
CR system under the effect of varying Eb/No (dB) as 12, 13, 14, 15,
16 for different values of BW =6, 7, 8, 9, 10 MHz when sample time
Ts = 1/4000

Eb/No (dB) AWGN channel Bandwidth
capacity (MHz) (Hz)
12 24.475 6 x 10°
12 28.554 7 x 10°
12 32.633 8 x 10°
12 36.712 9 x 10°
12 40.792 10 x 106
13 24.683 6 x 10°
13 28.797 7 x 100
13 32911 8 x 10°
13 37.025 9 x 10°
13 41.139 10 x 10°
14 24.876 6 x 10°
14 29.023 7 x 10°
14 33.169 8 x 100
14 37.315 9 x 10°
14 41.461 10 x 106
15 25.056 6 x 10°
15 29.232 7 x 10°
15 33.408 8 x 10°
15 37.585 9 x 10°
15 41.761 10 x 10°
16 25.224 6 x 10°
16 29.429 7 x 10°
16 33.633 8 x 10°
16 37.837 9 x 10°
16 42.041 10 x 10°
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Table 3 Spectral efficiency computation at P = 15.36, gain factor = 10 at variable Ry, for useful BW range in cognitive radio

Bandwidth (Hz) Spectral efficiency with P = 15.36; Spectral efficiency with P = 15.36; Spectral efficiency with P = 15.36;
Ravg = 1/4; gain factor G = 10 Ravg = 1/8; gain factor G = 10 Ravg = 1/16; gain factor G = 10

6 x 10° 6.4 32 1.6

7 x 10° 5.4 2.7 1.35

8 x 108 4.8 2.4 12

9 x 10° 4.3 2.1 1.06

10 x 10° 3.84 1.9 0.96

Table 4 Spectral efficiency computation at P = 15.36, gain factor = 20 at variable R,yg for useful BW range in cognitive radio

Bandwidth (Hz)

Spectral efficiency with P = 15.36;
Ravg = 1/4; gain factor G = 20

Spectral efficiency with P = 15.36;
Ravg = 1/8; gain factor G = 20

Spectral efficiency with P = 15.36;
Ravg = 1/16; gain factor G = 20

6 x 100
7 x 100
8 x 100
9 x 10°
10 x 100

12.8

10.8
9.6
8.6
7.68

6.4
5.4
4.8

4.26
3.84

3.2
2.7
2.4
2.13
1.92

Table S Spectral efficiency computation at P = 15.36, gain factor = 50 at variable Ryyg for useful BW range in cognitive radio

Bandwidth (Hz) Spectral efficiency with P = 15.36; Spectral efficiency with P = 15.36; Spectral efficiency with P = 15.36;
Ravg = 1/4; gain factor G = 50 Ravg = 1/8; gain factor G = 50 Ravg = 1/16; gain factor G = 50

6 x 10° 32 16 8

7 x 108 27 13.5 6.75

8 x 10° 24 12 6

9 x 108 21.5 10.6 5.31

10 x 10° 19.2 9.6 4.82

Table 6 Spectral efficiency computation at P = 15.36, gain factor = 50 at variable R, for useful BW range in cognitive radio

Bandwidth (Hz)

Spectral efficiency with P = 15.36;
Ravg = 1/4; gain factor G = 100

Spectral efficiency with P = 15.36;
Ravg = 1/8; gain factor G = 100

Spectral efficiency with P = 15.36;
Ravg = 1/16; gain factor G = 100

6 x 10°
7 x 100
8 x 100
9 x 100
10 x 100

64
54
48
43
38

32
27
24
21
19

16
13.5
12
10.5
9.5
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3::;;; (i?zlll(;;il;g??g:gFDM SNR Rayleigh channel capacity (MHz) Bandwidth
]e;t v\&arz}flgg ?(I)\Ill\{/[ Ili;)Zr CR useful 5 4.668 6 x 106

10 6.248 6 x 10°

20 7.933 6 x 10°

50 10.245 6 x 100

5 5.44 7 x 10°

10 7.289 7 x 100

20 9.255 7 x 10°

50 11.952 7 x 100

5 6.225 8 x 10°

10 8.331 8 x 100

20 10.577 8 x 10°

50 13.660 8 x 100

5 7.003 9 x 10°

10 9.372 9 x 10°

20 11.899 9 x 10°

50 15.368 9 x 10°

5 7.781 10 x 100

10 10.413 10 x 10°

20 13.222 10 x 100

50 17.075 10 x 10°
g;lg‘;/ftr{:ril:nics(ggﬁ u&zit;({)gn for BER computed for OFDM transmission using Rayleigh channel At SNR value
Rayl.eigh fading channel at For 16 QAM, 10-9-55 < BER < 10738; -5
varying SNR values

For 64 QAM, 107955 < BER < 10732;

For 256 QAM, 10795 < BER < 10737

For 16 QAM; 107942 < BER < 1039; —-10

For 64 QAM, 10794 < BER < 10~%4;

For 256 QAM; 10~%43 < BER < 10737

For 16 QAM; 107990 < BER < 1036, —20

For 64 QAM; 107975 < BER < 10743;

For 256 QAM; 107939 < BER < 104

Forl6 QAM; 107950 < BER < 10~48; —50

For 64 QAM; 107945 < BER < 10739,

For 256 QAM; 10~ 13 < BER < 10739

For 16 QAM; 10794 < BER < 10793, 5

For 64 QAM; 107046 < BER < 10738,

For 256 QAM; 107945 < BER < 10736

For 16 QAM; 107995 < BER < 10~%9; 10

For 64 QAM; 10-%7 < BER < 10~40;

For 256 QAM; 10~! < BER < 10~*

For 16 QAM; 10~! < BER < 10738; 20

For 64 QAM; 10799 < BER < 10~+3;

For 256 QAM; 10~%7° < BER < 10~49

For 16 QAM; 10799 < BER < 10739; 50

For 64 QAM; 10799 < BER < 1073-2;
For 256 QAM; 107965 < BER < 1043
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Table 9 Computed BER for different FIR decimation and interpolation factors in case of BSC and AWGN channel with Two Channel Analysis
FB & Two Channel Synthesis FB Sub band processing employed

Channel (BSC/AWGN)  Initial Error FIR decimation and FIR ~ BER computed at five Average computed
seed value  probability interpolation factor taken  different simulation runs BER

BSC 71 0.05 1/3;3 0.2783, 0.2725, 0.2899, 0.2841,  0.28288
0.2896

BSC 71 1.0 1/2;2 0.9706, 0.9706, 0.9804, 0.9804,  0.97640
0.9804

BSC 71 0.1 1/3;3 0.4299, 0.4525, 0.4525, 0.448, 0.44436
0.4389

BSC 71 0.1 1/8:8 0.2088, 0.2049, 0.2008, 0.2008,  0.2442
0.2008, 0.2049

BSC 71 0.01 1/5;5 0.0476, 0.03617, 0.03665, 0.03874
0.03665, 0.03665

AWGN (Two 67 _ 1/3:3 0.004065, 0.004065, 0.004107, 0.011573

Channel Analysis
FB & Two Channel
Synthesis FB sub
band processing)

0.004148, 0.004148

6 Impact of study

The present study has its deep impact on the design and
development of FBMC systems in cognitive radio under
ubiquitous pervasive environment [16-20].
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