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Abstract Optimization algorithms are proposed to maxi-
mize the desirable properties while simultaneously minimiz-
ing the undesirable characteristics. Particle SwarmOptimiza-
tion (PSO) is a famous optimization algorithm, and it has
undergone many variants since its inception in 1995. Though
different topologies and relations among particles are used in
some state-of-the-art PSO variants, the overall performance
on high dimensionalmultimodal optimization problem is still
not very good. In this paper, we present a new memetic
optimization algorithm, named Monkey King Evolution-
ary (MKE) algorithm, and give a comparative view of the
PSO variants, including the canonical PSO, InertiaWeighted
PSO, Constriction Coefficients PSO, Fully-Informed Par-
ticle Sawrm, Cooperative PSO, Comprehensive Learning
PSO and some variants proposed in recent years, such as
DynamicNeighborhood Learning PSO, Social Learning Par-
ticle SwarmOptimization etc. The proposedMKE algorithm
is a further work of ebb-tide-fish algorithm and what’s more
it performs very well not only on unimodal benchmark
functions but also on multimodal ones on high dimensions.
Comparison results under CEC2013 test suite for real para-
meter optimization show that the proposed MKE algorithm
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outperforms state-of-the-art PSO variants significantly. An
application of the vehicle navigation optimization is also dis-
cussed in the paper, and the conducted experiment shows that
the proposed approach to path navigation optimization saves
travel time of real-time traffic navigation in a micro-scope
traffic networks.
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ary algorithm · Number of function evaluation · Particle
Swarm Optimization · Vehicle navigation · Wireless sensor
network

1 Introduction

With increasing optimization demands in our lives, more
and more powerful optimization algorithms are proposed to
tackle these problems in different areas. Computational Intel-
ligence gives computational methodologies and approaches
to address and tackle these complex real-world optimization
problems especially for thosewith noise and uncertainty. The
standard approach to tackle these complex problems often
begins by designing an objective function that can model the
problems’ objectives while incorporating any constraints [1].
Optimization algorithm targeting a specific problem may be
of less use for different categories of optimization tasks. The
idea driving the development of a new optimization algo-
rithm, is that the heuristic do not necessarily have to be
completely problem-dependent, but that general optimiza-
tion techniques could be developed that were applicable to
a broad class of different problems [2]. Therefore, the aim
of the paper is to propose a powerful optimization algorithm
for a broad class of different problems rather than a problem-
specific approach for a concrete use.
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Particle Swarm Optimization (PSO) was a powerful evo-
lutionary computational algorithm introduced in 1995 [3].
Since the inception of PSO algorithm, many researchers had
expanded on the original idea of the canonical PSO. Rep-
resentative changes of the PSO evolution equation varied
from the alterations of parameter adjustments to alterations
of particle topologies. As the original PSO algorithm was
inspired by the behavior of the bird flocks, particle neighbor-
hoods were firstly used for the simulation. The calculation
of Euclidian neighborhood was time consuming, and the
performance of the optimization results that utilized Euclid-
ian neighborhood were not good enough as well. All these
resulted in the abandon of Euclidian neighborhood model.
Neighborhood topology unrelated to particle locations came
to be useful in particle evolution. Particles used their histor-
ical best (lbest) and topology best (gbest) for evolution, and
they did not use crossover operations which used in Genetic
Algorithm. The moving velocity was used to make a balance
between the exploitation and exploration of a particle.

Parameters adjustments showed significant improvement
of the canonical PSO, [4] proposed a new optimizer using
particle swarm theory, and examined how the changes in
the paradigm affected the number of iteration required to
meet an error criterion. Inertia weight and constriction coef-
ficient of velocity were consequently proposed and analyzed
for the importance of convergence [5–7]. Particle neighbor-
hood topologies also played important roles inmany complex
especially multimodal optimization problems. Mendes et al.
[8] analyzed the effect of different neighborhood topolo-
gies and consequently the authors proposed a Fully-Informed
Particle Swarm (FIPS) variant giving some hints that sim-
pler maybe better. Other variants solved some shifted or
rotated benchmark functions by using dynamic multi-swarm
or dynamic topology [9,10]. Bratton and Kennedy [11]
defined a standard PSO as a baseline for performance test-
ing of improvements among newly proposed PSO variants.
Topology, bound constraints, particle initialization and pop-
ulation size were all analyzed in the paper. Some recently
proposed PSO variants such as Dynamic Neighborhood
Learning based PSO (DNLPSO) [12] and Social Learning
PSO (SLPSO) [13] used dynamic topology to void premature
of convergence aiming at better performance on multimodal
functions.

With the development of optimization research, many
new optimization algorithms have also been proposed in the
recent few decades such as Cat Swarm Optimization [14],
Bat Algorithm [15], and Ebb-tide-fish algorithm [16,17],
etc. Some of the newly proposed algorithm make contrasts
with the canonical PSO algorithm, and they may be better
than this canonical algorithm, but these comparisons usu-
ally make little sense as that much improvement have been
done on the classical algorithms. That why the standard PSO
form was proposed in [11] as a baseline for performance

comparison. So the paper gives a comparative view of some
state-of-the-art PSO variants with the new proposed algo-
rithm, contribution and tradeoff are also analyzed herein the
paper.

Optimization of vehicle navigation in a city is an urgent
problem nowadays with the increasing vehicles on the road.
The optimization often aims at a better satisfaction of indi-
vidual drivers as well as a better throughput of the whole
city traffic networks. Vehicle localization and traffic condi-
tion acquisitions play important roles in such optimization
of a certain routing scheme, and GPS based localization
approach is usually a commonly choice for many applica-
tions. As there are still some week points of GPS based
approach, some other localization techniques are proposed
for robustness and critical use, such as dead reckoning, cellu-
lar localization, image/video localization in vehicular ad-hoc
network to overcome GPS limitations [18]. Many applica-
tions of wireless sensor networks use the sensor node for
localization, these different approaches for localization and
navigation can be seen in these papers [19–21]. As wireless
sensor network is a convenient approach to grasp the traffic
conditions of a certain areas [22], the grasped traffic condi-
tion can be used as a key element in vehicle navigation, and
this is also used in the model proposed in this paper.

The rest of the paper is organized as follows. Section 2
shows some earlier work of swarm based algorithms. Sec-
tion 3 discusses the details of the newly proposed Monkey
King Evolution algorithm. Section 4 shows the benchmark
functions and verification of MKE algorithm. Section 5
shows the application of MKE algorithm to tackle micro-
scope vehicle navigation problem in wireless sensor network
environment. Section 6 gives the final conclusion.

2 Related works

PSO is simple and powerful algorithm for optimization
problems, many researchers have learned this technique
and proposed many variants to improve the performance
for a large domain of optimization tasks or for a certain
specific problem. Equation 1 presents a InertiaWeighted Par-
ticle Swarm Optimization(IWPSO) variant, a smaller inertia
weight value often results in a fast convergence when the
variant can find the global optima.

{
vt+1
i ← ω ∗ vti + c1 ∗ (X f b − xi ) + c2 ∗ (Xgb − xi ),

Xt+1
i ← Xt

i + vt+1
i .

(1)

A smaller value often means that the variant pays more atten-
tion on exploitation while a larger one pays more attention
on exploration. Equation 2 is called a constriction coefficient
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variant, and the inertia weighted variant can be considered
as a special form of the constriction coefficient variant. The
pseudo codeofConstrictionCoefficient Particle SwarmOpti-
mization (CCPSO) variant is shown in Algorithm 1.

{
vt+1
i ← χ ∗ (vti + c1 ∗ (X f b − xi ) + c2 ∗ (Xgb − xi )),

Xt+1
i ← Xt

i + vt+1
i .

(2)

Algorithm 1 Pseudo code of the PSO Algorithm
Require:

Initialize the searching space V , Dimension D, and the benchmark
function f (X).

Ensure:
1: while exeT ime < Max I teration|!stopCriterion do
2: if exeT ime = 1 then
3: Generate the population P , Coordinates X , Velocity V , Xlbest .
4: end if
5: if exeT ime > 1 then
6: for pSize = 1 : PopSize do
7: VpSize = χ ∗(VpSize+c1∗(Xlbest −X pSize)+c2∗(Xgbest −

X pSize))

8: X pSize = X pSize + VpSize
9: end for
10: end if
11: if f (X) optimal than f (Xlbest ) then
12: Xlbest ← X
13: end if
14: Xgbest = max{Xlbest }.
15: end while
Output:

The global optima Xgbest , f (Xgbest ).

FIPSuses specific neighborhood topology, such as ring topol-
ogy, four cluster topology, Von Neumann topology et al.,
rather than the population global best topology for evolution.
Equation 3 shows the evolution equation of FIPS. FIPS seems
to find optima in few iterations but it depends much more
on particle topology. Other new proposed PSO variants use
different topologies for evolution, Comprehensive Learning
Particle SwarmOptimization (CLPSO) uses randomly gener-
ated neighborhood relation to supervise the learning process,
and particles learn fromworse solutions of the neighborhood
under certain learning probability to void premature. SLPSO
also uses a dynamic neighborhood and particles learn from
any better particles in the sorted neighborhood.

⎧⎪⎪⎨
⎪⎪⎩

v(t + 1) = χ ∗
⎛
⎝v(t) + 1

Ki

Ki∑
n=1

c ∗ (Xnbn − x(t))

⎞
⎠ ,

x(t + 1) = x(t) + v(t + 1).

(3)

3 The Monkey King Evolutionary algorithm

3.1 Overview of ebb-tide-fish algorithm

Ebb-tide-fish algorithm is a newly proposed meta-heuristic
algorithm mimicking foraging behavior of fish [16,17].
The algorithm examines the different velocity initialization
approaches of PSO algorithm, and shows a velocity-free
evolution scheme. Particles in ebb-tide-fish algorithm are
divided into two categories, and particles in the first category
search the local area around their locations while particles in
the second category search towards the global best particle
in the population. The category labels of all particles change
dynamically as to the change of the search behaviors. The
ebb-tide-fish algorithm performs very well in lower dimen-
sion optimization problems. Equation 4 shows the evolution
equation of the ebb-tide-fish algorithm.

Xi
et f,G = {x1, x2, . . . , x j , . . . , xD},
x j = x j ± r ∗ rand() ∗ x j , j ∈ D,

Xi,G+1 = Xi,pbest + F ∗ rand() ∗ (Xgbest − Xi,G). (4)

The pseudo code of the ebb-tide-fish algorithm is shown
in Algorithm 2. Deeper analysis of ebb-tide-fish on high
dimensional multimodal benchmark function shows that the
algorithm may be premature for some complex optimization
problems. Improvements should be done to change the local
search behavior to void premature when tackling these tough
problems, and this the reason why we propose an enhanced
version (Monkey King Evolution algorithm) of it.

3.2 Details of Monkey King Evolution algorithm

“Journey to the West” is one of the four great classical nov-
els of Chinese literature, the novel related to the amazing
adventures of the priest Sanzang as travels west in search of
Buddhist Sutras with his three disciples. Monkey King is the
most powerful disciple of the three and he can transforms
into several different small monkeys to acquire the circum-
stances around current location. All these small monkeys
give feedbacks to Monkey King after their own exploration,
and then Monkey King can grasp where is the optima among
these locations. Exploration behaviors of these small mon-
keys are implemented byEq. 5. xi,G+1 denotes the i th particle
in G + 1th generation, xi,pbest denotes the i th particle’s his-
torical best, xr1 is the first randomly selected particle while
xr2 denotes the second randomly selected particle from the
population. xr1 and xr2 in the equation can be the same, and
this is also similar but different in comparison to DE [1].

xi,G+1 =xi,pbest + FC ∗ (xr1 − xr2). (5)
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Algorithm 2 Pseudo code of the ebb tide fish algorithm
Require:

Initialize the searching space V (v1, v2, . . . , vd ) and the benchmark
function f (X)(X denotes the coordinate of a virtual fish).

Ensure:
1: while exeT ime < Max I teration do
2: if exeT ime = 1 then
3: Generate the fish population Tj ( j = 1, 2, . . . , n) with coordi-

nate X j = (x1, x2, . . . , xd )T and generate single search fish
and change its Flag j .

4: end if
5: if exeT ime > 1 then
6: for pSize = 1 : PopSize do
7: if Flagi = true & Ai < Athres then
8: for Cswim = 1 : N do
9: xi = xi ± r
10: Calculate the benchmark value and record local best

Xt
lbest .

11: end for
12: X posi ← Xt

lbest
13: Flagi = f alse
14: else
15: X posi ← Xt

i + (Xt
gbest − Xt

i ) ∗ rand();
16: end if
17: Generate single search fish and change its Flag
18: end for
19: end if
20: Calculate the benchmark value of all the fish.
21: if f (X posi ) is optima rather than f (Xt

i ) then
22: Xt+1

i ← X posi
23: end if
24: Record the optima fish with coordinate Xt

gbest .
25: end while
Output:

The global optima Xgbest .

Figure 1 shows the exploitation behavior ofMonkeyKing,
and this is implemented by the exploration of small monkeys.
The origin point the coordinate in Fig. 1 denotes Monkey
King’s location. The arrows in the figure show the mov-
ing direction and step size of the small monkeys. The small
monkeys move from the origin point of the coordinate to
the arrows pointed points, and then Monkey King can grasp
where the optimal location is among all the locations of small
monkeys after their exploration. There are several schemes
to generate Monkey King particles in the population. The
first scheme is that Monkey King particles are randomly
generated with the number related to a certain rate of the pop-
ulation, then the left particles in the population are labeled
as common particle. In the second scheme, the global best
particle is denoted as monkey king particle as Monkey King
in the mythological novel “Journey to the West” is the most
powerful disciple. The last scheme is that all particles are
equal and all of them are labeled as monkey king particles.
They evolve according to the following equation written in
a matrix style Eq. 6. X̂ denotes the matrix of all particles in
population, and X̂gbest denotes the global best matrix. Both
of the two matrices have ps components, ps means the pop-

Fig. 1 The illustration of Monkey King particle’s exploitation vector

ulation size. The i th component of X̂ is the coordinate of the
i th particle.

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

X̂di f f = (X̂r1 − X̂r2)

X̂gbest,G+1 = X̂gbest,G + FC ∗ X̂di f f

X̂G+1 = M
⊗

X̂G + Bias

Bias = M
⊗

X̂gbest,G+1.

(6)

For the global best matrix X̂gbest , all the components are
the same with the value equaling to Xgbest (Xgbest is the
coordinate of the particle that finds the global optima in the
population). The equations of the two matrices are shown in
Eq. 7.

X̂ =

⎡
⎢⎢⎣

X1

X2

· · ·
X ps

⎤
⎥⎥⎦ X̂gbest,G =

⎡
⎢⎢⎣

Xgbest,G

Xgbest,G

· · ·
Xgbest,G ,

⎤
⎥⎥⎦ (7)

X̂di f f denotes the difference matrix, and it is calculated by
the difference of two particle-randomly-permutated matrices
of X̂ . In other words, X̂r1 and X̂r2 are generated by randomly
permutating the rowvector ofmatrix X̂ . The equations of X̂r1

and X̂r2 are shown in Eq. 8.

X̂r1 =

⎡
⎢⎢⎣

X j1

X j2

· · ·
X jps

⎤
⎥⎥⎦ X̂r2 =

⎡
⎢⎢⎣

Xk1

Xk2

· · ·
Xkps .

⎤
⎥⎥⎦ (8)

FC is a constant value and it can be considered as the fluctua-
tion coefficient of the difference matrix. X̂G denotes the Gth
generation of X̂ .M is the selectionmatrix, andM denotes the
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reverse binary operation of matrixM . The selection matrix is
defined in the following equation in Eq. 9. Selectionmatrix is
generated by two consequent steps from an extended lower-
triangular matrix Mtmp in Eq. 9. The first step is to randomly
permutate row elements of Mtmp, each row of Mtmp is dealt
separately. The second step is to randomly permutate the row
vectors with each row element unchanged. 1

Mtmp =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1
1 1

· · ·
1 1 · · · 1
1
1 1

· · ·
1 1 · · · 1
1
1 1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

∼

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 1
· · ·

1 1 · · · 1
· · ·

1
· · ·

1 · · · 1
· · ·
1

1 · · · 1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

= M. (9)

We can see that each particle in MKE algorithm only has
one mode which means that each particle in the population
is equal. The exploration and exploitation are implemented
by both exploitation vector and the evolution matrix M. For
the ebb-tide-fish algorithm, particles have two modes in the
evolution. One mode is for exploitation and the other is for
exploration. The exploitation of ebb-tide-fish algorithm is
implemented by Eq. 10. Difference vector is first used for the
enhancement of ebb-tide-fish algorithm, and then the evolu-
tion equation is changed to Eq. 11.

Xi
et f,G ={x1, x2, . . . , x j , . . . , xD},
x j =x j ± r ∗ rand() ∗ x j , j ∈ D. (10)

Xi
et f,G ={x1, x2, . . . , x j , . . . , xD},
x j =x j + FC ∗ (xr1 − xr2). (11)

Then we find that the two mode in the particle evolution
consumes much time with less performance improved. Then
we use the evolution matrix M instead of two modes for par-
ticle evolution. Finally, we found the powerful monkey king
evolution algorithm. Particles’ distribution within 50 gener-
ations without fitness value selections over a 20 population

1 The work mentioned in this manuscript is an earlier work and also
submitted earlier than the article [23] published in Knowledge-based
Systems. The difference and main contribution of the manuscript is
to give some clues for algorithm enhancement. The relation between a
former weaker algorithm ebb-tide-fish algorithm and themore powerful
algorithm onkey king evolutionary algorithm is shown herein the paper.
Another contribution of the paper is the adaptively use of Monkey King
Evolutionary (MKE) algorithm for tacking vehicle navigation problem
under wireless sensor network environment.

size in the search domain [−5,+5] on each dimension of
ebb-tide-fish algorithm and monkey king evolutionary algo-
rithm are shown in Fig. 2.

4 Benchmark functions and algorithm verification

To predict the performance of optimization algorithm is
difficult as the available theory is limited. Therefore bench-
mark functions play important roles in analyzing these algo-
rithm. For the verification of algorithms that suit for a broad
class of different problems, the carefully selected benchmark
functions make more senses than some problem-specified
functions. In this section for the verification of proposed
MKE algorithm, CEC2013 test suite for real-parameter opti-
mization is used here. The benchmark functions in this test
suite are many sophisticated benchmark functions which
reflect many real-world applications. All these 28 bench-
marks can be split into several groups, such as separate
functions, function with low conditioning, functions with
high conditioning and unimodal, multimodal functions with
global structure, multimodal functions with low global struc-
ture, etc., to examine different characteristics of optimization
algorithms. All these benchmark functions are rotated and
shifted with the global optima locating in a same coordinate.
The names, domain and optima are listed in Table 1 while
the detailed function equations are listed in Table 2.

We compare IWPSO [5], CCPSO [6], FIPS [24],
CLPSO [10], and SLPSO [13] in our experiment for 10-D
optimization. The parameter setting of each algorithm is the
recommended one, and population size of each compared
algorithm is set to a constant number ps = 100. Previous
work shows that an empirically good constant ω performs
better than decreasing ω related to iterations in the range
[0.4, 0.9], so we use constant ω = 0.5 for IWPSO, χ =
0.7298, c1 = 2.05, c2 = 2.05 for CCPSO. The maximum
velocity is constrained to maximal range of each dimension
as this setting is empirical best. Fluctuation coefficient in
MKE algorithm F is set to a constant value (F = 0.7).

We run 20 times for each of the benchmark function in
CEC2013 test suite with the number of function evalua-
tions equaling to 1, 000, 000 (10, 000 iterations) for each
run. The best values and average/standard values of fitness
errors ( ftarget − foptima) for 10-D optimization are listed in
Tables 3 and 4 respectively. From Table 3, we can see that
the proposed MKE algorithm can find 8 optima out of the
28 benchmarks and the success rate that algorithm can find
the global optimum ismuch higher than any of the contrasted
algorithm. The proposedMKE algorithm performs very well
on unimodal functions such as f1– f5, and it also performs
very well on many multimodal benchmark functions such as
f6, f9, f11, f17, f21, f24, and f28.
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Fig. 2 Empirical particles’ positions within 50 generations. Particles are of no selection according to their fitness values. The range of each
dimension is [−5,+5], the population size is 20. a Ebb-tide-fish algorithm, bMonkey King Evolution algorithm

Table 1 Search domain and
minimum of CEC2013
benchmark functions

No. Name Minimum value

1 Sphere Function f (o1, o2, . . . , od ) = −1400

2 Rotated High Conditioned Elliptic Function f (o1, o2, . . . , od ) = −1300

3 Rotated Bent Cigar Function f (o1, o2, . . . , od ) = −1200

4 Rotated Discuss Function f (o1, o2, . . . , od ) = −1100

5 Different Powers Function f (o1, o2, . . . , od ) = −1000

6 Rotated Rosenbrock’s Function f (o1, o2, . . . , od ) = −900

7 Rotated Schaffers F7 Function f (o1, o2, . . . , od ) = −800

8 Rotated Ackley’s Function f (o1, o2, . . . , od ) = −700

9 Rotated Weierstrass Function f (o1, o2, . . . , od ) = −600

10 Rotated Griewank’s Function f (o1, o2, . . . , od ) = −500

11 Rastrigin’s Function f (o1, o2, . . . , od ) = −400

12 Rotated Rastrigin’s Function f (o1, o2, . . . , od ) = −300

13 Non-continuous Rotated Rastrigin’s Function f (o1, o2, . . . , od ) = −200

14 Schwefel’s Function f (o1, o2, . . . , od ) = −100

15 Rotated Schwefel’s Function f (o1, o2, . . . , od ) = 100

16 Rotated Katsuura Function f (o1, o2, . . . , od ) = 200

17 Lunacek Bi-Rastrigin Function f (o1, o2, . . . , od ) = 300

18 Rotated Lunacek Bi-Rastrigin Function f (o1, o2, . . . , od ) = 400

19 Expanded Griewank’s plus Rosenbrock’s Function f (o1, o2, . . . , od ) = 500

20 Expanded Scaffer’s F6 Function f (o1, o2, . . . , od ) = 600

21 Composition Function1 (n=5, Rotated) f (o1, o2, . . . , od ) = 700

22 Composition Function2 (n=3, Unrotated) f (o1, o2, . . . , od ) = 800

23 Composition Function3 (n=3, Rotated) f (o1, o2, . . . , od ) = 900

24 Composition Function4 (n=3, Rotated) f (o1, o2, . . . , od ) = 1000

25 Composition Function5 (n=3, Rotated) f (o1, o2, . . . , od ) = 1100

26 Composition Function6 (n=5, Rotated) f (o1, o2, . . . , od ) = 1200

27 Composition Function7 (n=5, Rotated) f (o1, o2, . . . , od ) = 1300

28 Composition Function8 (n=5, Rotated) f (o1, o2, . . . , od ) = 1400

All Search domain [−100, 100]D
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Table 2 CEC2013 test suite for real-parameter optimization benchmarks

No. Name Benchmark function

1 Sphere Function f1(x) =
∑D

i=1
z2i + f ∗

1 , Z = X − O

2 Rotated High Conditioned Elliptic Function f2(x) =
∑D

i=1
(106)

i−1
D−1 z2i + f ∗

2 , Z = Tosz(M1(X − O))

3 Rotated Bent Cigar Function f3(x) = z21 + 106
∑D

i=2
z2i + f ∗

3 , Z = M2T
0.5
asy(M1(X − O))

4 Rotated Discuss Function f4(x) = 106z21 +
∑D

i=2
z2i + f ∗

4 , Z = Tosz(M1(X − O))

5 Different Powers Function f5(x) =
√∑D

i=1
|zi |2+4 i−1

D−1 + f ∗
5 , Z = X − O

6 Rotated Rosenbrock’s Function f6(x) =
∑D−1

i=1
(100(z2i − zi+1)

2 + (zi − 1)2) + f ∗
6 , Z = M1

(
2.048(X − O)

100

)
+ 1

7 Rotated Schaffers F7 Function f7(x) =
(

1

D − 1

∑D−1

i=1
(
√
zi + √

zi sin
2(50z0.2i ))

)2
+ f ∗

7 ,

zi =
√
y2i + y2i+1, Y = �10M2T 0.5

asy (M1(X − O))

8 Rotated Ackley’s Function f8(x) = −20exp

(
−0.2

√
1

D

∑D

i=1
z2i ) − exp(

1

D

∑
i=1

Dcos(2π zi )

)
+ 20 + e + f ∗

8

Z = �10M2T
0.5
asy (M1(X − O))

9 Rotated Weierstrass Function f9(x) =
∑D

i=1

(∑kmax

k=0
[akcos(2πbk(zi + 0.5))]

)
− D

∑kmax

k=0
[akcos(2πbk0.5)] + f ∗

9

a = 0.5, b = 3, kmax = 20, Z = �10M2T
0.5
asy

(
M1

0.5(X − O)

100

)

10 Rotated Griewank’s Function f10(x) =
∑D

i=1

z2i
4000

−
∏D

i=1
cos
( zi√

i

)+ 1 + f ∗
10,

Z = �100M1
600(X−O)

100

11 Rastrigin’s Function f11(x) =
∑D

i=1
(z2i − 10cos(2π zi ) + 10) + f ∗

11,

Z = �10T 0.2
asy

(
Tosz(

5.12(X−O)
100 )

)
12 Rotated Rastrigin’s Function f12(x) =

∑D

i=1
(z2i − 10cos(2π zi ) + 10) + f ∗

12,

Z = M1�
10M2T 0.2

asy

(
Tosz(M1

5.12(X−O)
100 )

)
13 Non-continuous Rotated Rastrigin’s Function f13(x) =

∑D

i=1
(z2i − 10cos(2π zi ) + 10) + f ∗

13, Z = M1�
10M2T

0.2
asy (Tosz(Y ))

x̂ = M1
5.12(X−O)

100 , yi =
{
x̂i , i f

∣∣x̂i ∣∣ ≤ 0.5

round(2x̂i )/2, i f
∣∣x̂i ∣∣ > 0.5

14 Schwefel’s Function f14(Z) = 418.9829 ∗ D −
∑D

i=1
g(zi ) + f ∗

14,

Z = �10(
100(X−O)

100 ) + 4.209687462275036e + 002

15 Rotated Schwefel’s Function f15(Z) = 418.9829 ∗ D −
D∑
i=1

g(zi ) + f ∗
15,

Z = �10M1(
100(X−O)

100 ) + 4.209687462275036e + 002

16 Rotated Katsuura Function f16(x) = 10

D2

∏D

i=1

(
1 + i

∑
j = 132

∣∣2 j zi − round(2 j zi )
∣∣

2 j

) 10
D1.2

− 10

D2 + f ∗
16

Z = M2�
100
(
M1(

5(X−O)
100 )

)
17 Lunacek Bi-Rastrigin Function f17(x) = min

(∑D

i=1
y20 , dD + s

∑D

i=1
y21

)
+ 10

(
D −

∑D

i=1
cos(2π ẑi )

)
+ f ∗

17
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Table 2 continued

No. Name Benchmark function

y0 = (x̂i − μ0), y1 = (x̂i − μ1), z = �100(x̂ − μ0)

18 Rotated Lunacek Bi-Rastrigin Function f18(x) = min

(∑D

i=1
y20 , dD + s

∑D

i=1
y21

)
+ 10

(
D −

∑D

i=1
cos(2π ẑi )

)
+ f ∗

18

y0 = (x̂i − μ0), y1 = (x̂i − μ1), z = M2�
100(M1(x̂ − μ0))

19 Expanded Griewank’s plus Rosenbrock’s Function f19(x) = g1(g2(z1, z2)) + g1(g2(z2, z3)) + · · · + g1(g2(zD, z1)) + f ∗
19

g1(x) =
∑D

i=1

x2i
4000

−
∏D

i=1
cos
( xi√

i

)+ 1, z = M1

(
5(x − o)

100

)
+ 1

20 Expanded Scaffer’s F6 Function f20(x) = g(z1, z2) + g(z2, z3) + · · · + g(zD, z1) + f ∗
20

g(x, y) = 0.5 + sin2(
√
x2 + y2) − 0.5

(1 + 0.001(x2 + y2))2
, Z = M2T

0.5
asy(M1(X − O))

21 Composition Function 1 f (x) =
∑n

i=1
ωi ∗ [λi gi (x) + biasi ] + f ∗

f ′
i = fi − f ∗

i , gi = f ′
6, g2 = f ′

5, g3 = f ′
3, g4 = f ′

4, g5 = f ′
1

22 Composition Function 2 f (x) =
∑n

i=1
ωi ∗ [λi gi (x) + biasi ] + f ∗

f ′
i = fi − f ∗

i , g1−3 = f ′
14

23 Composition Function 3 f (x) =
∑n

i=1
ωi ∗ [λi gi (x) + biasi ] + f ∗

f ′
i = fi − f ∗

i , g1−3 = f ′
15

24 Composition Function 4 f (x) =
∑n

i=1
ωi ∗ [λi gi (x) + biasi ] + f ∗

f ′
i = fi − f ∗

i , g1 = f ′
15, g2 = f ′

12, g3 = f ′
9, σ = [20, 20, 20]

25 Composition Function 5 f (x) =
∑n

i=1
ωi ∗ [λi gi (x) + biasi ] + f ∗

f ′
i = fi − f ∗

i , g1 = f ′
15, g2 = f ′

12, g3 = f ′
9, σ = [10, 30, 50]

26 Composition Function 6 f (x) =
∑n

i=1
ωi ∗ [λi gi (x) + biasi ] + f ∗

f ′
i = fi − f ∗

i , g1 = f ′
15, g2 = f ′

12, g3 = f ′
2, g4 = f ′

9, g5 = f ′
10

27 Composition Function 7 f (x) =
∑n

i=1
ωi ∗ [λi gi (x) + biasi ] + f ∗

f ′
i = fi − f ∗

i , g1 = f ′
10, g2 = f ′

12, g3 = f ′
15, g4 = f ′

9, g5 = f ′
1

28 Composition Function 8 f (x) =
∑n

i=1
ωi ∗ [λi gi (x) + biasi ] + f ∗

f ′
i = fi − f ∗

i , g1 = f ′
19, g2 = f ′

7, g3 = f ′
15, g4 = f ′

20, g5 = f ′
1

The overall performance of our proposed MKE algorithm
ismuch better than other contrasted state-of-the-art PSOvari-
ants. We can see that many of the contrasted algorithms can
find global optima of function f1 and f5 from Table 4, so
we figure out the convergence curve of these algorithms in
Figs. 3 and 4. The average iteration for the contrasted algo-
rithms to find the optima of these two benchmark functions
are shown in Table 5.

5 Vehicle navigation under wireless sensor network
environment

With the development of micro-electronic technology, wire-
less sensor networks have been widely used in many appli-
cations. Intelligent transportation systems under a wireless
sensor network environment show tremendous advantageous
in vehicle information collecting, vehicle localization and

tracking. As more and more vehicles are traveling on the
road nowadays, the desire of a better travel path attributes
to the development of vehicle navigation technique. In this
paper, the proposed monkey king algorithm is utilized to
tackle the vehicle navigation problem aiming at less travel
time and overall better throughput of a micro-scope city
traffic networks under wireless sensor network environment.
SUMO [25,26] platform is used in our simulation, and Fig. 5
shows a small region of the real traffic networks in Shenzhen
city on SUMO platform. A grid network on SUMO platform
is also used in our simulation and the related figure is shown
in Fig. 6.

To achieve an efficient and robust navigation, end device
sensors are emplaced in the intersections of the road networks
to grasp traffic information. Road distance between two inter-
sections, lanes of the road, maximum velocity restriction,
moving direction, safe distance between two vehicles, are all
collected and used in traffic navigation. In the simulation,
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Table 3 Comparison results of best values in 20 runs with the same population size (100) and number of function evaluations

D = 10 IWPSO CCPSO FIPS_Uring CLPSO SLPSO MKE

1 0 0 0 0 0 0

2 6.2219E+03 1.5341E+03 2.5958E+05 1.0742E+05 3.1307E+03 0

3 8.4504E+00 7.2012E−03 9.3183E+02 2.5073E+04 1.0975E−01 0

4 2.3032E−03 1.0383E−05 1.0442E+03 8.1690E+02 3.0682E+02 0

5 0 0 0 0 0 0

6 1.0407E−01 5.8119E−03 2.9921E+00 5.7861E−02 7.4780E−03 0

7 5.4720E−01 7.6699E−01 1.4475E−01 2.7911E+00 8.2545E−08 2.6603E−11

8 2.0109E+01 2.0142E+01 2.0135E+01 2.0108E+01 2.0104E+01 2.0227E+01

9 7.5826E−01 6.6214E−01 1.1535E+00 2.0014E+00 0 0

10 1.4268E−01 9.1142E−02 5.4348E−01 1.4956E−01 9.8647E−03 4.917E−02

11 0 9.9496E−01 1.2921E+00 0 9.9496E−01 0

12 5.9698E+00 4.9748E+01 1.9855E+01 2.2242E+00 9.9496E−01 4.7202E+00

13 6.3297E+00 3.1902E+00 2.1921E+01 4.1636E+00 9.9496E−01 9.9496E−01

14 3.5399E+00 3.5399E+00 2.4878E+02 0 2.4982E−01 3.8531E+00

15 1.6691E+02 8.6620E+01 8.4792E+02 3.4004E+02 6.8924E+00 2.9998E+02

16 1.4823E−01 1.5265E−01 5.9590E−01 3.0200E−01 6.7894E−01 6.1354E−01

17 1.0312E+01 1.7721E+00 2.4666E+01 2.9551E+00 1.0615E+01 3.9636E−01

18 1.2079E+01 4.8434E+00 3.0724E+01 1.7227E+01 1.9127E+01 1.2956E+01

19 3.0890E−01 6.9478E−02 1.3817E+00 5.3203E−02 5.4299E−01 2.8013E−01

20 8.9747E−01 1.7711E+00 2.5448E+00 1.9101E+00 1.4036E+00 1.0848E+00

21 2.0000E+02 2.0000E+02 2.3411E+02 4.1487E+00 4.0019E+02 1.0000E+02

22 1.7541E+01 4.1743E+01 1.9707E+02 5.1004E+00 1.1181E+01 3.1368E+01

23 3.8489E+02 3.7587E+02 1.0744E+03 2.6518E+02 2.3024E+01 1.5338E+02

24 2.0083E+02 1.2547E+02 2.0680E+02 1.1540E+02 2.0000E+02 1.1186E+02

25 2.0154E+02 2.0071E+02 2.0814E+02 1.2615E+02 2.0000E+02 2.0000E+02

26 1.0398E+02 1.0497E+02 1.2904E+02 1.0890E+02 1.0199E+02 1.0398E+02

27 3.0110E+02 3.5496E+02 3.5674E+02 2.9236E+02 3.0000E+02 3.0000E+02

28 3.0000E+02 3.0000E+02 1.5215E+02 1.1715E+02 3.0000E+02 1.0000E+02

Win 2 1 0 5 4 9

Draw 3 2 2 3 6 5

Total 5 3 2 8 10 14

The best result of each function is emphasized in boldface and the best draw results of each function is highlighted in italic fonts

ten thousand cars are randomly dispersed on the 8 × 8 grid
network shown in Fig. 6, and the distance between two neigh-
bor intersection node is 2km. Congestion is happened in two
predefined situations, one is that there are more than two
cars within a safe distance of a single lane in the networks,
the other is that there are more than 89 cars in the interval
between two neighbor intersection nodes. In our simulation,
the maximum velocity of the urban area is set to 72km/h for
easy calculation, and the safe distance is set to 70m. Four dif-
ferent techniques are used for the navigation contrasts, and
they are Dijkstra algorithm, A star algorithm, ebb-tide-fish
algorithm [17] and the proposed monkey king algorithm in
the paper.

In the simulation, there are 64 intersection nodes, and
the navigation can be transformed into a 64-D optimiza-

tion problem for least travel time of a specified vehicle
under real-time traffic condition. The path from the start
to the destination is within a sequence such as Pathi :
{x1, . . . , 5, . . . , xk, . . . , 59, . . . , x64}, xk ∈ [1, 64]. The fit-
ness function of travel time is calculated in Eq. 12. g(ωi, j )

denotes the weight function of the edge between two inter-
section nodes i and j . Ti, j is a function of the traffic density
obtained by sensor nodes in the wireless sensor network,
and it means the time consumed when traveling the inter-
val between intersection nodes i and j while Tdelay denotes
the time delay crossing the intersection. The weight func-
tion g(ωi, j ) is calculated with regard to traffic density and
the value is stored in the adjacent matrix of the nodes. If
there is no directly connected edge between two intersection
nodes, the weight is set to ωi, j = ∞, and if any edge in the
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Fig. 3 Convergence curve of different algorithm on function f1

Fig. 4 Convergence curve of different algorithm on function f5

solution candidate is out of the edges in the navigation, the
corresponding weight ωi, j is set to 0. Fig. 7 shows once of
navigation of the grid network simulation. The yellow point
is the start, the pink point is the destination, the red points
denote congestion, and the green points denote the available
path of navigation.

f (x1, x2, . . . , x64) =
63∑

i=1, j=i+1

(g(ωi, j ) ∗ Ti, j + Tdelay).

(12)

Fig. 5 Small region of real traffic networks in Shenzhen city on SUMO
platform

Fig. 6 Grid network used in our simulation for vehicle navigation

In themonkeyking algorithmbasednavigation, eachparti-
cle is initialized by a randomly generated traversing sequence
of the nodes in the simulation, and after calculation of the
fitness values, we can locate the temporal global optima.
Hamming distance [27] in Eq. 13 is used for candidate updat-
ing scheme. The distance between two solution candidates
is calculated in the hamming distance way with the equation
shown in Eq. 13.⊕means XOR operation, and x j and xgbest j
mean the j th component of Xi solution candidate and global
best candidate respectively. Equation 6 can be rewritten in a
hamming distanceway as illustrated in Eq. 14. X̂di f f denotes
the hamming distance between X̂r1 and X̂r2. X̂gbest,G+1 is

Table 5 Iteration needed to find
the global optima over different
algorithms on function f1 and
f5

D = 10 IWPSO CCPSO FIPS_Uring CLPSO SLPSO MKE

f1 268 – 5314 2969 192 128

f5 – – 8776 4310 – 195

“–” means that optima sometimes can not be found during the maximum iterations in the total 20 runs
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Fig. 7 One navigation of randomly generated start and destination in
the grid network simulation

Table 6 The comparison of average fuel consumption and time con-
sumption for 200 times navigation

Algorithms Travel time cost (h)

Dijkstra 1.6

A* 1.6

Ebb-tide-fish 1.1

Monkey king algorithm 1.1

Table 7 The comparison of average fuel consumption and time con-
sumption for 2000 times navigation

Algorithms Travel time cost (h)

Dijkstra 1.9

A* 1.9

Ebb-tide-fish 1.4

Monkey king algorithm 1.2

a generated coordinate which satisfies the hamming distance
d(X̂gbest,G+1, X̂gbest,G) equaling to F ∗ X̂di f f .

d(Xgbest , Xi ) =
d∑
j=1

xgbest j ⊕ x j (13)

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

X̂di f f = d(Xr1, Xr2)

d(X̂gbest,G+1, X̂gbest,G) = F ∗ X̂di f f

X̂G+1 = M ⊗ X̂G + Bias

Bias = M ⊗ X̂gbest,G+1.

(14)

In our simulation, we conduct two experiments, we run 200
times to calculate the average travel time for the first exper-
iment, and run 2000 times for the second. The comparison
results are shown in Tables 6 and 7 respectively. Both Dijk-

stra algorithm and A star algorithm can find the shortest
pathes in these two experiments, and they consumed the same
travel time to complete the journey from the start to the des-
tination. There are the cases that congestion is in the shortest
path, so the least travel time navigation may be not the short-
est path. From the two tables, we also can see that the travel
time of ebb-tide-fish algorithm and monkey king algorithm
is the same in experiment one (results shown in Table 6, as
the least travel time path can be found both of these two algo-
rithm in a predefined time span. In the second experiment, the
monkey king algorithm performs good as ebb-tide-fish algo-
rithm can not find the least time path within the restricted
time.

6 Conclusion

In this paper, we propose MKE algorithm, and it is an
enhanced version of the former proposed ebb-tide-fish algo-
rithm for global optimization. The new proposed algorithm
in this paper is a much powerful technique to tackle opti-
mization problems, CEC2013 test suite for real-parameter
optimization benchmarks is used to verify the characteristic
of the new algorithm. Contrasts are made between state-
of-the-art PSO variants (including IWPSO, CCPSO, FIPS,
CLPSO, SLPSO) and the proposed algorithm, and experi-
ment results show that our proposed algorithm performs very
well not only on unimodal optimization functions but also on
multimodal optimization functions. An application of MKE
algorithm to tackle vehicle navigation under wireless sen-
sor network environment is also shown in the paper, and
experiment results show that it also performs good on this
application.
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