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Abstract Massive multi-user multiple input multiple out-
put is a very promising technique for next generation
communication. It can provide further improvement to the
wireless communication link performance due to relatively
large number of transmitting antennas equipped at the base
station. This large number has the potential to improve
the performance but these systems suffer from high cost,
complexity and large size. The transmit antenna selection
(TAS) can be employed to solve these problems and with
the objective of maximizing the achievable ergodic capac-
ity. In this paper, The TAS problem is solved using a
modified evolutionary algorithm, in particular, the chaotic
binary particle swarm optimization algorithm is utilized
for maximization of the total achievable capacities with
reduced system complexity and minimized hardware cost.
The multi-user is supported using the zero-forcing baseband
beamforming. The convergence of the proposed evolution-
ary algorithm is proved and its performance is evaluated
using numerical analysis. The presented results proved that
the proposed evolutionary algorithm can achieve compet-
itive ergodic capacities while utilizing small number of
radio frequency chains. In addition, the proposed technique
is better than random and maximum norm TAS. It can
achieve near optimal performance that can be achieved by
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exhaustive search TAS but with reduced computational com-
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1 Introduction

The amount of data transmission required in modern mobile
communication systems is increasing vividly. A tremendous
ergodic capacities can be achieved by employing multiple
antennas in data transmission and reception such as multi-
ple input multiple output (MIMO) communication system.
These systems are immune from fading channels and more
reliable than single antenna communication system. The
multi-user MIMO system allows a base station (BS) with
multiple antennas to communicatewith simplemultiple users
each equipped with single antenna. Every user has its differ-
ent data stream which is transmitted at the same time and
frequency but it is separated spatially using different precod-
ing techniques. Multi-user massive MIMO systems enable a
very large number of antennas located at the BS to jointly
serve different mobile users [1–5]. It also provides greater
capacity levels, advanced data rates, improved link reliabil-
ity and significant energy efficiency for beyond 4G systems
[6,7].

The major drawbacks of such systems are the extra hard-
ware costs andmore computational complexity than classical
multi-user MIMO systems [8,9]. These drawbacks can be
reduced by employing a reduced number of radio frequency
chains (RFC) than the number of all available transmitter
antennas using transmit antenna selection (TAS) techniques.
These TAS techniques allow retaining most of the diversity
gains which outcome from using all the available transmit-
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ting antennas [10,11]. In order to apply TAS techniques
channel state information should be acquired at the trans-
mitter and this required downlink CSI can be attained with
the uplink training and using uplink-downlink reciprocity
in time division duplex (TDD) systems [12,13]. It is well-
known that the optimal antenna subset selection can be
found through exhaustive search (ES)-TAS over all possible
antenna subsets. Conversely, the computational complexity
of such method grows exponentially with the total num-
ber of the available transmitting antennas [14]. Therefore,
this method is impractical due to a large number of trans-
mitter antennas employed in multi-user massive MIMO
systems.

Particle Swarm Optimization (PSO) is one of the best
commonly used optimization algorithms, and it is inspired
by the social learning of birds or fishes. It is a swarm intel-
ligence technique for optimization developed by Eberhart
and Kennedy in 1995 [15]. The easiness and reduced com-
putational complexity make this algorithm very common
and commanding in resolving wide ranges of optimization
problems. However, PSO always suffers from trapping in
local minima and from slow convergence speeds. BPSO
has been introduced for solving binary problems such as
TAS. Because BPSO uses the same concepts of PSO, it
also undergoes the same problems. The core part of the
used BPSO is the v-shaped transfer function, which is
proved to improve its performance based on the above-
mentionedweaknesses [16]. Another important part inBPSO
is Inertia weight, which affects the exploration-exploitation
trade-off in BPSO process. Chaotic inertia weight is proved
to be the best strategy for better accuracy as tested in
[17].

The model scope is that a BS equipped with massive
number of antennas and a fewer number of RFC need to
perform data transmission to all the served users simultane-
ously. The number of active antennas is equal to the number
of RFC. The group of active antennas is selected among the
overall antennas which achieves maximum ergodic capac-
ity. This group is selected using the discussed chaotic BPSO
antenna selection algorithm. The fitness function for the
evolutionary TAS is maximizing all the systems achievable
ergodic capacity. The benefits from such algorithm are that
it can achieve better ergodic capacity than the recent algo-
rithms. Another benefit is that it is simpler than ES-TAS and
can be easily employed in multi-user massive MIMO sys-
tems.

Recently, in [10], a large scale massive MIMO in mil-
limeter wave band is considered. Antenna selection and
beamforming are employed to achieve high-speed data trans-
mission. An adaptive transmit and receive algorithm which
relies on stochastic gradient method is studied. Also, an
iterative antenna selection algorithm is considered. It can
be noticed that the used algorithms complexity will grow

up extremely by increasing the number of transmitting and
receiving antennas as in massive MIMO case. Additionally,
it is focused on point to point communication in an indoor
environment with no multiuser support. While in [11], a
TAS problem in measured massive MIMO channels were
studied, and convex optimization was used to select the
antenna subset that maximizes the capacity in the down-
link which is hard to implement in real time applications.
It also did not take into consideration the multiuser beam-
forming effect on the selection criteria. In [14], a multimode
antenna selection for single user zero forcing the receiver
to achieve maximum data rate is investigated. ES is com-
pared to greedy TAS. optimization algorithms are introduced
to solve the complex TAS problem. In [18], genetic opti-
mization is used as the antenna selection method for MIMO
wireless systems by maximization of the achieved instanta-
neous capacity. In [19], a binary particle swarm optimization
(BPSO) based method is proposed for joint transmit and
receive antenna selection. Both of them consider single user
case, and they also consider a small number of antennas at
the transmitter and receiver. Therefore, the evolutionary TAS
for multi-user massive MIMO systems has not been suffi-
ciently investigated and it is challenging to implement such
evolutionary TAS algorithm for multi-user massive MIMO
system.

The contribution of this paper is to study the effect of
TASon the performance ofmultiusermassiveMIMOsystem.
the main studied multiuser technique is zero-forcing beam-
forming. The chaotic BPSO-TAS is presented in order to
solve selection problem. The main function of the optimized
TAS is to select the near-optimal subset which maximizes
the user’s achievable capacity. The optimized TAS conver-
gence was proved by simulations. The simulation results also
showed that chaotic BPSO-TAS can achieve near the optimal
capacity performance of ES-TAS even with a small iteration
number, and with reduced computational complexity. Thus,
the proposed algorithm is important and practical for multi-
user massive MIMO systems. A comprehensive comparison
between relevant work and this paper scope can be abridged
in Table 1.

The rest of the paper is organized as follows. Section 2
describes the multiuser massive MIMO system model, and
optimization problem formulation. In Sect. 3, the chaotic
BPSO-TAS is described in details. Section 4 compares the
proposed algorithm with other existing ones through Monte
Carlo Simulation. Conclusions are presented in Sect. 5.

2 System model and formulation of the
optimization problem

Consider a BS equipped with multiple transmitter antennas
and a smaller number of RFC. The BS communicates with
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Fig. 1 Multi-user massive
MIMO system block diagram ModulatorUser Data
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single-antenna users using space division multiple access
(SDMA) as shown in Fig. 1. Assume that, the number of
transmitter antennas is NT , the number of RFC is NRF and
the number of the users is N U . The number of active anten-
nas at any given time is limited to the NRF number and the
other antennas are considered as not active. For such a sys-
tem, a selected active downlink channel is formed between
BS antennas and users’ antennas and is a subset of overall
downlink channel.

The selection criterion is done using a chaotic BPSO-TAS
algorithm which will be discussed intensively in the follow-
ing section. Consider the data signal vector, with size F , to
the user u is denoted as su ∈ C

Fand is normalized to unit
power. The vector hu ∈ C

NT ×1 is the corresponding chan-
nel vector between every user u and all transmitter antennas.
The vector ĥu ∈ C

NRF×1is the selected corresponding chan-
nel vector between the user u and the selected transmitters
using the chaotic BPSO-TAS algorithm.

Weuse a channelmodelwhere the channel gain fromevery
transmitter antenna to a user u is described by a zero-mean
circularly symmetric complex Gaussian random variable,
which is an appropriate model for narrowband orthogo-
nal frequency division multiplexing systems operating in a
non-line-of-sight rich scattering environment [20]. The slow
varying CSI is assumed to be fully known at the transmit-
ter through channel estimation at the receiver and feedback
path to the transmitter. The NU different data signals are
separated spatially using the linear beamforming vectors
w1, w2, ..., wNU ∈ C

NRF×1, where wu is associated to user
u, and the squared norm ‖wu‖2 is the power allocated for
transmission to the same user. The received signal at that
user is ru ∈ C

F and can be calculated by

ru = ĥ∗
u

⎛
⎝

NU∑
i=1

wi si

⎞
⎠ + nu, (1)

where nu is the zero mean additive receiver noise with vari-
ance σ 2, and * superscript means transpose and Hermitian

of the superscripted variable. Accordingly, the signal-to-
interference-and-noise-ratio (SINR) at user u is

SI N Ru =
∣∣∣ĥ∗

uwu

∣∣∣2/
⎛
⎝∑

i �=u

∣∣∣ĥ∗
i wi

∣∣∣2 + σ 2

⎞
⎠. (2)

One of the well-known linear transmitting beamforming is
Zero-forcing beamforming (ZFBF) and it is the counter-
part of zero-forcing filtering in normal receive processing. It
refers to a signal processing technique that completely elim-
inates interference. This can be achieved at the transmitter
side by selecting beamforming vectors that are orthogonal to
the channels of non-intended users. The normalized weights
of the ZFBF matrix W = [w1, w2, ..., wNU ] ∈ C

NRF×NU can
be calculated by [21]

W=Ĥ∗(Ĥ Ĥ∗)−1/

∥∥∥Ĥ∗(Ĥ Ĥ∗)−1
∥∥∥, (3)

where Ĥ = [ĥT1 , ĥT2 , ..., ĥTNU
]T ∈ C

NU×NRF contains the
selected channel vectors from the overall antennas channel
matrixH .

The main goal of this paper is to analyse the TAS opti-
mization problem, where arbitrary fitness function f (SINR1,

SINR2, . . . SINRNU ) = ∑NU
u=1 log2(1 + SI N Ru) is needed

to be maximized. This fitness function is the summation of
all users’ throughput using Shanon capacity formula [22].
This function is strictly increasing in the SI N Ru of each
user while the total number of selected antennas is limited
to N RF . A binary vector mi (i = 1, 2, ..., NT )with N T

elements needs to be defined as

mi =
{
1 i th antenna active
0, otherwise.

(4)

and it states which antennas are active and which are not.
The first element of this vector represents the state of the
first antenna, the second element represents the state of the
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Start

Clear  , = 0

= + 1

IF m(i)=1
Yes

No

= [ : , ]

IF =
Yes

No

End

Fig. 2 The flow chart of algorithm 1which is used to construct Ĥ from
H according to selection vector m

second antenna, and so on. Every element of this vector can
take two values which are “0” or “1”. If the element value
is set to “0” then the corresponding antenna is not active,
and its channel vector (column from H) to all the users will
not exist in Ĥ . If the element value is set to “1” then the
corresponding antenna is active, and its channel vector will
exist in Ĥ . The algorithm which is used to construct Ĥ from
H is described in Fig. 2. The TAS optimization problem can
be stated mathematically as

max f (SI N R1, SI N R2, ..., SI N RNU )

subject to
∑NT

i=1 mi = NRF
, (5)

3 Chaotic binary particle swarm optimization

PSO is an evolutionary optimization algorithm which is
inspired by the social behaviour of birds grouping. It uses
a number of particles (i.e. nominee K solutions) which wing
everywhere in the search space to find the global best solu-
tion. Each particle position updating should consider the
current particle position, the current particle velocity, the dis-
tance between the current particle location and the particle
best value location, and the distance between the current par-
ticle location and the global best value location. The particle
velocity update equation can be calculated by [16]

vk(t + 1) = ω(t) vk(t)

+ c1 × rand × (
pbest(t)k − xk(t)

)
,

+ c2 × rand × (
gbest(t)k − xk(t)

)
(6)

where vk(t) is the velocity of particle k at iteration t , rand
is a randomly generated number that takes values between
0 and 1, xk(t) is the current position of particle k, pbestk is
the location of particle best value so far, gbest is the loca-
tion of global best value. The constants c1and c2are the
acceleration constants reflecting the weighting of stochas-
tic acceleration terms that pull each particle towards pbestk

and gbest , respectively. The functionω(t) is the chaotic iner-
tia weighting function, it utilizes the nonlinear dynamics of
chaos tomakeBPSOavoid getting into localminimumvalue,
and it can be calculated by [17]

ω(t) = (ω1 − ω2) × tM AX − t

tM AX
+ ω2 × z(t), (7)

where ω1, ω2 are the upper and the lower limit of the weight
values consecutively, tM AX is the maximum allowable itera-
tion limit, and z(t) is the chaotic variable which is generated
using logistic chaotic map. The chaotic variable generation
depends on the following recursive relation

z(t + 1) = 4 × z(t) × (1 − z(t)), (8)

and the next position of the particle k can be calculated by

xk(t + 1) = xk(t) + νk(t). (9)

The TAS optimization problem has a discrete binary search
space in order to find the suboptimal binary vector m
which is used in the selection of active antennas. This
binary vector should maximize the utility function f (SINR1,

SINR2, .....SINRNU ). In this binary search space, the PSO is
dealing with only two numbers which are “0” and “1”, so the
position updating process cannot be done using (9). Another
method will be used to find suboptimal m which is Binary
PSO.All of the K particle vectors will be divided into N T bit
elements. It will be denoted as mk

i (i=1,…, NT ) where super-
script k indicates particle number and subscript i indicates
element number. Every element from the proposed solution
vectors will have its own velocity element νki which will be
calculated with (6). Consequently, we have to find a way to
use the calculated velocities to change these elements from
“0” to “1” or vice versa.

According to [23], the idea is that the probability of an
element velocity will change its value and a transfer function
is used to map the velocity values to the probability values
for updating elements. This transfer function should be able
to provide a high probability of changing the position of a
large absolute value of the velocity and vice versa. It should
be bounded in the interval from 0 to 1 and increasing by the
increase of the velocitymagnitude.AV-shaped transfer func-
tion is used in this paper, as it can improve the performance
of the BPSO in terms of avoiding local minima, and conver-
gence rate [16]. The V-shaped transfer function is defined
as

S(νki ) =
∣∣∣∣νki /

√
1 + (νki )

2

∣∣∣∣ , (10)

where νki is the velocity of the particle k and element i , and the
new value for every element is calculated according to (11).
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Algorithm 2: Chaotic BPSO-TAS steps
Input: H
Output: BPSO-TAS Ĥ
1: set optimization parameters
2: generate randomly selected K particles
3: for t=1 : tMAX

4: run algorithm1 to get Ĥ from H for all K particles
5: calculate all particles fitness value = 

1 21 ( , ,..., )
UN

f SINR SINR SINR− ×
6: update each particle best values and global best value  
7: update chaotic inertia weighting value using (8) and 
(9)
8: for all k = 1 : K particles
9: for all I = 1 : NT elements
10: calculate element velocity using (6)
11: calculate S using (10)
12: calculate new particle value using (11) 
13: end elements for
14: end particles for
15: end t for

16: run Algorithm1 to get chaotic BPSO TAS Ĥ from H
using the global   best particle

Fig. 3 The chaotic BPSO-TAS Algorithm

The steps for the applied chaotic BPSO-TAS for Multiuser
Massive MIMO are described in Fig. 3.

m
k
i
(t + 1) =

{
complement

(
m
k
i
(t)

)

m
k
i
(t)

i f
i f

rand() < S
(
v
k
i
(t)

)

rand() ≥ S
(
v
k
i
(t)

) (11)

4 Numerical results and discussion

In this section, the simulations are Discussed to validate the
effectiveness of the chaotic BPSO-TAS algorithm as well as
to compare its performance with the optimal ES-TAS algo-
rithm. Random antenna vector is used at the beginning of the
chaotic BPSO-TAS and with no prior ordering. The parame-
ters used in the chaotic BPSO-TAS is tM AX = 150, K = 30,
elements=NT , c1 = 1.5, c2 = 1, ω1 = 0.9, ω2 = 0.4, and
Z = 0.3 at the beginning.

The ergodic capacity evolution curve versus the number
of iterations (t) with different NRF values is shown in Fig.
4. The number NU value is fixed to 8 users and the number
NT value is fixed to 64 antennas. The shown evolution curves
are compared to the maximum ergodic capacity when 8 users
are served by fully functioning 64 transmitter antennas. This
curve shows that chaotic BPSO-TAS takes 50 iterations to
improve the system’s ergodic capacity values due to improv-
ing the selection gain.After these iterations, the improvement
is saturated at this sub-optimal values. It also shows that the
selection gain is high when the number of used antennas is
small, but it is low when a larger number of antennas are
employed. Nearly half of the maximum ergodic capacity can
be achieved with only 8 active transmitting antennas and
88%of themaximum ergodic capacity is achievedwhen half
of the antennas are employed. Figure 4 and Table 2 shows
the significance of adding antenna selection to multi user
massive MIMO systems as higher ergodic capacities can be
achieved by employing a smaller number of RF units.

The cumulative distribution function (CDF) of capaci-
ties for four different TAS techniques over 10,000 channel

Fig. 4 The ergodic capacity
evolution curve versus the
number of iterations (t) with
different NRF values
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Table 2 The best achieved ergodic capacity and their percentage of the
systems upper bound

NRF Best Achieved Ergodic
Capacity (bps/Hz)

Percentage of maximum
capacity (%)

8 21.89 44 %

16 35.63 72 %

24 39.37 80 %

32 43.11 88 %

realizations is shown in Fig. 5, Namely, random (Ran)-
TAS, ES-TAS, maximum norm (MN) TAS and chaotic
BPSO-TAS. The Ran-TAS is done by selecting a random
combination of antennas at every iteration while the ES-TAS
is done by calculating the capacity with all the possible com-
binations and select the one that achievesmaximum capacity.
The MN-TAS is to choose a combination of the transmitting
antennas such that it maximizes the sum of the squared mag-
nitudes of transmitting channel gains [24]. The four TAS
techniques are compared with themselves, and they are also
compared to the systems which have only 8 active transmit-
ter antennas and 64 active transmitter antennas as lower and
upper bounds, consecutively.

The closer the CDF curve to the 64 active transmitting
antenna, the better is the TAS algorithm. This means higher
rates probability is more frequent than lower ones. The signal
to noise ratio is fixed at 10 dBs at this part of the numerical
analysis. The performance of the Ran-TAS is the worst one
which is matching to using only 8 active transmitting anten-
nas. The ES-TAS is the best as it searches all the possible

combinations. The performance of the chaotic BPSO-TAS is
shown to be matching to the optimal ES-TAS but with much
smaller processing time. The chaotic BPSO-TAS average run
time is only 2 % of the average runtime of the ES-TAS on
the same processing unit.

The ergodic capacities for different TAS techniques and
different NRF values against SNR and over 1,000 chan-
nel realizations are shown in Fig. 6. The BPSO-TAS and
Ran-TAS are included in this figure. On the other hand,
The ES-TAS is not included because it is very complex
to implement when large numbers of transmitter antennas
are employed. The figure shows that chaotic BPSO-TAS
Ergodic capacity is much better than Ran-TAS due the addi-
tion of the processing gain. The Ergodic capacity differences
increase with the increase in SNR values because the chaotic
BPSO-TAS is able to select the active transmitting anten-
nas with smaller noise interference. The chaotic BPSO-TAS
can achieve comparable capacity performancewhile the TAS
complexity is kept reduced. Therefore, the chaotic BPSO-
TAS is more suitable for real-time implementations than the
optimal ES-TAS in multi-user massive MIMO systems.

5 Conclusion and future work

In this paper, the TAS problem for multiuser massive MIMO
systems using zero-forcing beamforming has been con-
sidered. The chaotic BPSO-TAS is proposed in order to
maximize the achievable capacity to all the users. The
addition of such technique has improved the system perfor-
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Fig. 5 The CDF of capacities for different TAS techniques over 10,000 channel realizations
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Fig. 6 The ergodic capacities
for different TAS techniques and
different NRF values over 1000
channel realizations
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mance while maintaining a small number of RFC at the BS.
The convergence of the algorithm is proved by numerical
simulations. The numerical results also show that chaotic
BPSO-TAS can achieve near the optimal capacity perfor-
mance of ES-TAS even with a small number of iterations,
and with reduced computational complexity. Thus, the pro-
posed algorithm is proved to be important and practical
for multiuser massive MIMO systems. However, there is a
mystery question about studying the effect of using differ-
ent chaotic maps generators on achievable capacities of the
chaotic BPSO TAS algorithm.
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