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Abstract Data aggregation is recognized as a key method
for reducing the amount of network traffic and the energy con-
sumption on wireless sensor network nodes. Mobile agent
(MA) technology represents a distributed computing para-
digm which has been proposed as a means for increasing the
energy efficiencyof data aggregation tasks and addressing the
scalability problems of centralized methods. Nevertheless,
the itineraries followed by travelling MAs largely determine
the overall performance of the data aggregation applications.
Along this line, this article introduces a novel algorith-
mic approach for energy-efficient itinerary planning of MAs
engaged in data aggregation tasks. Our algorithm adopts an
iterated local search approach in deriving the hop sequence
of multiple travelling MAs over the deployed source nodes.
Simulation results demonstrate the performance gain of our
method against existing multiple MA itinerary planning
methods.
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1 Introduction

Wireless sensor networks (WSN) typically consist of a
large number of sensor nodes (SNs) with limited energy
availability, which monitor a geographical area and collect
sensory information for specific environmental parameters.
Sensory data are communicated to a remote base station
(sink) through multihop wireless transmissions. To conserve
energy, raw data may be aggregated at intermediate sensor
nodes by applying an appropriate fusion function [1]. Data
fusion combines several sources of sensory data to produce
a consistent, accurate and useful knowledge representation
[16]. Thus, data fusion reduces the amount of network traffic
resulting in considerable energy savings in WSN environ-
ments [30].

Mobile agents (MAs) [5] have been proposed as a mid-
dleware solution for implementing efficient data aggregation
schemes [3,10,21].AMAis an autonomous programmoving
from node to node and acting on behalf of the users toward
the completion of an assigned task. The software logic is
carried with the MA to each SN and determines the process-
ing to be performed on each SN. The resulting data after the
local data processing is then embedded within theMA’s state
and carried to the next SN, where the MA resumes execu-
tion and fuses data retrieved thereon. Admittedly, MA-based
data aggregation schemes are likely to perform poorly (in
terms of network latency) in event-drivenWSNs wherein the
sink should collect data on demand around an event area
and respond fast. However, the MA-based approach suits
repetitive data aggregation tasks involving collection of mea-
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surements characterized by high spatiotemporal redundancy
from a list of SNs known a priori.

The use of MAs for data aggregation requires the deter-
mination of SNs visiting order, i.e., an itinerary has to be
scheduled. The chosen itinerary largely affects the overall
energy consumption and aggregation cost. Long itineraries
may lead to significant inefficiencies because built-up data
inflate the agent size [22], while their prolonged overall
travelling time may be unacceptable for time-critical appli-
cations. Besides, careless itinerary planning may require the
MA to traverse several intermediate nodes in the process of its
migration among pairs of source SNs. Although not collect-
ing sensory data from intermediate nodes, energy resources
are consumed only to receive and transmit the passing-by
MAs. The criticality of itinerary planning has motivated
the design of several algorithms in order to minimize these
costs. The literature includes algorithms that either dynam-
ically determine the route of the MA by deciding on the fly
the next SN to be visited [10,15] or approximate statically
the optimal MA route through heuristics [6–8,14,17,28,29].
A dynamic approach is more suited for target tracking
applications, wherein the trajectory of a moving object is ini-
tially unknown. Static itineraries are more suitable for data
monitoring applications, where measurements of physical
quantities (e.g., humidity, temperature, etc.) are periodically
gathered and sent to the sink.

Static itinerary planning algorithms are classified into the
following categories:

• Single itinerary planning (SIP), wherein only one MA is
used for autonomic data aggregation in the sensor net-
work [8,9,29].

• Multiple itinerary planning (MIP)whereinmore than one
MAs are sent in parallel, each assigned a subset of the
nodes of the WSN [6,7,14,17,28].

The performance of SIP algorithms is satisfactory for
small-to-medium scale WSNs but it does not scale for net-
works comprising hundreds or thousands of SNs. This is
because both the MA’s roundtrip delay and the energy con-
sumption increase fast with network size, as the traveling
MA accumulates data from visited sensors [26,27]. On the
other hand,MIP algorithms assign shorter itineraries toMAs,
mitigating the effects of the SIP algorithms [20]. However,
they are more complex to design and execute, as they essen-
tially require to first group SNs into disjoint subsets and then
order the nodes of each subset to derive the actual itinerary of
employedMAs.Notably,most itinerary planning approaches
assume constantMA size throughout the itinerary, disregard-
ing the fact that the data accumulated from visited nodes
increase the load carried by the MA on every node. Fur-
thermore, most studies assume the energy cost of each MA
transfer to be proportional to the physical distance among its

(a) (b) 

Sink

B
A

C

D
F

E

G

H
I

J K

Sink

B A

C

D
F

E

G

H
I

J K

Fig. 1 Example output of a tree-based algorithm: a Two trees branches
rooted at the sink (solid lines denote the three edges while dotted lines
the post-order traversal of the branches); b final itineraries derived from
the post-order traversal (solid lines denote transfers towards nodes to
aggregate sensory data while dashed lines denote transfers towards
intermediate nodes or returning back to the sink)

end points. However, this assumption does not hold, espe-
cially in relatively sparse network topologies, wherein the
communication among a pair of nodes (u, v) may require
more transmission hops than that for the pair (u′, v′) even
though the in-between distance of the former pair is shorter
than that of the latter pair, i.e., d(u, v) < d(u′, v′).

Among existing MIP algorithms, tree-based approaches
[6,14,17] appear to perform better with respect to the most
important performancemetrics, such as overall response (ser-
vice) time, total energy expenditure and network lifetime
[26]. Those algorithms create tree structures which either
expand from the sink towards the periphery of the sensor
field [6,17] or vice versa [14]. In all cases, the end result is a
tree (rooted at the sink) which includes a path between each
source node and the sink. Each branch (rooted at the sink) of
the derived tree structure is then transformed to an itinerary
(i.e. an ordered list of source nodes) through some sort of tree
traversal method (usually post-order traversal). However, the
tree traversal negates the benefits of the tree creation process
as the ordering of SNs along the itinerary may distort the
actual tree construction logic. Thus, SNs placed in succes-
sive positions are likely to be far from each other, hence, the
corresponding MA transfer will involve multiple hops over
intermediate nodes. For instance, Fig. 1 illustrates an exam-
ple output of a tree-based algorithm, which separates source
nodes in two different sets (tree branches). The itineraries
associated with the two branches are derived from a post-
order tree traversal: {Sink, B, G, E, F, D, C, A, Sink} and
{Sink, J, K, I, H, Sink}, respectively. Evidently, nodes B and
G are placed successively along the first itinerary, although
they are located 5 hops away (they communicate via A, C, D,
E). Namely, the actual hop sequence for the MA collecting
data from the first ‘branch’ becomes {Sink, B, A, C, D, E,
G, E, F, D, C, A, Sink} (bold labels denote visits to source
nodes to collect data). Thus, the data collected from node B
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are carried alongmany hops (resulting in unnecessary energy
spending), while it would be clearly more appropriate if the
visit at B was scheduled in the last itinerary hops.

Herein, we propose a novel MIP algorithmic approach.
Our algorithm is based on an Iterated Local Search (ILS),
a metaheuristic method commonly used for solving discrete
optimization problems [19]. ILS methods iteratively apply
a simple modification to a local search routine, each time
starting from a different initial configuration, in search of
an improved solution.1 In the sequel, we will refer to our
approach with the acronym ILS. Our ILS method addresses
all the aforementioned weaknesses of existing MIP algo-
rithms. Firstly, ILS takes into account the growing MA state
size along its itinerary. Secondly, it considers the actual
energy cost of potential MA transfers taking into account
the energy spent for data forwarding on intermediate nodes.
Thirdly, ILS does not disassociate the separation of nodes in
disjoint sets from their ordering along an itinerary list; rather,
it involves a single (main) execution phase wherein nodes are
suitably positioned along the itineraries so as tominimize the
overall itinerary cost.

It is noted that the advantages of MA-based middleware
systems in WSNs have motivated their incorporation on real
deployments as evidenced by the proliferation of available
prototypes in the recent years. MAPS [2], Agilla [12] and
ActorNet [18] are among those MA-based middleware sys-
tems tested on a variety of application scenarios such as data
collection, gradient search, event tracking, forest fire detec-
tion, cargo monitoring, etc. All the above mentioned systems
exclusively consider static itineraries. This highlights the sig-
nificance and applicability of our proposed ILS approach in
practical settings, especiallywhen considering repetitive data
aggregation tasks.

The remainder of this article is organized as follows:
Sect. 2 reviews research related to the work presented herein.
Section 3 discusses modeling and implementation details for
our proposed ILS algorithm. Section 4 presents simulation
results, while Sect. 5 concludes our work and draws direc-
tions for future research.

2 Related work

In this sectionwe review existing staticMAMIP approaches.
It is noted that all the algorithms presented herein are exe-
cuted centrally, on the sink; the itinerary assigned to each
MA is known upon MA instantiation.

The visiting central location (VCL) algorithm [7] adopts
a cluster-based approach. VCL uses the notion of the impact

1 Iterated Local Search is based on building a sequence of locally
optimal solutions by: (a) perturbing the current local minimum; (b)
applying local search after starting from the modified solution.

factor to designate a set of SNs to act as central points in
clusters. The impact factor is analogous to the gravity force
measured in real gravity fields, where the gravity impact is
quantized by hop count between two nodes (i.e. the impact
factor between two source nodes reduces with the number of
communication hops among them). In principle, VCLs are
located at the center of areas with a high source node den-
sity. At each iteration, the SN with the highest impact factor
is selected as the next VCL. All the source nodes located
within the circular area centered at VCL with a radius of R
(which equals the SNs’ transmission range) are grouped in a
cluster and assigned to an MA. The procedure repeats with
the remaining SNs, until all SNs are assigned in a cluster;
thereafter, a SIP algorithm is executed to decide the visiting
sequence of SNs within each cluster. A tuning parameter σ

is used to determine how strong an SN impacts other SNs.2

As in [7], we set σ = 8 in this paper.
Another MIP approach is the balanced minimum span-

ning tree (BST) algorithm [6]. Prim’s algorithm is executed
to determine a spanning tree, rooted at the sink. Nodes of a
single tree branch are considered to belong to the same clus-
ter. A SIP algorithm is then executed to derive the nodes’
visiting order within each cluster (in our implementation, we
used IEMA[9]). Furthermore, a parameterα is used inBST to
balance theweights calculated duringPrim’s algorithm (large
α values tend to assign larger weights to edges among nodes
located far from the sink, hence, they disfavor the creation
of large tree branches). The idea is to create more balanced
branches, i.e., each branch should contain as many SNs as
all other branches. In [6] it is shown that α = 0.6 is a good
choice; therefore, this value is used in our simulation tests.

The EMIP algorithm [28] iteratively partitions a direc-
tional sector zone, wherein SNs lying within each sector are
grouped together in a separate itinerary. The nodes located
within a circular zone around the sink are chosen as the start-
ing points for each itinerary (i.e. the centers of the sector
zones); the adjustment of the circular zone’s radius deter-
mines the number of itineraries. The length of an itinerary is
controlled by the angle of the directional sector zone; those
angles depend on the nodes density (estimated through a
VCL-like technique) and may be different for each itinerary.
Upon determining the sectors, a SIP algorithm is used to
derive the visiting order within each sector.

The near-optimal itinerary design (NOID) algorithm [14]
adapts amethod originally designed for network design prob-
lems (the Esau–Williams heuristic [11] for the Constrained
Minimum Spanning Tree problem), in the specific require-
ments of WSNs. NOID recognizes that MAs aggregate data

2 The impact factor Gi j between two nodes i and j is given by the
following equation, with Hi

j denoting the estimated hop count between

nodes: Gi j = e−
(
Hi
j−1

)2

2·σ2
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and grow heavier while visiting SNs. Therefore, it restricts
the number of migrations performed by individual MAs. In
particular, NOID iteratively adds SNs to separate subtrees,
which progressively converge towards the sink. On each iter-
ation, the subtrees which include the pair of nodes (including
the sink) that minimize a ‘tradeoff’ function are merged into
one (a subtree structure is finalized when ‘merged’ with the
sink node). Intuitively, the itineraries grow as long as the con-
tinuation of an MA’s trip is found preferable than the return
back to the sink to unload its data; that is, when the amount
of data collected from each SN grows or the filtering ratio
decreases, NOID derives shorter tree branches. Each subtree
is then assigned to a separate MA, which performs a post-
order traversal of its subtree so as to visit first (when the MA
has not yet accumulated any data) the SNs residing furthest
from the sink.

The tree-based itinerary design (TBID) algorithm [17]
takes a more direct tree-based approach to the problem of
determining low-cost MA itineraries. Essentially, the algo-
rithm determines a spanning forest of trees in the network,
calculates efficient tree traversal orders (itineraries) and,
eventually, assigns these itineraries to individual MAs. Like
NOID, TBID assumes a general aggregation model, wherein
data after aggregation does not necessarily have constant size.
TBID is built around the idea of co-centric zones with the
sink as the center; the first concentric zone’s width equals
the maximum transmission range rmax of any SN, whereas
the subsequent zones’ width equals rmax/2 (namely, each
SN in any zone can only communicate with nodes belonging
to the previous, current, and the next outer zones). Simi-
larly to EMIP, the number of itineraries is determined by the
number of SNs residing within the first zone and an MA is
assigned to each itinerary rooted at those SNs. On each itera-
tion, itineraries grow from the inner towards the outer zones
linking the pair of adjacent nodes u and v (where u belongs
to an itinerary and v is not yet included) which minimize a
‘potential cost’ (PC) value; the PC value of an edge equals
the cost of the itinerary derived in the case that the edge will
be incorporated in the itinerary.

3 The Ils multiple itinerary planning algorithm

3.1 Preliminaries and problem statement

AWSN is represented by a complete graphG = (V, E), |V |
= N , where each node i in V, i = 0, ..N −1, corresponds to
an SN SNi , (i = 0, ..N − 1), and each edge (i, j) ∈ E cor-
responds to a communication path between the sensors SNi

and SN j , which can either be direct or multi-hop. The node
SN0 corresponds to the sink. Each link (i, j) is associated
with a cost ci, j , which is analogous to the overall energy cost
required to forward a byte of information among the nodes

SNi and SN j . The basicMobileAgent Routing (MAR) prob-
lem asks for a single MA itinerary, which includes all the
source nodes of a WSN3 and optimizes a certain routing
objective. The routing objective is to minimize the overall
energy expenditure associated with the transfers of traveling
MAs [29]. The MAR problem is NP-complete [29] while
approximate solutions to the problem are given by heuristics
[26], as it is discussed in the previous sections.

Now, the problem can be extended in two aspects. First, a
more general than the full aggregation model is considered,
where the data collected at each SN are reduced only by
a certain ratio f (0 < f < 1). Thus, if data of size d is
retrieved from each SN, the size of data collected by an MA
on the first j visited SNs can be written as d j = jd f , i.e.,
( j − 1)d f data elements already carried by the MA plus d f
data elements derived from processing the raw d elements
of the j th SN. A second extension to the MAR problem is
to consider multiple MAs and the objective is a set of near-
optimal disjoint itineraries (i.e. ordered sets of SNs) I =
I 1, . . . I k , all originated and terminated at the sink (SN0),
such that the total energy cost ctotal of the itineraries in I per
‘polling’ round is minimized. The total energy consumption
per polling round is defined as follows:

ctotal =
|I |∑
i=1

ICi (1)

where ICi is the overall energy cost associated with MA
transfers across itinerary I i :

ICi =
|I i |∑
j=0

( jd f + s)c j (2)

where c j = ck,l , i.e., the energy cost of the path (SNk, SNl)

traversed by the MA on its j th hop and s is the MA’s initial
size, namely the size of MA code plus the total addressing
bits required to store the IDs of SNs included in the itinerary
of theMA. It is noted that anMA needs to carry its code only
on the first tour; if some functions are routinely executed at
each SN, the corresponding code parts are stored at each SN
locally on the first visit, and in the next rounds, theMAcarries
only functionality that may alter between successive rounds
[13]. So, s in (2) can be considered constant and relatively
small; in fact, in most cases, it can be null [13].

The fixed aggregation ratio f in (2) is a reasonable
assumption since detailed information about the correlation

3 In our implementation we assume that every node i in V is a
source node. Nevertheless, our modeling also suits scenarios wherein
the source nodes comprise a subset of V . Note that a source node may
be visited multiple times. Once to actually retrieve sensory data and the
remainder times in the process if migrating from one node to another
(in the latter case, the node acts as intermediate node).
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Fig. 2 Illustration of the ILS output; color codes are used to indicate
the separation of nodes in disjoint itineraries; black solid lines denote
transfers towards nodes to aggregate sensory data while blue dashed
lines denote transfers towards intermediate nodes (or returning back to
the sink) (Color figure online)

existing in the sensory data for each pair of SNs is usually dif-
ficult to obtain. Similar correlation models have been used in
[3,8,23]. However, it is important to note that the ILS algo-
rithm can also be fast implemented under a more general
correlation model, where f varies among SNs.

3.2 The ILS algorithm

The ILS algorithm is executed centrally at the sink which
statically determines the number of MAs that should be used
and the itineraries these MAs should follow. Similarly to
EMIP and TBID approaches, ILS first determines a zone

around the sink, which includes nodes directly reachable (i.e.
in single-hop distance) from the sink; those nodes comprise
a set Z . The radius of the zone is equal to a · rmax , where
a is an input parameter in the range (0, 1] and rmax is the
maximum transmission range of any SN (and the sink). The
number of nodes in Z determine the number of itineraries k
to be derived by ILS (k = |Z |). Each SN in Z is the first node
to be attached on each of the k itineraries. The initialization
phase of ILS is detailed in Algorithm 1.

Following initialization, ILS performs an iterative process
which executes until all SNs have been attached to an
itinerary (see Fig. 2), considering the k itineraries alternately
(to ensure that the constructed itineraries are of equal length).
At each step, the algorithm examines the potential attach-
ment of each candidate node SNu (among those that remain
unconnected) at any position along the examined itinerary I i ,
namely between any pair of—already attached—subsequent
nodes. This is in contrast with the existing itinerary planning
algorithmswhich only consider attaching unconnected nodes
at the endof so-far created itineraries (or trees).Among all the
candidate (currently unconnected) nodes SNu and all alter-
native attachment positions (next to any node SNv ∈ I i ), ILS
chooses to insert the candidate node SNumin next to the node
SNvmin (executing the attach (I

i , SNvmin , SNumin ) function),
provided that this attachment minimizes the potential overall
energy cost of the resulting itinerary ICi

(v,u) (among all alter-
native attachment options). The energy cost of the itinerary
I i is then updated (executing the update(I i , ICi

(vmin ,umin)
)

function). The above described process is detailed in Algo-
rithm 2.
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An example of the iterative process performed in the
main execution phase of ILS is illustrated in Fig. 3. At
some step of the process an itinerary I i includes the nodes
{sink, u, v} (see Fig. 3a). Based on the formula (2) and
assuming that f = 1 the current cost of the itinerary is ICi =
s·csink,u+(s+d)cu,v+(s+2d)cv,sink . Let k andw denote the
sensor nodes being still unconnected (i.e. candidate nodes).
On that step, the algorithm considers the attachment of each
one of the two candidate nodes at all possible positions along
the current itinerary, i.e. between the pairs (sink, u), (u, v)

and (v, sink). Figure 3b–d illustrate the solutions derived
when inserting node k on each of the potential itinerary posi-
tions. Thus, the potential itinerary cost when inserting node k
between the sink and node u, is ICi

(sink,k) = s ·csink,k + (s+
d)ck,u + (s+2d)cu,v + (s+3d)cv,sink . Likewise, the poten-
tial itinerary cost when inserting node k between the nodes u
and v, is ICi

(u,k) = s · csink,u + (s + d)cu,k + (s + 2d)ck,v +
(s+3d)cv,sink . Last, the potential itinerary cost when insert-
ing node k between the node v and the sink, is ICi

(v,k) =
s · csink,u + (s+d)cu,v + (s+2d)cv,k + (s+3d)ck,sink . The
algorithm could, for example, finally choose to insert the can-
didate node w between the sink and node u iff ICi

(sink,w) =
min{ICi

(sink,k), IC
i
(u,k), IC

i
(v,k), IC

i
(sink,w), IC

i
(u,w),

ICi
(v,w)}.
ILS initializes the derived itineraries by connecting the

sink with each of the nodes located within the zone
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Fig. 3 Illustration of a step of the iterative process performed in the
main execution phase of ILS

determined by the sink’s transmission range; thereafter, the
itineraries progressively grow towards the outer zones of
the sensor field iteratively attaching the remaining source
nodes. Typically, ILS constructs radial-like itineraries, while
its itinerary construction strategy clearly favors the incorpo-
ration of adjacent nodes into the same itinerary.Moreover, the
consideration of the overall itinerary energy cost in selecting
proper node attachments motivates the ordering of itineraries
nodes starting from the node furthest form the sink and pro-
ceeding towards the node nearest to the sink (note the visiting
order in the itineraries of Fig. 2). That ensures that the return
transfer back to sink (i.e. the most energy-expensive as the
MA is highly loaded) is relatively short.

Upon the conclusion of the ILS main phase, a num-
ber of local search perturbations may be applied to better
explore the solution space and further improve the origi-
nally derived itineraries (intuitively, the fact that candidate
nodes are attached to itineraries in a round-robin fashion
often allows room for further improvements). For instance,
the 2-opt procedure removes two arcs within an itinerary
and tries to replace them with two new arcs not previously
included in the path (see Fig. 4). If this procedure reduces
the itinerary cost, the new solution is accepted, otherwise the
original solution is retained. Similarly, the swap perturbation
exchanges two nodes included in different itineraries in the
hope that the new solution will incur lower overall itinerary
cost (see Fig. 5).

TheMA itineraries derived by the proposed ILS approach
are not modified over consecutive data aggregation rounds,
unless a node fails or relocates elsewhere. Such incidents
(i.e. node failures due to energy depletion or hardware
faults) are detected by travelling MAs which fail to move
to failed (or relocated) nodes, hence, interrupting their visit
schedule and returning back to the sink to report the node

(a) (b) 

u v
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Sink

u v

wk

Sink

Fig. 4 2-opt perturbation
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vSink
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Fig. 5 Swap perturbation; color codes are used to indicate the separa-
tion of nodes in disjoint itineraries (Color figure online)

failure. The sink then updates the topology graph remov-
ing the failed/relocated node (as well as the edges incident
upon it) and re-executes the ILS algorithm deriving new
MA itineraries. This process for detecting topology changes
causes no extra power consumption and ensures instant
adjustment of MA itineraries. Note that similar approaches
for addressing fault-tolerance issues in MA transfers have
been proposed in the context of IP networks [13].

Figure 6 provides a visual illustration of ILS output (i.e.
derived MA itineraries). The figures (generated by a custom
Java-based tool, based on output files of the Castalia sim-

ulator [4]) present relatively small-scale topologies (200 ×
200m2, with the sink positioned at the center and 50 SNs ran-
domly deployed in the area), so as to provide a clear overview
of the derived output. The blue node (0) represents the sink,
whereas black nodes represent the source SNs. Black arrows
represent the transitions of MAs from one node to another,
whereas green arrows represent the return path (from the last
source node) followed by theMA to deliver the acquired data
to the sink.

Figure 6a depicts the itineraries calculated by the corre-
sponding algorithm, namely, the order in which source nodes
are visited by the MAs. As discussed above, this does not
coincide with the actual hop sequence of the MAs since
long-distance transfers among source nodes are realized via
several intermediate hops (taking into account the maximum
RF transceiver transmission range of each intermediate node
supported in Castalia). The actual hop sequence is illustrated
in Fig. 6b (red arrows indicate migrations towards interme-
diate nodes while black arrows migrations towards source
nodes). Themethod used to determine the intermediate nodes
associatedwith each transfer among source nodeswill be dis-
cussed in Sect. 3.3. Figure 6c illustrates an improved solution
yield from the 2-opt perturbation. The effect of 2-opt appears,

Fig. 6 Example itinerary
calculated by the ILS algorithm:
a without intermediate nodes; b
with intermediate nodes; c
improved solution yield from
the 2-opt perturbation (Color
figure online)
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Fig. 7 a ‘Distance’ matrix of
node u; b itinerary followed by
the MA
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for instance, in the replacement of the original itinerary {0,
36, 48, 44, 22, 9, 0} (see Fig. 6a) which crosses over itself
by {0, 36, 44, 48, 22, 9, 0} which does not (see Fig. 6c).

3.3 Calculation of edge cost

With the exception of TBID, all existing MIP methods make
the simplified assumption that the cost of an MA trans-
fer among a pair of nodes is proportional to their physical
(Euclidian) distance. However, this assumption does not
hold, especially in sparse topologies. In real settings, when
considering MA transfers among distant (i.e. out-of-range)
nodes, the MA follows a path including several interme-
diate nodes, ensuring that individual hops are undertaken
among in-range nodes. In our implementations, the MA is
assigned—upon instantiation—a full path which clearly des-
ignates source and intermediate nodes; the former are visited
to retrieve sensory data while the latter serve as in-between
stops while migrating from a source node to another.

At bootstrap, the sink collects connectivity information;
namely, for each node it yields its position and calculates its
physical distance from every other node, hence, the power
level required to reach each one of its reachable neighbors.
Using this information we construct the network topology
graph and assign costs to the edges (edges only connect nodes
lying within transmission range), where the cost of each edge
equals the transmission power required for direct communi-
cation. Thereafter, the sink executes Dijkstra’s algorithm to
construct a cost matrix for each node; for each pair of nodes
(i, j), the respective cost matrix entry ci, j indicates the min-
imum overall (energy) cost associated with transferring one
byte among those nodes (assuming symmetric links) as well
as the actual communication path, i.e. the intermediate nodes
(if any) that should be traversed along the MA transfer. Intu-
itively, this approach allows ILS to act as if any two nodes in
the network can communicate directly, provided that there is
a multi-hop path among them. In particular, we execute the
ILS steps detailed in Sect. 3.2 where the edge cost taken into

account to calculate itineraries’ cost is the energy cost given
by Dijkstra. Thus, ILS derives MA itineraries (i.e. ordered
sets of source nodes) paying no attention towhether eachMA
transfer is single-hop or multi-hop; then, we yield (from the
cost matrix) the path to be followed to realize each transfer
among consecutive source nodes. The whole ordered set of
source and intermediate nodes is carried by the MA along its
journey.

In the example topology of Fig. 7, edges connect nodes
which lie within mutual communication range and the edge
costs denote the energy units required for transmitting one
byte of information among the connected nodes (it depends
on the power level required to transmit data). Figure 7a illus-
trates a representative cost matrix for node u; for instance,
the total energy cost for transferring an MA of size d from
u to v is 3d and the transfer is realized via node i (d energy
units are spent by u, while 2d energy units are spent by i).
An example MA itinerary planned for this particular topol-
ogy is {S, j, u, i, v, S}, while the actual hop sequence is
{S, v, i, j, i, u, i, v, S} (see Fig. 7b).

Notably, in most MIP algorithm implementations, it is
assumed that the sink is aware of the absolute geographic
location of all source nodes, in order to calculate inter-node
physical distances. In real settings, that would imply the inte-
gration of a GPS receiver on each SN, thereby significantly
increasing the overall deployment cost. In our current imple-
mentation the sink becomes aware of the deployed sensors’
locations through the information provided by Castalia. To
relax this requirement, an alternative implementation could
take advantage of the fact that itinerary planning approaches
practically require only the distances among nodes, rather
than the exact nodes’ locations. Thus, SNs could broadcast
(at bootstrap) ‘hello’ messages using their maximum power
level. Then, each SN would estimate its physical distance
from its neighbor nodes through the RSSI values of received
‘hello’ messages and communicate this information to the
sink.
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Table 1 Available transmission
levels of the CC2420 radio
module, along with their
respective power and
transmission range

Transmission level (dBm) 0 −1 −3 −5 −7 −10 −15 −25

Transmission power (mW) 57.42 55.18 50.69 46.20 42.24 36.30 32.67 29.04

Transmission distance (m) 46.42 42.17 34.81 28.73 23.71 17.78 11.01 4.22

Table 2 The number of nodes
randomly deployed on the
simulated area and the number
of sensors that report their
position to the sink (not isolated)

Nodes deployed 100 200 300 400 500

Reachable nodes 20 (20%) 160 (80%) 298 (99.33%) 399 (99.75) 499 (99.8%)

4 Experimental results

4.1 Simulation settings

In order to evaluate our algorithm, we have implemented ILS
as well as its variants incorporating the 2-opt, 3-opt and swap
perturbations. For the rest of this section, we will use the
‘plain’ ILS algorithm as a reference point along with the ILS
followed by the 2-opt heuristic, which gave the best results
with respect to the most important metrics, i.e., service time,
energy consumption and network lifetime. The above two
solutions have been compared against five MIP algorithms,
namely BST [6], VCL [7], EMIP [28], TBID [17] and NOID
[14], which we have also implemented.

The implementations have been tested on the Castalia [4]
simulation platform and the source code is publicly available
from github.4 The size of the simulated terrain has been set
to 500 × 500 m2. We consider network sizes of 100, 200,
300, 400 and 500 nodes. For each network size we have
generated 10 random deployments; to ensure fairness, each
algorithm has been tested on the same set of deployments. In
the results discussed later on, we present the averages over
all deployments. The sink is positioned at the center of the
simulated terrain.

Each sensor node is assumed to be equipped with a
CC2420 chip, i.e. a 2.4 GHz IEEE 802.15.4-compliant RF
transceiver. Table 1 presents the eight transmission levels
supported by CC2420 along with their respective transmis-
sion range (assuming clear terrain). While transferring an
MA from one node to another the lowest possible trans-
mission level is used. Further parameters related to energy
consumption per node (e.g. receiving data, switching states,
sensing, processing, etc) are handled by Castalia.

Table 2 presents the percentage of deployed nodes which
are successful in establishing a path towards the sink (to
report their connectivity information). Evidently, for topolo-
gies of 100 or 200 nodes, a large percentage of nodes appear
disconnected, hence, they are not considered in the itinerary
planning process.

4 https://github.com/ivenetis/Castalia-3.2-MIP.

Table 3 presents the parameters used in our simulations.
The power consumed for receiving data and the supported
data rate stem from the CC2420 RF module’s specifications.
The values referring to MA-specific parameters have been
based on simulation parameters published in the relevant lit-
erature. The filtering coefficient has been set to 1.0; namely,
sensory data are assumed to be accumulated without any
processing.

4.2 Performance tests

Figure 8a shows the aggregate energy consumption (for
sensing, processing and receiving/transmitting data) of all
network nodes. This includes energy consumption of inter-
mediate nodes for MA forwarding. Isolated nodes (i.e. those
with no path towards the sink) are excluded. Both variants
of the ILS (i.e. the ‘plain’ ILS and the ILS followed by the
2-opt perturbation) perform better than their counterparts,
with the one incorporating the 2-opt improvement exhibit-
ing the best results. The differences against TBID are in the
range from 8.5 up to 30%, whereas the differences between
the two ILS variants vary from 1 to 4%. The prevalence of
ILS is mainly due to (a) incorporating the real energy cost
associated with MA transfers in the cost function used to
identify more energy-efficient solutions, (b) using a single
execution phase to separate the nodes in disjoint sets and
schedule appropriate ordering along the itineraries, unlike
tree-based solutions which involve two separate phases, and
(c) considering node attachments at any itinerary position,
unlike tree-based solutions which only consider connecting
candidate nodes with leaf nodes (i.e. at the edge of the so-far
created tree). As expected, the 2-opt perturbation improves
ILS solutions as the improvement upon the overall itinerary
cost is the sole criterion for accepting its perturbed solutions.
Nevertheless, this improvement is achieved at the expense of
higher computational cost.

Evidently, the performance gain of our approach over
TBID increases in topologies of 200 nodes. Notice that ILS
pre-calculates the shortest paths between each pair of nodes
in a pre-processing phase, therefore, it always considers all
nodes in the network for deciding the next node to be included

123

https://github.com/ivenetis/Castalia-3.2-MIP


540 D. Gavalas et al.

Table 3 Simulation parameters
used throughout all conducted
experiments

Simulation parameter Value

Simulated terrain (m2) 500 × 500

Power consumed while receiving data (per sec, staying in
Rx mode)

62 mW

Power consumed while in standby mode 1.4 mW

Network transfer rate 250 Kbps

Initial node energy 18720 J (2 × AA batteries)

Energy consumed for MA execution (data aggregation) 5 nJ

Energy consumed for sensing 0.02 mJ (per sample)

Mobile agent instantiation delay 10 ms

Mobile agent processing delay 50 ms

Code size of MA 1024 bytes

Size of data collected at each node 200 bytes

Filtering coefficient 1.0

Fig. 8 a Overall energy consumed by network nodes throughout a single data aggregation round; b energy consumed by the most heavily utilized
node among all network nodes included in itineraries; c standard deviation of energy consumed among the network nodes

in an existing itinerary. In contrast, on each step TBID only
considers the nodes which are adjacent to the current tree
structure. However, in the case of 100 nodes, the network is

very sparse, hence, the options that TBID and ILS have for
extending their itineraries are similar and rather few. For 200
nodes, the network is still sparse but ILS has more possi-
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bilities due to the pre-calculated all-to-all shortest paths. For
higher number of nodes, TBID starts havingmore options for
the next node to insert in the itineraries; thus, the difference
in the performance among ILS and TBID decreases.

Figure 8b illustrates the performance of benchmarked
algorithms with regard to network lifetime, i.e., the time that
the first node fails due to energy depletion. Since the path
derived by the examined algorithms is not modified over
consecutive data aggregation rounds (unless a node fails), the
same nodewill always spend themaximumamount of energy
(among its peers) and it will be the first to deplete. Again,
the ILS variants maintain a clear advantage. This is because
ILS attaches new nodes considering the k itineraries in a
round-robin fashion, thereby ensuring that the constructed
itineraries are of—almost—equal length (i.e. hop count). On
the other hand, in the case of unbalanced itineraries, the nodes
incorporated in the—relatively—longer itineraries and being
closer to the sink suffer from extra data forwarding burden.
Inevitably, the energy resources of those nodes deplete sooner
(than in the case of balanced itineraries), thus limiting the
network lifetime.

Figure 8c presents the degree of dispersion (standard devi-
ation, SD) among the energy consumption values of network
nodes. Itineraries associated with high SD energy spending
values are those inwhich subsets of nodes are heavily utilized
as intermediate nodes (thereby paying additional energy cost
forMA relays) in comparisonwith the remaining nodes. Both
variants of ILS perform better with respect to that metric as
they tend to derive itineraries wherein successive nodes are
typicallywithin transmission range.Therefore theMAsmake
little use of intermediate nodes or utilize a low transmission
power level, thus ensuring more balanced energy consump-
tion (the intermediate nodes consume more energy for data
forwarding than the remaining nodes which are only visited
once to retrieve sensory data).

Figure 9 illustrates the time required for travelling MAs
to visit all source nodes and deliver the collected data to the
sink. As with the energy consumption, this includes the time
required to hop over intermediate nodes. The service time is
determined by the time elapsed when the first MA is sent to
the network, until the last MA returns to the sink. The results
indicate that ILS outperforms the rest of the MIP algorithms,
again, due to constructing balanced itineraries. Compared to
TBID, the differences range from 4 up to 37%. It is worth
noting that these algorithms (i.e. ILS and TBID) maintain a
rather stable service time as the network size increases. As
the size increases, more sensors lie within the circular zone
around the sink. Hence, more itineraries are creating thereby
keeping the itinerary length short.

Figure 10a presents the number of itineraries derived
by MIP algorithms. VCL and NOID generate the largest
number of itineraries. NOID is the only algorithm that
explicitly attempts to optimize the length (hence, the num-

Fig. 9 Time required for MAs to visit the whole set of source nodes

ber) of itineraries based on the volume of aggregated data
and the filtering ratio. In contrast, BST tends to create
longer tree branches (the initially created branches tend to
‘absorb’ all network nodes, not allowing the development
of other branches), hence, reducing the number of resulting
itineraries. ILS, TBID and EMIP results coincide as they all
determine the number of itineraries based on the number of
sensors located within the sink’s transmission range.

Figure 10b presents the aggregate distance travelled by all
travellingMAs, until they return to the sink.Visits to interme-
diate nodes are taken into account. It is interesting to notice
that the distance travelled does not necessarily correlateswith
the energy consumed. BST and EMIP optimize the travelled
distance of MAs, assuming that distance corresponds to the
required energy to transfer theMA from one node to another.
However, their energy consumption is higher than ILS and
TBID (as shown in Fig. 8a). The latter also take into account
the size of the MA in estimating the energy cost for each
transfer. Further considering that MAs have to be transferred
over intermediate nodes, this strategy provides better results.

Figure 11a presents the maximum distance travelled
among all MAs (i.e. it considers the longest among the
itineraries yield from each algorithm),which is inversely pro-
portional to the total number of itineraries calculated for these
algorithms (see Fig. 10).

Figure 11b presents the total number of nodes visited by
all MAs, namely the aggregate number of visits on source
and intermediate nodes. This metric follows the same trend
as the total distance travelled by all MAs (see Fig. 10b). The
fact that ILS and TBID require more transfers for the MAs,
but consume less energy overall, shows that the transfers are
between nearby nodes, hence requiring lower power trans-
mission levels. The selection of neighboring nodes for each
transmission can be attributed, again, to the fact that they take
into account the size of the MA as well as the energy cost for
each transfer.
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Fig. 10 a Total number of itineraries derived by MIP algorithms; b total distance travelled by all MAs sent to the network

Fig. 11 a Maximum distance travelled by a single MA; b total number of nodes visited by all MAs sent to the sensor network; c total number of
hops via intermediate nodes over all itineraries

Figure 11c presents the total number of intermediate nodes
visited for all MAs. Although no data is collected at these
nodes, energy is consumed to receive the MA and retransmit

it to the next node. This metric follows the same trend as
the previous one (see Fig. 11b), further strengthening the
statement that nearby nodes are selected even when hopping
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over intermediate nodes. This result has been expected, since
Dijkstra’s algorithmcalculates the hopping sequence for each
MA transfer based on a minimum end-to-end energy cost
criterion.

5 Conclusion and future work

In this article we presented ILS, a heuristic that derives
multiple near-optimal itineraries for MAs that incrementally
aggregate sensory data as they visit SNs in a WSN. ILS
suggests a simple, yet effective, approach in MA itinerary
planning adopting the principles of iterated local search
metaheuristics commonly employed to tackle discrete opti-
mization problems.

ILS possesses some properties, which appear to have pos-
itive impact on its performance against alternative itinerary
planning strategies:

• It explicitly incorporates the effect of MA size inflation
along the itinerary into the utilized cost function.

• It employs an accurate method for estimating the actual
energy cost of potential MA transfers taking into account
the energy spent for data forwarding on intermediate
nodes.

• Candidate nodes may be inserted at any position within
an itinerary (i.e. not only on the edge of the itinerary).

• The separation of nodes in disjoint sets and their ordering
along an itinerary list are treated together, in a single
execution round.

• MAs initiate data dissemination from a node located far
from the sink andprogressively converge towards the sink
ensuring lower overhead for the last itinerary transfers
(when the MA is more heavily loaded).

Simulation tests executed in theCastalia simulator demon-
strate the performance gain of our method against existing
multiple MA itinerary planning methods with respect to
the most important performance indicators (overall energy
spending, network lifetime and service time).

Our future research plans include the investigation of opti-
mization problems closely related to the MIP. For instance,
a promising research direction could be to design methods
for the dynamic selection of subsets of SNs to be considered
in the itinerary planning process, under strict service time
(i.e. itinerary length) constraints. The selection of those SNs
could be based on different criteria, e.g., the location and
moving direction of a target, the residual energy of SNs,
etc. The Orienteering Problem (OP)5 [25] could serve as
a starting point to tackle this challenge. Another research

5 In the OP the objective is to determine a path, limited in length that
visits some vertices and maximizes the sum of the collected scores.

opportunity could be to investigate the use of multiple sinks
[24] in data aggregation tasks. The consideration of multiple
sinks would involve an additional network partitioning phase
which would result in assigning each source node to a partic-
ular sink. Thereafter, each sink could perform our proposed
ILS approach upon its assigned source nodes.
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