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Abstract More and more bio-inspired or meta-heuristic
algorithms have been proposed to tackle the tough opti-
mization problems. They all aim for tolerable velocity of
convergence, a better precision, robustness, and perfor-
mance. In this paper, we proposed a new algorithm, ebb tide
fish algorithm (ETFA), which mainly focus on using sim-
ple but useful update scheme to evolve different solutions
to achieve the global optima in the related tough optimiza-
tion problem rather than PSO-like velocity parameter to
achieve diversity at the expenses of slow convergence rate.
The proposed ETFA achieves intensification and diversifica-
tion in a new way. First, a flag is used to demonstrate the
search status of each particle candidate. Second, the single
search mode and population search mode tackle the intensi-
fication and diversification for tough optimization problem
respectively. We also compare the proposed algorithm with
other existing algorithms, including bat algorithm, cat swarm
optimization, harmony search algorithm and particle swarm
optimization. Simulation results demonstrate that the pro-
posed ebb tide fish algorithm not only obtains a better
precision but also gets a better convergence rate. Finally,
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the proposed algorithm is used in the application of vehi-
cle route optimization in Intelligent Transportation Systems
(ITS). Experiment results show that the proposed scheme
also can be well performed for vehicle navigation with a
better performance of the reduction of gasoline consumption
than the shortest path algorithm (Dijkstra Algorithm) and A*
algorithm.
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1 Introduction

There are many kinds of demands for tough optimization
problems in our lives. To tackle these problems often begins
by designing related models incorporating with correspond-
ing constraints. Therefore, more and more meta-heuristic
algorithms have been proposed, such as particle swarm opti-
mization (PSO) [6,16,22,24], differential evolution [7,20,
23] etc., and many evolutionary theories have been pro-
posed for these approximations or optimizations [2,8,14,21].
PSO has undergone many changes, or in other words, many
meta-heuristic algorithms can be simplified into PSO form
for optimization such as bat algorithm [26], cuckoo search
algorithm[27] and cat swarm optimization [4], etc. They are
all becoming powerful methods for solving many tough opti-
mization problems. Paying more attention to detail, we find
that these bio-inspired or meta-heuristic algorithms are all
derived, obviously simplified, from models of behaviors of
biological system and physical systems in nature. How to
understand the nature well, what models can be extracted
for computational use and how the model works all deter-
mine the performance of the algorithm. Neural network [15]
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is model of neurons, simulated annealing [1,18] involves
heating and controlled cooling of a material, PSO is devel-
oped based on the swarm behavior of birds, bat algorithm
and cuckoo search are inspired by bat and cuckoo respec-
tively, harmony search [12,28] is derived from the improving
process of composing a piece of music, and firefly algorithm
is derived from the flashing behavior of fireflies. Each of these
algorithms for optimization has its own advantages and dis-
advantages. For example, simulated annealing guarantees to
find the optimal solution when the cooling process is slow
enough and the simulation time is long enough. However,
the adjustment in parameters does affect the convergence
process [3,11,17,24,29]. PSO adaptation has been shown to
successfully optimize a wide range of continuous functions,
however, the model can be parameterized that the particle
system consistently converges on local optima, except for
a special class of functions, convergence on global optima
cannot be proven [5].

The publication “no free lunch theorems for optimization”
[25], claims that for any algorithm, any elevated performance
over one class of problems is offset by performance over
another class. The theorems result in a geometric interpre-
tation of what it means for an algorithm to be well suited
to optimization problems. In other words, if Algorithm A
performs better than Algorithm B for some optimization
functions, then B will outperform A for other functions, or
if averaged over all possible function space, both algorithm
A and B will perform on average equally well. It sounds
very disappointing, but we do not need the average over
all possible functions for a given optimization problem, and
what we need is to find the best solutions rather than eval-
uating the average overall possible function space. So there
are algorithms indeed outperform others for given types of
optimization problems.

In this paper, we intent to propose a new meta-heuristic
approach to optimization, the ebb tide fish algorithm. This
algorithm is inspired by small fish in ebb tides. The capability
of sensing vibration and flow is very fascinating and it also
make possible preying or fleeing for lives. The rest of the
paper is organized as follows. In Sect. 2, we formulate the
prey of the ebb tide fish, the communication between fish,
and we also give descriptions on how the algorithm works.
We also make some literal analysis of the update scheme
of ETFA and comparisons with respect to PSO and DE. In
Sect. 3, we will introduce the benchmark functions that val-
idate the proposed algorithm and give descriptions of the
good performance of our proposed algorithm. In Sect. 4,
we give the comparison with other algorithms for optimiza-
tion. In Sect. 5, we will discuss an extension of the proposed
algorithm, the application for route optimization. In Sect. 6,
we will discuss the algorithm generally, the advantages and
the disadvantages, conclusions of the paper and some future
works.
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2 Ebb tide fish

The small fishes in ebb tides are fascinating creatures. They
have lateral line to make perception of the tide flow, sounds
and the vibrations in water. They also use their ears to per-
cept sounds and vibrations. They are very sensitive to low
frequency sounds, especially in the frequencies from 6 H z to
16H z, while some other kinds of fishes have a wider range
from 1Hz to 150Hz. They also can make many kinds of
sound by vibrating of swimming bladder or grinding of bones
or teeth, to communicate with each other.

2.1 Behavior of ebb tide fish

When the fish is preying plankton or eating the weeds, it is
often attracted by some other fishes in the population who
have found a safer place with abundant food. Communica-
tions among the fishes lead to finding the safest place with
abundant food, and staying in the crowd also improves the
possibility to survive as it reduces the risk of being hunted
as an individual. In addition, some single fish would like to
search around alone rather than being attracted by the pop-
ulation. They also transmit their findings to other fish in the
population by special sounds frequently. They swim around
several times to find whether there is a better place for food.
The searching range is often delimited by a certain searching
radius.

2.2 Ebb tide fish algorithm

The speed of sound propagation in sea water is typically
V = 1450 m/s, and the equation of transmission time is
t = %, so the time is much short than sound propagation in
the air with the velocity V = 340m/s. The quick response
means that the fish has more time to do some response acts
than creatures in the air. The food (plankton/weeds) of the
fish is increasing with the depth increment in the model of
our algorithm, so fish would like to swim deeper to search
for food, and it make it possible to find the local optima of
an optimization. The noise of ebb tide wave is decreased by
depth, so the fish would also like a deep swim to escape from
a potential danger in noisy surroundings. If a fish find the
temporal global best location abundance of food, others will
gather in. If the noise in a local area is larger than a default
tolerance/threhold of the fish A > Ay, the fish will escape
and find a new place for prey. A = Aq * %e_(h_h(’)z, h—ho
denotes the relative depth. Figure 1 shows the search behavior
of fish.

For the ebb tide fish algorithm, we mainly focus on coor-
dinate information rather than the velocity of the movement.
The following equation Eq. 1 describes the position update
scheme.
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Fig. 1 The search behavior of the fish

Xt X!+ (X!

gbest — th') s rand(); (1)

When a single fish finds a safer place (which is less vibra-
tion and noise) with much more plankton/weeds, it would
like to search the local area to find the optima location.
The label Flag = true denotes that the fish is a single
search fish. The fish would also like to search a nearby
place in diversified ways. So it will swim about for N times
(N = % * B, and dcounr denotes the number of dimen-
sions in the searching domain. For simplification we use a
fixed number § = 5.). As we know, only a small proportion
of fish would like to search individually, others would like
to forage following the population. So we set the proportion
of the population for single swim search is rate = 0.01. Let
X; = (x1, x2, ..., xq) denotes the coordinate of the ith fish,
Xcenter = (X1, X24, ..., X4,) denotes the searching domain
center, and the local searching radius of each dimension is
= % * (x; — X;,). In implementation, we first record the
position of the single search fish, and then the fish randomly
swims for a distance r either in the positive direction of one
dimension (x; <— x; + r) or in the negative direction (x; <
x; — r). After swimming for N times, the fish finds the local
optima and uses the location Xjpes; to update the recorded
location X p,s; . The algorithm is shown below in Algorithm 1.

In order to examine the proposed algorithm in detail and
make comparisons with other well-known algorithms, first
we take PSO update scheme into consideration with the equa-
tion shown in Eq. 2.

r

vl?+1 —vitclx(Xpp—x)+ 2% (Xgp — X;); )
Xf“ — Xi+ Uf“;
We define C = C1 4 €2, p « 202X hen B, 2
can be changed to Eq. 3.
vt +1)=v(@t)+Cx(p—x()) 3)

x(t+1)=x@)+viE+1);

Algorithm 1 Pseudo code of the ebb tide fish algorithm
Require:
Initialize the searching space V (vy, v2, ..., vg) and the benchmark
function f(X)(X denotes the coordinate of a virtual fish).
Ensure:
1: while exeTime < MaxIteration do
2: if exeTime = 1 then
3: Generate the fish population 7; (j = 1, 2, ..., n) with coordi-
nate X; = (x1, x2, ..., x2)" and generate single search fish and
change its Flag;.

4:  endif

5. if exeTime > 1 then

6: for pSize =1: PopSize do

7. if Flagi = true & A; < Ayjres then

8: for Cspim = 1 : N do

9: Xi=x;xr

10: Calculate the benchmark value and record local best
Xltbest'

11: end for

12: lesi <~ Xlthe.vt

13: Flag; = false

14: else

15: X pos; eXf+(X;bme§)*rand();

16: end if

17: Generate single search fish and change its Flag

18: end for

19:  end if

20:  Calculate the benchmark value of all the fish.
21: if f(Xpos) is optima rather than f(X!) then
22: X ;H «~ X
23:  endif
24:  Record the optima fish with coordinate X
25: end while
Output:

The global optima X gpes .

posi

1
gbest*

Consequently, the form can also be changed to Eq. 4 by defin-
ingy, =p—x;.

Vipl < v +Cxy;

“)
Vi1 < =V + (1 = C) * yp;
It can also be written in the matrix style shown in Eq. 5.
v 1 C v
t+1 _ % 1 (5)
Vit -1 1-C Vi

When ¢t = 0, vgp = 0, so y;4+1 and v,41 can be calculated by
Eq. 6 through y; and v;.

v e 0 v
AR P x ! * PT ! (6)
Ve+1 0 e n

We put the two kind update factors into Eq. 7 (the ceil one is
update factor of PSO, the bottom one is of ETFA) to make a
transparent comparison. From the update factor, we can see
that the velocity parameter results in diversity solutions in
recompense for bad convergence rate.
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fpso=A*v1 — B*xxy
Setfa =C — D xxy;

(N

Then we take differential evolution (DE) algorithm into con-
sideration. Eq. 8 shows the mutation scheme that the new
candidate is a single dimension based combination of the
mutation candidate and the original candidate before muta-
tion.

Vi,G+1 = Xr,G + F * (Xp,,G — X13,G) (8)

Eq. 9 shows how to generate the final candidate of DE. The
detailed description of DE algorithm is discussed in [23].

if (randb(j) < CR)orj = rnbr(i)
if (randb(j) > CR)orj = rnbr(i)
9

Vji,G+1s
Uji,G+1 =
Xji,Gs

Dimension based update scheme of DE achieved intensity
and diversity for optimization, and it has been proved to be a
state of art algorithm. The proposed algorithm in this paper
is vector based update scheme, and we add local search to
fulfill diversity for optimization. From algorithm complex-
ity perspective of view, ETFA is less time-consumption and
detailed description and comparison will be illustration in
another paper which focus on the state of art and comparison
with DE.

3 Performance evaluation

There are many benchmark functions for the validation of
new algorithm. Take the Ackley 2-dimension function for
example (shown in Fig. 2), we get the global optima 0 at
X; = (0, 07, x j is a column vector. To make a more accu-
rate validation, we use many benchmark functions, listed in
Table 1, to test our proposed algorithm. The equations of the
functions and the minimum values in search domain V are
given in Table 1 and Table 2 respectively. In our implemen-
tation, we use 50 different populations of virtual fish, with
30 virtual fish in each population to tackle the optimization
problem, and we run 1, 000 times and the average conver-
gence curves are also calculated to make a comparison with
other different algorithms. Figure 3 shows the convergence
curve of the proposed algorithm with the benchmark func-
tion — Ackley function. For simplification, Ap.s is set a big
enough value so that equation A; < Ayj,es is always true in
our simulation, and we used all of the benchmark functions
listed in Table 1 for the validation of our proposed algorithm,
and the simulation results show that our algorithm performs
very well. Only a randomly selected 6 figures (Figs. 3, 4, 5,
6, 7, 8) are shown here in consideration of the total length
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Fig. 2 Ackley mesh

of the paper, but we will give full comparisons of different
optimization algorithms using all the benchmark functions
in the later part of the paper.

4 Comparison

We make as much comparisons as possible to test the perfor-
mance of our proposed algorithm against other optimization
algorithms, such as bat algorithm, cat swarm optimization,
harmony search, and particle swarm optimization. The para-
meter we use for the comparison is 10 populations of virtual
fish and for each population there are 30 virtual units (pops =
10, popsize = 30). The average curves of all the popula-
tions are calculated and shown for comparisons of all the
algorithms in the figures.

There are mainly four aspects for the evaluation of opti-
mization algorithms, velocity of convergence, precision,
robustness and performance, and there also are two obviously
approaches for the evaluation in experiments: to compare
the numbers of function evaluations for a given tolerance or
accuracy, or to compare their accuracies for a fixed number of
function evaluations [19]. In this paper, we use the second cri-
teria for experiments. We run 150 iterations (exetime = 150)
for each population and make comparison of the convergence
velocity and precision. The 10 different populations, with
each population 150 iteration times, make a statistical analy-
sis.

In our implementation for the bat algorithm, the default
parameters A% in[1, 2], Apin = 0 (or AY = 100, Aip = 1),
a =y = 0.9, rl.o around 0, do not have a good conver-
gence rate (there is no curve can be seen in comparison
figures during the first 150 iteration times for different bench-
mark functions, as after 150 iterations the fitness value is
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Table 1 Benchmark functions

No. Name Benchmark function
_ 1 2
1 Ackley f(Xj) — _20x%e 0.2,/ 7% x; _ e%*Zcos(Z*ﬂ*x,‘) +204¢
2 Beale F, ) =05—x+x%y)>+225—x+x%y>)> +(2.625 —x +x % y>)?
Booth F, ) =G+2y =1+ Q2x+y—5)2
‘1 o0 T2
4 CrossInTray f(x,y) =—0.0001(]| sin(x) * sin(y) * e "
5 Easom f(x,y) = —cos(x) * cos(y) * e~ (==
6 Eggholder X, ¥) = —(x +47) x sin( ’y—l— % +47‘ — xxsin(/[x = (y +47)])
7 Goldstein F,y) =0+ @ +y+ D2 % (19 — 14x 4 3x% — 14y + 6xy + 3y?)) * (30 + (2x — 3y)? x (18 — 32x + 12x2
+ 48y — 36xy + 27y%))
‘1_m
8 HolderTable f(x,y) = —|sin(x) % cos(y) * e
9 Levi Fx,y) =sin’Grx) + (x — 12 % (1L +sin?Gry)) + (y — 1) # (1 + sin?>(2y))
10 Matyas Fx,y) =0.26(x% + y?) — 0.48xy
11 McCormick f(x,y) =sin(x+y)+(xfy)27 1.5x +25y +1
d—1
12 Rosenbrock FX)) =D (00(xi 11 —x))7 + (5 — 1))
i=1
sin?(x2 — y%) — 0.5
13 Schaff .y =05
chattet fex ) T 0000102 1122
d
14 Sphere fXp) =%}
i=1
n 4 2
T xd —16x2 4 5x;
15 Styblinski X)) = izt ¥ - i+ o
6
16 ThreeHumpCamel fx,y) = 2x% — 1.05x* + % +xy + y2

Table 2 Search domain and minimum of benchmark functions

No. Name Search domain Minimum value

1 Ackley —5<x,y<5 f0,00=0

2 Beale —4.5<x,y<45 f(3,05) =0

3 Booth —10<x,y <10 f(1,3)=0

4 CrossInTray —10<x,y <10 f(£1.34941, £1.34941) = —2.06261
5 Easom —100 < x,y <100 fr,m)=-1

6 Eggholder —512 <x,y <512 f(512,404.2319) = —959.6407

7 Goldstein —2<x,y<2 fO,-1)=3

8 HolderTable —-10<x,y<10 f(£8.05502, £9.66459) = —19.2085
9 Levi —-10<x,y <10 fa,H=0

10 Matyas —-10<x,y <10 f£(0,00=0

11 McCormick —15<x<4 -3<y<4 f(—0.54719, —1.54719) = —1.9133
12 Rosenbrock —5<x,y<5 f,1,..,1)=0

13 Schaffer —100 < x,y <100 f£(0,00=0

14 Sphere —5<x,y<5 £(0,0,...,0)=0

15 Styblinski —5<x,y<5 f£(—2.903534, ..., —2.903534) = —39.16599 % 2
16 ThreeHumpCamel —5<x,y<5 f(@0,0)=0
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Iteration Times

still too large.), so we use the parameter A; = 0, r; = 1,
a =y = 0.9, the bat algorithm in particle swarm optimiza-
tion form (BA(pso)) and the parameter A; = 0.7, r; = 0.7,
a = y = 0.9, the bat algorithm in harmony search form
(BA(hs)), to make comparisons in Figures. For cat swarm
optimization, we use the parameter max velocity v,,q, = 0.3,
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Fig. 8 ThreeHumpCamel function

the average velocity v,y = 0.1, the tracing rate r = 0.02,
the number of seeking pool smp = 5, the inertial coefficient
¢ = 2. For the particle swarm optimization, we use standard
version for the comparison, the velocity inertial coefficient
¢ = 1,¢c1 = ¢ = 2. Figure 9 shows the comparison of
our proposed algorithm, ebb tide fish algorithm, with the
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Fig. 11 Comparison of benchmark function—Booth
other algorithms for Ackley function. Figure 10 shows the

comparison for Beale function. Figures 11, 12, 13, 14, 15,
16, 17, 18, 19, 20, 21, 22, 23, 24 show the comparisons
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Fig. 14 Comparison of benchmark function—Eggholder

for the rest of the benchmark functions listed in Table 1.
The optimization results of 150 iterations are shown in
Table 3.
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Fig. 17 Comparison of benchmark function—Levi

@ Springer

Iteration Times
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Fig. 19 Comparison of benchmark function—McCormick

5 Application of ebb-tide-fish algorithm

The proposed algorithm can be applied to solve diverse opti-
mization problems with different applications [10]. In this
paper, we will show the application of ETFA for vehicle gaso-
line consumption optimization in Intelligent Transportation
Systems (ITS). In order to show the suitability and efficiency
of the algorithm, an 8 x 8 grid network are employed for
simulation. Ten thousand cars are mapped randomly into the
grid network, so the density of traffic on the road can be sim-
ulated. In our simulation, the distance between two nodes
in Fig. 25 is 2km. After 10 thousand cars mapped into the
grid, there are 89 cars on each road with the average about
22.4m a car. The maximum velocity of the road is 72 km/h.
The response time of a driver for emergency is 0.75s, so the
safe distance is set to 20m. We set two criteria for traffic
congestion, one is the density becomes 1.2 times than nor-
mal situation, and the other is more than 3 car on 22.4 m. The
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Fig. 20 Comparison of benchmark function—Rosenbrock
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Fig. 21 Comparison of benchmark function—Schaffer
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Fig. 22 Comparison of benchmark function—Sphere
red node in Fig. 25 shows the congestion node of one run of

the simulation. The pink node is the start node and the yel-
low node is the destination node. The main objective of the
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Fig. 23 Comparison of benchmark function—Styblinski
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Fig. 24 Comparison of benchmark function—ThreeHumpCamel

paper is to make a navigation from the start to the destination
within least gasoline cost.

5.1 Vehicle velocity and gasoline consumption

Recent research shows that there is an optimum velocity
range for each car. Typical small gasoline (< 1400 cm?) Euro
4 passenger car is made as an example and Fig. 26! shows
the optimal speed for minimum fuel consumption. From the
chart, we can separate four areas with the corresponding to
four velocity ranges. The first range is 0-30kph with quite
high fuel consumption. This speed range is typical for cars
traveling in a city with continuous start and stop motion, and
the traffic situation of in this range is often in traffic conges-
tion. The second range is 30—55 kph, and the velocity range
is common in sun-urban or rural areas. The third range is 55—
80kph, and this is the optimum velocity range that minimize

! http://www.myengineeringworld.net/2012/05/optimal-speed- for-
minimum-fuel.html.
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Table 3 Optimization results of benchmark functions after 150 iterations

No. Name Minimum value BA(hs) BA(pso) CSO PSO Our algorithm
1 Ackley 0 7.7E—1 6.0E—3 1.8E—4 6.0E—3 1.2E—-8

2 Beale 0 1.6E—1 7.6E—2 2.0E-5 2.5E-5 1.3E—4

3 Booth 0 2.0E-9 1.4E-5 6.0E—5 2.3E-5 1.6E—4

4 CrossInTray —2.062612 —2.06261 —2.06261 —2.06261 —2.06261 —2.062612
5 Easom -1 —1+6.0E—1 —1+3.0E—1 —14+2.0E-3 —1+7.0E—1 —1+9.0E—7
6 Eggholder —959.6407 —744.0175 —768.1944 —900.5568 —747.8127 —906.6949
7 Goldstein 3 3 3+8.2E—4 3+7.8E—4 3+3.4E-3 3+6.0E—3

8 HolderTable —19.2085 —16.6100 —16.4530 —19.1999 —16.6102 —19.2071

9 Levi 0 1.1IE-2 1.2E—4 4.2E-5 9.6E—5 3.4E-15

10 Matyas 0 6.0E—11 2.7E-7 1.3E—9 24E—6 4.0E—16

11 McCormick —1.913223 —1.9132 —1.9132 —1.9132 —1.9132 —1.913223
12 Rosenbrock 0 5.2E-9 22E—4 22E—4 2.0E—4 1.0E—1

13 Schaffer 0 1.0E—1 3.0E-2 1.9E—8 22E-2 94E—15

14 Sphere 0 3.8E—10 34E-6 2.1E-8 7.9E—6 7.7E-22

15 Styblinski —78.3320 —76.9100 —78.3300 —78.3298 —78.3320 —78.3320
16 ThreeHumpCamel 0 8.3E—6 1.2E—1 1.6E—8 1.5E-5 1.4E-21

The best optimization result of each benchmark function are highlighted in

1400 |- ’s .1e .u .:2 .40 .Ae .sc .u
1 2 0 0 N .7 .IS .ZJ .31 .39 .47 .SS .60
1 oo 0 n .6 .1 4 .72 .30 .18 .u .5l .02
80 o B .5 .13 .21 ’2‘) .31 .45 .53 .N
600 - & i > .20 ‘se .u & &
400 | .3 .H .ﬁ .77 .33 043 .SI .59
200 |- o pL & & & & & &
1 17 25 3 41 49 57
OF o . . ° . . .
1 1 1 1 1 1 1 1
0 200 400 600 800 1000 1200 1400

Fig. 25 Grid network of road simulation

the fuel consumption. The last range is 80—120kph, and the
fuel consumption augments with the velocity increase. In our
simulation, we choose one sample velocity in each range to
make a simple gasoline consumption analysis. Table 4 shows
the sample velocity in each range.

Take traffic status in Fig. 25 for example, the shortest path
from the start point (Point 22) to destination point (Point 43)
are shown as follows:

Pathl: 22— > 30— > 38— > 46— > 45— > 44— > 43
Path2: 22— > 30— > 38— > 37— > 45— > 44— > 43
Path3: 22— > 30— > 38— > 37— > 36— > 44— > 43
Path4: 22— > 30— > 38— > 37— > 36— > 35— > 43

Path 20: 22— > 21— > 20— > 19— > 27— > 35— > 43
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Fig. 26 Optimal speed for minimum fuel consumption

Table4 Samples of the four ranges with velocity and fuel consumption

No. Range Velocity Fuel consumption
1 0-30kph 10kph 12.5L/100km

2 30-55kph 36kph 7L/100km

3 55-80kph 72kph 6L/100km

4 80-120kph 108 kph 6.8L/100km

This driving paths are parts of the sequences which contains
all nodes of the simulation grid. Each path from the start to
the destination can be extended to a whole sequence with all
the nodes of the grid simulation, and the weight of the nodes
out of the path is set to zero.
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5.2 Hamming distance of different sequences

The Hamming distance, in information theory, between two
strings of equal length is the number of positions at which
the corresponding symbols are different. It also measures the
minimum number of substitutions required to change one
string into the other, or the minimum number of errors that
could have transformed one string into the other [13]. The
consequent intersection nodes in vehicle navigation is firstly
initialized and the fitness value is the gasoline consumption.
The velocity of different congestion node are classified into
four levels shown in Table 4. The distance between each
travelling node sequence can be calculated by Hamming Dis-
tance with the equation Eq. 10. d (X gpess, X;) is the minimum
number of substitutions required to change so that X; can be
transformed t0 X gpes: -

d

d(Xgpest, Xi) = ngbestj @ x;
j=1

(10)

5.3 ETFA update scheme in path optimization

As we mentioned above, each fish is initialized a travelling
sequence of the nodes, and the benchmark function is the
gasoline consumption from the start to the destination. Of
course, the congestion nodes within the sequence make the
driving to consume more gasoline. After calculation, we can
locate the temporal global optima and the following two
moving schemes are “moving toward global optima” and
“moving as a single search fish”. In the first mode, Eq. 1 can
be illustrated that X! is updated by X l’ *+1 which has a shorter
hamming distance, shown in Eq. 11, to the global optima.
n denotes the number of nodes in the travelling sequence in
Eq. 11. After we got the distance, d,;,, randomly selected
positions in the sequence, from the first to the end of the trav-
elling sequence, are assigned to the corresponding values
of Xgpest- dnum can be calculated by Eq. 12. In the sec-
ond mode, we just exchange two positions in the travelling
sequence so that it can implement the local search of a single
fish.

d(X;-Ha ngest) = rand() * dsmail
dsmall = min{d(Xl?, ngl’é'l)’ n-— d(Xf, ngest)}

dpum = d(Xlts ngest) - d(X?Hv ngest)

(1)
12)

In our simulation, ten thousand vehicles are mapped onto
the grid network to simulate the traffic simulation. We make
one thousand navigation with different start and destination
and collect the distance of the journal, the velocity, travel
time and gasoline consumption. Figure 27 shows the com-
parison of 1,000 times navigation between shortest path
algorithm [9] and ETFA optimization and Fig. 28 shows
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Fig. 27 Comparison with shortest path algorithm
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Fig. 28 Comparison with original A* algorithm

Table 5 The comparison of average fuel consumption and time con-
sumption for 1,000 times navigation between Dijkstra and our algorithm

Algorithms Ave time cost Ave fuel cost
Dijkstra 1.2h 1.1 x 1072L
Ebb-tide-fish 0.4h 9.8 x 1073L

Table 6 The comparison of average fuel consumption and time con-
sumption for 1,000 times navigation between A* and our algorithm

Algorithms Ave time cost Ave fuel cost
A* 1.8h 2.1x 1072L
Ebb-tide-fish 0.5h 1.2 x 1072L

comparison of 1,000 times navigation between the proposed
algorithm and the original A star algorithm [14]. Table 6 and
Table 5 show the average fuel consumption and time con-
sumption of 1,000 times navigation of A star algorithm and
shortest path algorithm separately by comparison with our
algorithm respectively. We can see that the proposed algo-
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rithm outperforms on gasoline consumption over the two
algorithms.

6 Conclusion

In this paper, we have formulated a new bio-inspired/meta-
heuristic algorithm, the ebb tide fish algorithm, based on the
behavior of the fishes in ebb tide. The proposed algorithm
has been validated and compared with different optimization
algorithms including bat algorithm, harmony search algo-
rithm, cat swarm optimization and particle swarm optimiza-
tion. Our proposed algorithm shows very good performance
for many different benchmark functions. Our algorithm
achieves a good convergence rate, make a whole simpli-
fication of particle swarm optimization, but do not result
in over-convergence to some local optima by single search
of the tide fish. As we know, the two major components
of any meta-heuristic/bio-inspired algorithms are intensifi-
cation and diversification, or exploitation and exploration.
The more simple to implement the two components, the
better the algorithm will be. Our proposed algorithm has
less parameters and it avoids the tuning parameters prob-
lems for different/special problems. There are also some
disadvantages of the proposed algorithm, such as the risk of
convergence to local optima when the population is limited,
the proof of convergence has not been down, etc.. We also
give an example of application using the proposed algorithm
in the paper. The application is the optimization of vehi-
cle gasoline consumption in grid network. The performance
shows that the proposed algorithm also well performed
for path optimization with least gasoline consumption. An
interesting future work will be the detailed discussion on
the trajectory of the fish and other improvement of the
algorithm.
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