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Abstract We consider a flow-level model for packet-
switched telecommunications networks handling elastic
flows with concurrent occupancy of resources, in which
digital objects are transferred at a rate determined by capac-
ity allocation on each route. The capacity of each node is
dynamically allocated to the routes passing by it through
a weighted proportional fair sharing policy, and the arrival
request for transfer on each route is generated by N heavy-
tailed On/Off sources. Under heavy-traffic, we combine state
space collapse (SSC) and an Invariance Principle to show
that when N → +∞ the conveniently scaled workload
and flow count processes converge. SSC establishes a rela-
tionship between the corresponding limits by means of a
deterministic operator. In Theorem 1 we prove that assum-
ing the other hypotheses hold, SSC is not only sufficient for
the convergence, but necessary. In Theorem 2 we prove that
when r → +∞, r being a scale parameter, the workload
limit process converges to a reflected fractional Brownian
motion on a polyhedral cone.
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1 Introduction

A packet-switched network is a digital telecommunications
network that groups all transmitted data, irrespective of
content, type or structure into suitably-sized blocks, called
packets. The network over which packets are transmitted is a
shared network that routes each packet independently from
all others and allocates transmission resources as needed.

Routing directs packet forwarding, the transit of logically
addressed packets from their source toward their ultimate
destination through intermediate nodes, typically hardware
devices as routers, bridges, gateways, firewalls or switches,
by selecting paths or routes in the network along which to
send network traffic. This is performed by means of the
packet-switching technology, which is used to optimize the
use of the channel capacity available to minimize the trans-
mission latency (i.e., the time it takes for data to pass across
the network), and to increase robustness of communication.
The best-known use of packet switching is the Internet and
most local area networks (LAN).

When dealing with a packet-switched network, it is cus-
tomary to consider the “packet train” model for which data
traffic is essentially composed of individual transactions or
flows which can be broadly categorized as “stream” or “elas-
tic”. Elastic flows are established for the transfer of digital
objects which can be transmitted at any rate up to the limit
imposed by link and system capacity. The digital object in
question might be a file, a Web page or a video clip trans-
ferred for local playback. We assume that flows are perfectly
fluid and ignore problems of granularity due to packet size.

We study a class of packet-switched networks handling
elastic flows with concurrent occupancy of resources (nodes
and routes connecting them), in which digital objects are
transferred at a rate determined by the available bandwidth,
which is dynamically shared between flows. The service
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capacity (bandwidth) on each node is dynamically allocated
to the routes passing by the node, and the fraction of capac-
ity assigned to each route is shared at any time among all
the flows in progress at the route. This model, which was
introduced by Massoulié and Roberts [19], is referred to as a
flow-level model by Kang et al. [14], and assumes a “separa-
tion of time scales”, which means that the time scale of flow
dynamics (digital objects arrivals and departures) is much
longer than the time scale of the packet level dynamics on
which rate control schemes such as the TCP protocol con-
verge to equilibrium.

The manner in which the bandwidth is allocated to the
routes is defined by the network bandwidth sharing policy,
and we adopt the usual assumption that traffic to be handled
appears as a succession of requests for the immediate transfer
of a certain digital object. Due to technical complications
of the proposed task, we restrict ourselves to the case of a
flow-level model operating under a weighted proportional
fair sharing policy, which corresponds to the α = 1 member
of the family of weighted α-fair bandwidth sharing policies
introduced by Mo and Walrand [20].

The network has a fixed set of nodes and is used by a
fixed set of routes and, instead of assuming Poisson arrivals
and exponentially distributed digital object sizes, as in De
Veciana et al. [4], Bonald and Massoulié [2] and Kang et al.
[14], we assume that the arrival process of requests for the
digital object transfer on each route is generated by a big
number of On/Off sources that during On-periods continu-
ously have data to send and during Off-periods are silent, for
which the lengths of the On- and/or of the Off-periods are
heavy-tailed (at least one of them). This choice is motivated
by the detected presence of long-range dependence and self-
similarity in modern high-speed network traffic, especially
in the Internet traffic. Indeed, from the work of Taqqu et al.
[26] it has been generally accepted that one simple physical
explanation for the observed phenomenon of the long-range
dependence and self-similarity, consists in the superposition
of many On/Off sources with strictly alternating On- and
Off-periods and whose lengths are heavy-tailed distributed.
This motivation is shared by other recent papers. For exam-
ple, this is the case of [13], where the asymptotic behavior
of the steady-state queue-length distribution, under general-
ized Max-Weight scheduling in the presence of heavy-tailed
traffic, for a system consisting of two parallel queues served
by a single server, one of the queues receiving heavy-tailed
traffic, and the other receiving light-tailed traffic, is consid-
ered. Another example is [18], where the authors examine the
impact of the heavy-tailed traffic on the performance of the
Max-Weight scheduling in a single-hop switched network
with a mix of heavy and light-tailed traffic.

The fact that the superposition of N On/Off sources
generates an aggregate cumulative arrival process that conve-
niently scaled in time by a factor r and in space by a factor of

r and
√
N , converges as first N tends to infinity and then, as

r tends to infinity, to a fractional Brownian motion process,
was proved in Theorem 1 [26], where the authors show the
relationship between the parameter describing the heaviness
of the tails and the Hurst parameter of the fractional Brown-
ian motion process, H > 1/2, which measures its degree of
self-similarity.

In subsequent work it has been shown that for multi-class
networks with FIFO service discipline under heavy-traffic,
the convergence of the scaled arrival process carries over to
the scaled workload process, which thus also converges to a
fractional Brownian motion process but reflected appropri-
ately to be non-negative. See Debicki and Mandjes [5] for
the single-station model, and Delgado [6–8] for three dif-
ferent situations in the multi-station scenario. Unlike these
works, in this paper we investigate the asymptotic behav-
ior of a family of flow-level models in the heavy-traffic
environment, but for networks operating under a weighted
proportional fair bandwidth sharing policy. Our motivation
was to extend the heavy-traffic limit result of Delgado [7]
to this setting. Indeed, in Theorems 1 and 2 we prove that
the conveniently scaled workload process converge to a mul-
tidimensional reflected fractional Brownian motion process
(rfBm) on a polyhedral cone, which is a particular case of
convex polytope. By suitably adapting the definition of semi-
martingale reflecting Brownian motion on a convex polytope
of Dai andWilliams [3], this process is introduced in Sect. 2,
where we also introduce a condition on matrices associ-
ated to the polyhedral cone and its directions of constraint
at the boundary, named HR, which ensures the existence
of such a process. We highlight that when Poisson arrivals
and exponential sizes are assumed, a diffusion approximation
is obtained instead, a multidimensional reflected Brownian
motion (rBm) on a polyhedral cone being the limit of the
scaled workload process (see Kang et al. [14]).

By combining the methodology used in Kang et al. [14]
with that in Delgado [6–8], we prove in Sect. 4 that under a
mild local traffic condition and heavy-traffic, if conditionHR
holds and a form of state space collapse SSC is met, then the
scaled workload converges as N → +∞, and then as r →
+∞, to a multidimensional rfBm process on a polyhedral
cone associated to the network (Theorem 2).

The phenomenon of state space collapse SSC was first
established by Whitt [28] for a single multi-class station but
the term was coined by Reiman [24], and it has been shown
to be a key ingredient in the proof of heavy-traffic limit
theorems, both in the Poisson-arrivals environment using
different service policies (see for instance Peterson [23],
Williams [30] and Kang et al. [14]), with a rBm on the
positive orthant or on a polyhedral cone as the workload
limit process, depending on the service policy, and also in
the On/Off heavy-tailed sources context assuming the FIFO
service discipline (Delgado [7]) with a rfBm process on the
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positive orthant instead. Recently, a strong version of SSC
has been proved in [21] for an overloaded Markovian queue-
ing system having two customer classes and two service
pools, known in the call-center literature as the X-model.
This condition has been used by the same authors in [22] in
order to develop a refined diffusion approximation for the
same model under heavy-traffic. In the present work, for the
first time to our knowledge, SSC condition is considered in
the context of a heavy-traffic limit theorem in the On/Off
heavy-tailed sources context with a fair bandwidth sharing
policy, obtaining in the limit a rfBm process on a polyhedral
cone.

More specifically, in Theorem 1 we prove that the conve-
niently scaled workload and flow count processes converge,
as N → +∞, to processes Ŵ r and Ẑ r respectively, under
a mild local traffic condition, heavy-traffic and assumptions
HR and SSC, which implies that these limit processes are
linked by means of a continuous deterministic operator Δ,
obtained by solving an optimization problem, in this way:
Ẑ r = Δ(Ŵ r ) , meaning that the flow count process can be
approximately recovered as a continuous lifting of the work-
load process. Actually, in Theorem 1 we prove that assuming
the other hypotheses are true,SSC is not only a sufficient con-
dition for the convergence, but also necessary. In Theorem
2 we prove that processes Ŵ r and Ẑ r converge respectively,
as r → +∞, to W , which is a rfBm process with Hurst
parameter H on a polyhedral cone, and Z = Δ(W ) .

The main ingredients in the proofs are a combination of
Theorem 1 [26] and Theorem 7.2.5 [29] on the one hand, and
the Invariance Principle in domains with piecewise smooth
boundaries (Theorem 4.3 [15]), for which we set the version
we use in Sect. 4.1, on the other. But for applying the Invari-
ance Principle we need some preliminary technical results
that can be found in Sect. 5, devoted to a form of multiplica-
tive state space collapse (MSSC). This is a condition trivially
implied by SSC but that, in fact, is equivalent to it in our set-
ting, as deduced fromProposition 4.MSSC condition usually
appears in relation with heavy-traffic limits in different con-
texts; for instance, it has been considered in [7] in the context
of a fluid queuing network with multiple classes and feed-
back, fed by a big number of heavy-tailed On/Off sources,
where each fluid class is processed at a constant rate by fol-
lowing a FIFO service discipline. More recently,MSSC has
been considered in [25] with regard to switched networks
(more specifically, single-hop and multihop networks) for a
family of scheduling policies related to themaximum-weight
policy of Tassiulas and Ephremides [27]. Is worth noting that
whereas previousworks on switched networks and stochastic
processing networks in the diffusion limit have assumed the
“complete resource pooling” condition, in [25] this assump-
tion is not required. However, in this work is not shown but it
is conjectured that MSSC implies SSC, under an additional
hypothesis.

The organization of the rest of the paper is as follows. In
Sect. 2 we set up notation and terminology, including defi-
nitions of a polyhedral cone and a rfBm process on such a
set . The fluid-level model we consider is introduced in Sect.
3, where the network structure, the bandwidth sharing pol-
icy, the stochastic processes associated to the model and the
heavy-traffic assumption are given. Theorems 1 and 2, which
are the main results, are established in Sect. 4, where a sim-
ple example to help visualize these mathematical results has
been included.

2 Notation and terminology

Let a, b ∈ R, then a ∨ b denotes the maximum of a and b,
and a ∧ b the minimum.

For each integer d ≥ 1, we will denote by Id the
d−dimensional identity matrix. Vectors will be column vec-
tors and v′ denotes the transpose of a vector (or a matrix)
v. Given v = (v1, . . . , vd)

′ ∈ R
d , hereafter we will

denote by diag(v) (or by diag(v1, . . . , vd) ) the d × d
diagonal matrix with diagonal elements v1, . . . , vd . Let
R
d+ be the d−dimensional positive orthant, Rd+ = {v =

(v1, . . . , vd)
′ ∈ R

d : vi ≥ 0 ∀i = 1, . . . , d}. For

a d × d ′ matrix A = (ai j )i=1,...,d, j=1,...,d ′ , let |A| def=
max

1≤ j≤d ′
(∑

1≤i≤d
|ai j |

)
. Note that if A = diag(v1, . . . , vd),

then |A| = max{v1, . . . , vd}. The rank of A will be denoted
by rank(A), and if d ′ = d, A−1 denotes its inverse, if exists,
that is, if the determinant det (A) �= 0. Inequalities between
vectors should be interpreted component-wise.

We will say that a sequence of d × d ′ matrices {An}n
converges to a d × d ′ matrix A if |An − A| → 0 as n
tends to +∞ (this convergence is equivalent to the conver-
gence in the component-wise sense), and we will denote it
simply lim

n→+∞ An = A . The same applies for the particular

case d ′ = 1, which corresponds to d−dimensional vectors,

with |v| def=
∑

1≤i≤d
|vi | the �1−norm. The Euclidean norm

on R
d is ||v|| = (

∑

1≤i≤d
v2i
)1/2 ≤ |v|. The inner product

of a couple of vectors u, v ∈ R
d is denoted by 〈·, ·〉, that

is, 〈u, v〉 =
∑d

i=1
ui vi . Let d(x, S) denote the distance

between x ∈ R
d and S ⊂ R

d , d(x, S) = inf{ ||x − y|| :
y ∈ S}, with the convention d(x, ∅) = +∞.

Let Cd be the space of continuous functions ω from
[0, +∞) to R

d , with the topology of the uniform con-
vergence on compact time intervals, and Dd the space of
continuous on the right with limits on the left functions,
endowed with the usual Skorokhod J1−topology. All sto-
chastic processes in this paper will be assumed to have paths
in Dd , for some d ≥ 1. For each T ≥ 0 and ω ∈ Cd , we
define
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∣∣∣∣ω(·)∣∣∣∣T
def= sup

t∈[0,T ]
∣∣ω(t)

∣∣ = sup
t∈[0,T ]

( ∑

1≤�≤d
|ω�(t)|

)
.

We will say that ωn → ω as n → +∞ in Cd (uniformly
on compacts, u.o.c.) if for any T ≥ 0, ||ωn(·) − ω(·)||T →
0, and we will denote it lim

n→+∞ ωn = ω. To measure the

oscillation of ω we make the following definition: for any
T ≥ 0,

Osc
(
ω(·), [0, T ] ) def= sup

0≤s<t≤T

∣∣ω(t) − ω(s)
∣∣.

Note that, in general, Osc
(
ω(·), [0, T ] ) ≤ 2 ||ω(·)||T

and that Osc
(
ω(·), [0, T ] ) ≥ ||ω(·)||T if ω(0) = 0 and

ω�(t) ≥ 0 for any t ∈ [0, T ] and any 1 ≤ � ≤ d.
We let e be the identity function, that is, e(x) = x .
A sequence of stochastic processes {Xn}n≥1 is said to be

tight if the induced measures on Dd form a tight sequence
(that is, the sequence of induced measures is weakly rela-
tively compact in the space of probability measures on Dd ).

We will use P − lim for the convergence in probability
(uniformly on compacts), andD − lim to denote the conver-
gence in distribution on Cd or Dd (or weak convergence).
That is, we write D − lim

n→+∞ Xn = X if the sequence of

probability measures induced in Dd by {Xn}n , say {Pn}n ,
converges weakly to that induced by X , P . We denote the
weak convergence of probability measures by Pn ⇒ P . The
sequence of processes {Xn}n is called C−tight if it is tight,
and if each weak limit point, obtained as a weak limit along
a subsequence, almost surely has sample paths in Cd .

A function f = ( f1, . . . , fd) : [0, +∞) −→ R
d+ is

said to be absolutely continuous if each of its components
fk is absolutely continuous. A regular point for f is a value
t > 0 at which each component of f is differentiable. Let
d
dt fk(t) denote the derivative of function fk at time t if t is a
regular point of f .

The multi-dimensional reflected fractional Brownian
motion (rfBm) process on the positive orthant has been intro-
duced, for instance, in Delgado [6,7] and Konstantopoulos
and Lin [17]. Here we extend the definition of this process
to a polyhedral cone, which is a particular case of convex
polytope. For that we adapt conveniently the definition of
a semimartingale reflecting Brownian motion on a convex
polytope given in Dai and Williams [3] among others.

Definition 1 (polyhedral cone) For any d ≥ 1, a d−dimen-
sional polyhedral cone S is defined in this way:

S
def= {

x ∈ R
d : 〈v�, x〉 ≥ 0 for all � = 1, . . . , d

}

= {
x ∈ R

d : V x ≥ 0
}

for a given set of vectors v1, . . . , vd in R
d , being V the

d × d matrix whose row vectors are v1, . . . , vd . The fact

that the cone is determined by the matrix is made explicit,
when convenient, by using the notation S(V ).

It is assumed that the interior of the cone is nonempty
and that the set {v1, . . . , vd} is minimal in the sense that
no proper subset defines it, that is, for any strict subset L ⊂
{1, . . . , d}, the set {x ∈ R

d : 〈v�, x〉 ≥ 0 for all � ∈ L} is
strictly larger than S(V ). This is equivalent to the assumption
that each of the boundary facets

F�
def= {

x ∈ S(V ) : 〈v�, x〉 = 0
}
, � = 1, . . . , d,

has dimension d − 1. Let ∂S = ∪d
�=1F� be the boundary of

the cone.
Associated to the cone S(V ) we can introduce the direc-

tions of constraint u(y) for any y on its boundary, which are
constant along each facet, by using a d × d matrix R whose
column vectors are denoted by u1, . . . , ud , with the restric-
tion that 〈v�, u�〉 > 0 for all � = 1, . . . , d, in the following

way: we can define I (y)
def= {i = 1, . . . , d : y ∈ Fi }. Then,

if I (y) = {�} for some �, u(y) is defined as u�. Otherwise,

u(y)
def=
⎧
⎨

⎩
ξ ∈ R

d : ξ =
∑

i∈I (y)
δi u

i , with some δi ≥ 0

and such that |ξ | = 1 } (1)

We will say that the cone S(V ) with associated matrix of
directions of constraint R is “in normal form” if rank(R) =
d and it holds that 〈v�, u�〉 = 1 for all � = 1, . . . , d, that is,
the diagonal entries of matrix V R are all equal to 1.

Definition 2 (rfBm on a polyhedral cone) Let S(V ) be
a d-dimensional polyhedral cone as in Definition 1, with
associated matrix of directions of constraint R, and in nor-
mal form. A reflected fractional Brownian motion on S(V )

associated with data (x, H, θ, Γ, R), where x ∈ S(V ),
H ∈ (0, 1), θ ∈ R

d and Γ is a d × d positive defi-
nite matrix, is a d−dimensional process W = {W (t) =
(W1(t), . . . , Wd(t))′, t ≥ 0} such that

(i) W has continuous paths and W (t) ∈ S(V ) for all t ≥ 0
a.s.,

(ii) W = X + R Y a.s., with X and Y two d-dimensional
processes, defined on the same probability space and
verifying:

(iii) X is a fBmwith associated data (x, H, θ, Γ ), that is, it
is a continuous Gaussian process starting from x , with
mean function E

(
X (t)

) = x + θ t for any t ≥ 0 (θ is
the drift vector), and with covariance function given by:

123



A packet-switched network with On/Off sources and a fair bandwidth sharing policy. . . 465

if t, s ≥ 0,

Cov
(
X (t), X (s)

)

= E
((

X (t) − (x + θ t)
)(
X (s) − (x + θs)

)T )

= ΓH (s, t)Γ,

where ΓH (s, t) = 1

2

(
t2H + s2H − |t − s|2H ) , and

(iv) Y has continuous and non-decreasing paths, and for
each � = 1, . . . , d, a.s., Y�(0) = 0 and Y�(t) =
t∫

0
1{W (s)∈F�} d Y�(s) for all t ≥ 0 (that is, Y� can only

increase when W is on the boundary facet F�).
If conditions (i), (ii) and (iv) are met, we say that the pair
(W, Y ) is a solution of the (multidimensional) Skorokhod
Problem associated to X on the cone S(V ) and with asso-
ciated matrix of directions of constraint R.

To get an idea, rfBm starts in the interior of the cone S
and behaves like a fBm being constrained to remain within
S in the following way: when the fBm process touches the
boundary ∂S, it is instantaneous “reflected” preventing its
exit from S. For each �, the �−th column vector of matrix R,
u�, gives the direction of the reflection on facet F�, and Y�

gives its intensity. On the intersection of two or more facets
(ridges and peaks), the direction of reflection is given by
a linear combination of the corresponding vectors u� of the
formgiven by (1). Two fundamental properties of fBm justify
the general interest in it from the modelling point of view:
fBm is a self-similar process and has long-range dependent
increments, which are positively correlated if 1/2 < H <

1.

Remark 1 As usual, we call the map π : X �→ W the
Skorokhod Map associated to the Skorokhod Problem intro-
duced in Definition 2. It is known that strong existence and
uniqueness of the solution of a Skorokhod Problem can be
established when the associated SkorokhodMap is Lipschitz
continuous on Cd (see for instance the discussion given in
the Introduction of Dupuis and Ramanan [10]). In the cou-
ple of papers Dupuis and Ramanan [10,11] it is shown that
the sufficient condition for Lipschitz continuity of the Sko-
rokhod Map given in Dupuis and Ishii [9] is accomplished,
in particular, for a class of Skorokhod problems which are
there referred as the generalized Harrison–Reimann class.
Indeed, Theorem 2.2 [11] ensures the Lipschitz continuity
of the Skorokhod Map associated to a Skorokhod Problem
in a d−dimensional polyhedral cone S(V ) with associated
matrix of directions of constraint R and in normal form,
if matrix V R verifies the following condition (named the
generalized Harrison–Reimann condition there) for a d × d
matrix Q:

HR The matrix obtained from Θ = Q − Id

by replacing its elements by their absolutevalues, has

spectral radius strictly less than 1.

We highlight that although it is not explicitly written in
the statement of Theorem 2.2 [11], there is assumed that the
diagonal entries of matrix V R are all equal to 1. Indeed, in
order to apply Theorem 2.1 [11] in the proof of Theorem
2.2 [11], it is used that for any �, 〈e�, R′ v�〉 = 1, where e�

denotes the unit vector in the �th coordinate direction; taking
into account that 〈e�, R′ v�〉 = 〈R e�, v�〉 = 〈u�, v�〉, we
obtain that necessarily 〈u�, v�〉 = 1. (Observe that notation
used here does not match that of Dupuis and Ramanan [11].)
Moreover, actually assumptionHR as stated in Theorem 2.2
[11] refers to the transpose matrix (V R)′ instead of V R, but
this makes no difference since the spectral radius of a matrix
coincides with that of its transpose.

We discuss briefly two special cases of particular interest:

Case (a) The positive orthantRd+. In this caseRd+ = S(V =
Id) and let R be any d × d matrix such that
rank(R) = d and all its diagonal entries are 1 (this
last requirement can be achieved by normalizing
the directions of constraint vectors u1, . . . , ud ).
Thus, the cone is in normal form, and if R verifies
assumptionHR, then strong existence and unique-
ness of the solution to any Skorokhod Problem on
R
d+ can be ensured. (This is the case previously

considered in Delgado [6–8].)
Case (b) A cone S(V ) with directions of constraint the unit

vectors in the coordinate directions, that is, with
R = Id . The cone is in normal form if V is such
that all its diagonal entries are equal to 1 (this
may be achieved through normalization of vectors
v1, . . . , vd ). If that happens andV verifies assump-
tion HR, then strong existence and uniqueness of
the solution to any Skorokhod Problem on S(V ) is
ensured. This is the particular situationwe consider
in this work.

3 The bandwidth sharing network model

3.1 Network structure

We consider a network with finitely many nodes labeled
{1, . . . , J }. There is also a finite set of routes labeled by
k ∈ K, where each route is interpreted as the non-empty sub-
set of nodes along which network traffic can be transferred.
Let K denote the cardinality of K. We assume J ≤ K . We
denote by j ∈ k if node j is used by route k. Each node
j has finite (bandwidth) capacity C j > 0, which is shared
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among all routes k such that j ∈ k. Let C = (C1, . . . , CJ )
′

and A be the J × K incidence matrix defined by A jk = 1
if j ∈ k and 0 otherwise. Note that in this model A cannot
have a column with all entries equal to zero. Hereinafter, we
will consider that matrix A satisfies the following condition:

LT For each j = 1, . . . , J, there exists k j ∈ K
such that A jk j = 1 and A�k j = 0 for all � �= j,

which can be interpreted as a local traffic condition under
which each node has at least one route that only uses that
node (see Assumption 5.1 [14]). Note thatLT implies the full
row rank J of matrix A. An example of networks verifying
this condition are the so-called linear networks, for which
K = J + 1, there is a common route that goes through all
nodes and gets served simultaneously at all of them, and
there are J crossing routes: route j going just through node
j , j = 1, . . . , J .
Assume that while being transferred, a flow takes simulta-

neous possessionof all nodes on its route, and its transmission
time is independent of that of all other flows. Packets wishing
to be transferred through route k, arrive at the network from
N i.i.d. On/Off external sources, independently of packet
arrivals on all other routes, each onewith its own 0/1−valued
jump process {U (n)

k (t), t ≥ 0}, n = 1, . . . , N , on a com-
mon complete probability space (Ω, F , P), and they are all
independent.U (n)

k (t) = 1means that at time t , the nth source
sending data to route k is On (and it is actually transmitting
data at a deterministic data generation or arrival rateαN

k > 0),

and U (n)
k (t) = 0 means that it is Off (that is, the nth source

is silent). We suppose that independently of k, the lengths of
the On-periods are i.i.d., those of the Off-periods are i.i.d.,
and the lengths of On- and Off-periods are independent of
each other.

Let f on and f off be the probability density functions
corresponding to the lengths of On- and Off-periods, respec-
tively, which are non-negative, and at least one of them is
heavy-tailed. Therefore, their (positive) expected values are

μon =
∫ +∞

0
u f on(u) du and

μoff =
∫ +∞

0
u f off(u) du.

Assume that as x → +∞,

⎧
⎪⎪⎨

⎪⎪⎩

∫ +∞

x
f on(u) du ∼ x−βon

Lon(x) and
∫ +∞

x
f off(u) du ∼ x−βoff

Loff(x),
(2)

where 1 < βon, βoff ≤ 2, βon ∧ βoff < 2 and Lon, Loff

are positive slowly varying functions at infinity such that

if βon = βoff , then limx→+∞ Lon(x)
Loff (x)

exists and belongs to

(0, +∞). Note that μon and μoff are finite (and positive)
while variances are not if the corresponding beta is < 2.
The K−dimensional (non-deterministic) aggregated cumu-
lative flow arrival process is denoted EN = {EN (t) =(
EN
1 (t), . . . , EN

K (t)
)′
, t ≥ 0}, with component processes

that are all independent and defined by

EN
k (t)

def= αN
k

∫ t

0

1

N

( N∑

n=1

U (n)
k (u)

)
du. (3)

Note that
∫ t
0

1
N

(∑N
n=1U

(n)
k (u)

)
du is the average amount of

time that a source of route k is On during the time interval
[0, t]. Let αN = (αN

1 , . . . , αN
K )′ and

λN
k

def= μon

μon + μoff αN
k , k = 1, . . . , K .

Then, vector λN = (λN
1 , . . . , λN

K )′ can be interpreted as the
effective arrival rate.

3.2 Bandwidth sharing policy

Howmight the capacitiesC = (C1, . . . , CJ )
′ be shared over

the routes K ?
A bandwidth sharing policy is a generalization of the

notion of processor sharing discipline from a single resource
to a network with several shared links. Bandwidth capac-
ity is allocated dynamically to the routes according to
the a weighted proportional fair bandwidth sharing policy
explained below.

Typically, the real-time capacity allocation takes the form
of a solution to an optimization problem, with the objective
function being a utility function (of the state and the allo-
cation), and the constraints enforcing the capacity limit on
the nodes. The bandwidth allocated to each route at time t ,
which is shared equally among all the flows on the route, is
given by a function Λ(·) = (Λ1(·), . . . , ΛK (·))′ applied to
the amount of flows on each route at this time, defined as fol-
lows:Λ(·) : R

K+ → R
K+ and if for n = (n1, . . . , nK )′ ∈ R

K+
we denote by K0(n) = {i ∈ K : ni = 0} and K+(n) = {i ∈
K : ni > 0}, Λ(·) is such that Λk(n) = 0 for any k ∈ K0(n)

and if K+(n) �= ∅, then (Λk(n))k∈K+(n) is the unique vector
(Λk)k∈K+(n) that solves the optimization problem

OPΛ

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

maximize
∑

k∈K+(n)

ηk nk logΛk

subject to
∑

k∈K+(n)

A jkΛk ≤ C j , 1 ≤ j ≤ J

over Λk ≥ 0 for any k ∈ K+(n),
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where {ηk, k ∈ K} is a fixed sequence of strictly positive
weights.

We summarize the properties of function Λ(·) in the fol-
lowing proposition (see Proposition 2.1 [14], which is proved
in Appendix A [16]).

Proposition 1 For each n ∈ R
K+ ,

(i) Λk(n) > 0 for each k ∈ K+(n),
(ii) Λ(� n) = Λ(n) for all � > 0,
(iii) Λk(·) is continuous on {n ∈ R

K+ : nk > 0} but may be
discontinuous on {n ∈ R

K+ : nk = 0},
(iv) if n �= 0, there is p = (p1, . . . , pJ )′ ∈ R

J+, depending

on n, such that for all k ∈ K+(n),
J∑

j=1
p j A jk > 0 and

Λk(n) = nk ηk∑J
j=1 p j A jk

, where the (Lagrange multipliers)

p1, . . . , pJ satisfy that for all j = 1, . . . , J,

p j
(
C j −

∑

k∈K+(n)

A jkΛk(n)
) = 0.

3.3 Stochastic processes description

Consider an increasing sequence of scale parameters {ri }+∞
i=1 ,

with ri ≥ 1, which converges to +∞; for ease the notation,
we shall simply write r instead of ri , but it is understood
that r increases to infinity through a sequence, and consider
a sequence of models indexed by (r, N ), with N being the
number of On/Off sources feeding each route, where the net-
work incidencematrix A and capacity vectorC , as well as the
distribution of the On/Off sources and the bandwidth shar-
ing policy weights {ηk, k ∈ K}, do not vary with (r, N ). We
append a superscript r,N to indicate the stochastic processes
[all defined on the probability space (Ω, F , P)] or parame-
ters in the (r, N )-model, when they are dependent on both r
and N . Thus, we have a flow arrival process Er,N , an arrival
rate αr,N > 0 and an effective arrival rate λr,N > 0.

For the (r, N )−model, each flow at route k requires an
i.i.d. service with mean 1

μ
r,N
k

> 0 before it depart from the

network; the actual holding time depends on the capacity
allocation, that is, 1

μ
r,N
k

can be thought of as the mean file size

and the fact that the bandwidth is shared equally among all the
flows on route k means that if currently the number of flows
in transfer across the K routes is n = (n1, . . . , nK )′ ∈ R

K+ ,

then the mean holding time of each flow is
(
μ
r,N
k

Λk (n)
nk

)−1

if nk > 0, that is, flow is tranferred at rate μ
r,N
k

Λk (n)
nk

until
there is a change in the network’s state, caused either by a
flow transfer being completed, or by a flow arrival occurring.

Let us denote μr,N = (μ
r,N
1 , . . . , μ

r,N
K )′ and Mr,N =

diag(μr,N )−1. Assume that limN→+∞ μr,N exists, does
not depend on r and is strictly positive; we denote it by
μ = (μ1, . . . , μK )′. Let M = diag(μ)−1. For each j we

introduce the node traffic intensity induced by elastic traffic
by

ρ
r,N
j

def=
∑

k : j∈k

λ
r,N
k

μ
r,N
k

(
i.e., ρr,N = A Mr,N λr,N

)
. (4)

Henceforth assume that ρr,N < C .
Let Zr,N

k (t) be the (random) amount of flows on route k

at time t , and Zr,N (t) = (Zr,N
1 (t), . . . , Zr,N

K (t))′ ∈ R
K+ . For

simplicity we assume Zr,N (0) = 0. Then, the bandwidth
allocated to route k at time t , which is shared equally among
all the flows on this route, is Λk(Zr,N (t)). Also define a J -
dimensional (average) workload process by

Wr,N def= A Mr,N Zr,N , (5)

that is, for any j = 1, . . . , J and t > 0, Wr,N
j (t) =

∑

k : j∈k
1

μ
r,N
k

Zr,N
k (t), and we introduce the allocated band-

width T r,N = {(T r,N
1 (t), . . . , T r,N

K (t))′, t ≥ 0}, defined
by: T r,N

k (t)
def= ∫ t

0 Λk(Zr,N (s)) ds, which is the cumula-
tive amount of bandwidth allocated to route k up to time
t . Then, we can introduce the unused bandwidth capacity
process Y r,N = {(Yr,N

1 (t), . . . , Yr,N
J (t))′, t ≥ 0}, which is

defined by:

Yr,N
j (t)

def= C j t −
∑

k : j∈k
T r,N
k (t) (6)

(In matrix form: Yr,N = C e − A T r,N ).

3.4 Scaling

In order to define the scaled processes associated with the
(r, N )−model we have to introduce some previous notation
by following Taqqu et al. [26] (see also Delgado [6]). Set

aon = Γ (2−βon)
(βon−1) and aoff = Γ (2−βoff )

(βoff−1)
, where βon and βoff

are defined by (2). The normalization factors used below

depend on b, defined by b
def= limt→+∞ t (β

off−βon) Lon(t)
Loff (t)

,

which exists although it could be infinite. If 0 < b < +∞
(implying βon = βoff and b = lim

t→+∞
Lon(t)

Loff(t)
), set β =

βon = βoff , L = Loff and

σ 2 def=
2
((

μoff
)2

aon b + (μon
)2

aoff
)

(
μon + μoff

)3
Γ
(
4 − β

) .

If, on the other hand, b = +∞ (βoff > βon), set L =
Lon, β = βon and
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σ 2 def= 2
(
μoff

)2
aon

(
μon + μoff

)3
Γ
(
4 − β

) .

If b = 0 (βoff < βon), set L = Loff , β = βoff and

σ 2 def= 2
(
μon
)2
aoff

(
μon + μoff

)3
Γ
(
4 − β

) .

In either case, β ∈ (1, 2). Let us define H
def= 3−β

2 . There-
fore, H ∈ ( 12 , 1).

Now we can introduce the scaled processes associated
with the (r, N )−model. We use a hat to denote them.

Êr,N (t)
def= √

N
Er,N (r t) − λr,N r t

r H L1/2(r)
, (7a)

Ẑ r,N (t)
def= √

N
Zr,N (r t)

r H L1/2(r)
, (7b)

Ŵ r,N (t)
def= √

N
Wr,N (r t)

r H L1/2(r)
, (7c)

Ŷ r,N (t)
def= √

N
Yr,N (r t)

r H L1/2(r)
. (7d)

Lemma 1 Let c1
def= 1

2 |M| > 0 and c2
def= 2 |M−1| > 0.

Then, for any fixed r ≥ 1 there exists n0 = n0(r) ≥ 1 such
that for any T > 0 and any N ≥ n0,

c1
∣∣∣∣Ŵ r,N (·)∣∣∣∣T ≤ ∣∣∣∣Ẑ r,N (·)∣∣∣∣T ≤ c2

∣∣∣∣Ŵ r,N (·)∣∣∣∣T . (8)

Proof Since we assume that limN→+∞ μr,N = μ > 0, for
any r ≥ 1 there exists n0 = n0(r) such that for any k ∈ K
and N ≥ n0, μ

r,N
k ≤ 2μk and 1

μ
r,N
k

≤ 2 1
μk

. First note that

by (5), (7c) and (7b), Ŵ r,N = A Mr,N Ẑr,N . Then, for any
T > 0, N ≥ n0,

∣∣∣∣Ŵ r,N (·)∣∣∣∣T ≤ 2 max{ 1

μk
k ∈ K}∣∣∣∣Ẑ r,N (·)∣∣∣∣T

= 2 |M |∣∣∣∣Ẑ r,N (·)∣∣∣∣T

and we obtain the first inequality in (8).
For the second inequality we note that for any k ∈ K,

there exists at least one index jk such that A jkk = 1, that
is, such that jk ∈ k, and taking into account that for any
j = 1, . . . , J, Ŵ r,N

j = ∑

� : j∈�

1
μ
r,N
�

Ẑ r,N
� , if we take j = jk ,

we deduce that

Ŵ r,N
jk

≥ 1

μ
r,N
k

Ẑr,N
k .

Then,

Ẑ r,N
k ≤ μ

r,N
k Ŵ r,N

jk
≤ 2 max

{
μk, k ∈ K} Ŵ r,N

jk

= 2
∣
∣M−1

∣
∣ Ŵ r,N

jk

and in this way we obtain the second inequality in (8). ��

Next proposition shows how using simple algebraic
manipulations, a decomposition of process Ŵ r,N similar to
that given by formula (17) [6], which will be used in the
proof of Theorem 1, can be obtained.

Proposition 2 For any r, N ≥ 1, we can write

Ŵ r,N = X̂r,N + Ŷ r,N , (9)

where

X̂r,N def= A Mr,N Êr,N +
√
N

rH L1/2(r)

(
ρr,N − C

)
r e. (10)

Moreover, for any j = 1, . . . , J,

Ŷ r,N
j (t) =

√
N

rH L1/2(r)

∫ r t

0

(
C j −

∑

k∈K
A jkΛk

(
Zr,N (s)

))
ds

(11)

and verifies that Ŷ r,N
j (0) = 0, and its paths are continuous

and non-decreasing.

Proof By definition, for any k ∈ K, t > 0,

Zr,N
k (t) = Er,N

k (t) − μ
r,N
k T r,N

k (t) (12)

[that is, Zr,N = Er,N − (Mr,N )−1 T r,N ]. Indeed, the trans-

ferred flows up to time t are
t∫

0
Dr,N
k (s) ds, where

Dr,N
k (s) = μ

r,N
k

Λk
(
Zr,N (s)

)

Zr,N
k (s)

Zr,N
k (s)

= μ
r,N
k Λk

(
Zr,N (s)

)

if Zr,N
k (s) > 0 and 0 otherwise. Therefore, by (7c), (5) and

(12),

Ŵ r,N (t) = √
N

Wr,N (r t)

r H L1/2(r)
=

√
N

rH L1/2(r)
AMr,N Zr,N (r t)

=
√
N

rH L1/2(r)

(
A Mr,N Er,N (r t) − A T r,N (r t)

)
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=
√
N

rH L1/2(r)

(
A Mr,N (Er,N (r t) − λr,N r t)

+ A Mr,N λr,N r t − A T r,N (r t)
)

= A Mr,N Êr,N (t) +
√
N

rH L1/2(r)
ρr,N r t

−
√
N

rH L1/2(r)
A T r,N (r t)

= A Mr,N Êr,N (t) +
√
N

rH L1/2(r)

(
ρr,N − C

)
r t

+
√
N

rH L1/2(r)

(
C e − A T r,N )(r t)

= AMr,N Êr,N (t) +
√
N

rH L1/2(r)

(
ρr,N − C

)
r t

+ Ŷ r,N (t),

which uses (7a), (4), (6) and (7d). The proof ends considering
that for any j , the paths of Ŷ r,N

j , which have the expression
(11), verify that start fromzero and are continuous.Moreover,
these paths are non-decreasing since the integrand in (11) is
nonnegative by the restriction of the optimization problem
OPΛ. ��

3.5 Heavy-traffic condition

Our main result will be proved under heavy-traffic, which
establishes that the total load imposed on each node (that
is, its traffic intensity) tends to be equal to its capacity. This
node’s capacity saturation assumption can be splitted into
two parts, namely conditions HTa and HTb:

HTa lim
N→+∞

√
N (ρr,N − C) = −γ̂ r

for some γ̂ r ∈ R
J+, and lim

r→+∞ γ̂ r exists in R
J+.

HTb γ ∈ R
J+ exists such that lim

r→+∞
r1−H

L1/2(r)
γ̂ r = γ.

Formulation of the heavy-traffic assumption here is for-
mally the same as in Delgado [8], where it was motivated
through thin control, which applies to systems with process-
ing rates of the formμ

r,N
j = λ

r,N
j ( 1

C j
+ 1√

N
γ̂ r
j ) (seeRemark

5 [8] for the particular case C j = 1, and references therein).

Remark 2 Note that from HTa, (4) and the assumption that

limN→+∞ Mr,N = M , we deduce the existence of λ
def=

limN→+∞ λr,N , which is independent of r and verifies that
C = A M λ. Here and subsequently assume that λ > 0.
Moreover, since λr,N = μon

μon+μoff αr,N , the (independent of
r ) limit of the data generation rate as N → +∞ needed to
achieve the maximum capacity of the network is

α = lim
N→+∞ αr,N = μon + μoff

μon λ > 0

with λ such that C = A M λ.

The following result shows the convergence of the scaled
flow arrival process Êr,N , first as N → +∞ and then as
r → +∞ to a multidimensional fractional Brownian motion
process (see Definition 1 [6]). As a consequence and assum-
ing heavy-traffic, we obtain the convergence of process X̂r,N

defined by (10), which is a component of the decomposition
(9) of the scaled workload process Ŵ r,N .

Proposition 3 If there exists lim
r→+∞ lim

N→+∞ αr,N = α and

α > 0, then there exist the limits

Êr = D − lim
N→+∞Êr,N and D − lim

r→+∞Êr = BH ,

where BH is a K−dimensional fractional Brownian motion
with associated data (x = 0, H, θ = 0, σ 2 diag(α)2),
where H and σ 2 were introduced in Sect. 3.4.

Moreover, assuming that HTa holds, we have that there
exists the limit

X̂r = D − lim
N→+∞X̂r,N (13)

= A M Êr − r1−H

L1/2(r)
γ̂ r e,

which has continuous paths. In addition, ifHTb holds, there
also exists the limit

X = D − lim
r→+∞X̂r

= A M BH − γ e,

which is a J−dimensional fractional Brownian motion
process with associated data (x = 0, H, θ = −γ, Γ ),
being

Γ
def= σ 2 A M diag(α)2 M A′. (14)

Proof Fixed r, N ≥ 1, for any k ∈ K we have by (7a) and
(3) that Êr,N

k (t) can be written as

α
r,N
k

r H L1/2(r)

1√
N

N∑

n=1

(∫ r t

0
U (n)
k (u)du − μon

μon + μoff r t

)
,

and then using Theorem 1 [26] and Theorem 7.2.5 [29],
jointly with the joint convergence for independent random
elements (see Theorem 11.4.4 [29]), we have that in DK

there exists the limit

Êr = D − lim
N→+∞Êr,N , (15)
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which has paths in CK , and in CK there exists the limit

D − lim
r→+∞Êr = BH . (16)

Then, by (10), (15), HTa and the continuous mapping the-
orem (see Corollary 1 of Theorem 5.1 [1]), we deduce that
X̂r = D − lim

N→+∞X̂r,N exists and obtain (13).

If we also assume condition HTb, then by (16) the limit
X = D − limr→+∞ X̂r exists and X = A M BH − γ e,
which is a J−dimensional fBm with associated data (x =
0, H, θ = −γ, Γ ), where Γ is the matrix (14). ��

3.6 Fluid model solution and invariant manifold

From Sect. 4 [14] (see also Sect. 5 [16]) we adapt the follow-
ing two definitions that are used to introduce the polyhedral
cone where the limit of the scaled workload process lives, as
will be proved in Sect. 4.

Definition 3 (Fluid model solution) A fluid model solution
is an absolutely continuous function

z : [0, +∞) −→ R
K+

such that at each regular point t > 0 for z, we have that for
each k ∈ K,

d

dt
zk(t) =

{
λk − μk Λk(z(t)) if zk(t) > 0,

0 if zk(t) = 0,

and for each j = 1, . . . , J ,

∑

k∈K+
(
z(t)
)
A jk Λk

(
z(t)
)+

∑

k∈K0

(
z(t)
)
A jk

λk

μk
≤ C j .

For an intuitive idea we refer the reader to the comments
following Definition 5.1 [16].

Definition 4 (Invariant manifold) A state z0 ∈ R
K+ is called

invariant if there exist a fluid model solution z(·) and t0 ≥ 0
such that z(t) = z0 for all t ≥ t0. Let M denote the set
of invariant states of the network. We call M the invariant
manifold.

For each z ∈ R
K+ , we defineω(z) = (ω1(z), . . . , ωJ (z))′,

to be given by

ω j (z)
def=
∑

k∈K
A jk

zk
μk

, for all j = 1, . . . , J.

That is,ω(z) = A M z.We callω(z) theworkload associated
with z.

For each ω ∈ R
J+, define Δ(ω) to be the unique value

z ∈ R
K+ that solves the following optimization problem:

OPΔ

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

minimize F(z)
def= 1

2

∑

k∈K
ηk

z2k
λk

subject to
∑

k∈K
A jk

zk
μk

≥ ω j , 1 ≤ j ≤ J

(that is , A M z ≥ ω),

over zk ≥ 0, k ∈ K,

Function F was introduced in Bonald and Massoulié [2] as
a Lyapunov function for the fluid model solution. Note that
as we assume λ > 0, function F is well defined. Since A has
full row rank and its only entries are zeros and ones, for each
ω ∈ R

J+ the feasible set of the optimization problem {z ∈
R

K+ : ∑k∈K A jk
zk
μk

≥ ω j ∀ j = 1, . . . , J } is nonempty,

and then since F is nonnegative inRK+ and F(z) −→ +∞ as
|z| → +∞, OPΔ has an optimal solution, which is unique
by the strict convexity of F (see Remark 5.2 [16]).

As stated in Proposition 4.1 [14] (see also Kelly and
Williams [16]), function Δ(·) defined in this way has two
main properties: it is continuous and verifies that Δ(cω) =
cΔ(ω) for each ω ∈ R

J+ and c > 0. Moreover Δ(0) = 0,
as can be readily seen. Theorem 4.1 [14] gives some charac-
terizations of the invariant states which we reproduce in the
following lemma, for the sake of completeness.

Lemma 2 The following are equivalent for z ∈ R
K+ :

(i) z ∈ M ;
(ii) Λk(z) = λk

μk
for all k ∈ K+(z) ;

(iii) there exists some q ∈ R
J+ such that

zk = λk

μk

1

ηk

J∑

j=1

q j A jk for all k ∈ K ;

(iv) z = Δ(ω(z)).

In Sect. 5 we will use the following result, which is anal-
ogous to Proposition 4.2 [14]. We reproduce it, as well as its
proof, for convenience of the reader:

Lemma 3 For each ω ∈ R
J+, Δ(ω) ∈ M (that is, Δ(ω) is

an invariant state).

Proof Fixed ω ∈ R
J+, Δ(ω) is the unique solution to OPΔ.

Then, by Lemma 6.4 [16], there exists q ∈ R
J+ such that

Δ(ω)k = λk
μk

1
ηk

∑J
j=1 q j A jk for all k ∈ K. By Lemma 2,

this is equivalent to say that Δ(ω) ∈ M. ��
From Lemma 2 we can write the invariant manifold M

as:
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⎧
⎨

⎩
z ∈ R

K+ : ∃q ∈ R
J+ and zk = λk

μk

1

ηk

J∑

j=1

q j A jk, ∀k∈K
⎫
⎬

⎭
,

and for any j , let us introduce

M j =
{
z ∈ R

K+ : ∃q ∈ R
J+ with q j = 0 and

zk = λk

μk

1

ηk

J∑

j=1

q j A jk, ∀k ∈ K
⎫
⎬

⎭
.

Let us define

W def= A M M = {A M z : z ∈ M}
. (17)

Then, W is a J -dimensional polyhedral cone as introduced
in Definition 1, since it can be expressed in the form

W = {A B A′ q : q ∈ R
J+
}
,

with B = diag(b1, . . . , bK ) and bk = λk
μ2
k ηk

. Actually, as

matrix A has full row rank and B is diagonal with strictly
positive diagonal entries, A B A′ is a linear bijection between
R

J+ and W , and it follows that

W = S(V ) (18)

with V being a J × J matrix whose diagonal entries are
taken to be all equal to 1, obtained from matrix (A B A′)−1

by normalizing its row vectors.
Moreover, the j th facet ofW is given by

F j = A M M j = {A M z : z ∈ M j
}
,

and if we denote by n j the vector of the j th row of matrix
(A B A′)−1, then

F j = {ω ∈ W : 〈n j , ω〉 = 0
}
. (19)

4 The heavy-traffic limit

4.1 The invariance principle

A key ingredient in the proof of our heavy-traffic limit result
is what is known as the Invariance Principle. This result
is stated and proved for Semimartingale reflecting Brown-
ian motions (SRBMs) living in the closures of domains with
piecewise smooth boundaries in Theorem 4.3 [15]), a crucial
ingredient in its proof being an oscillation inequality for solu-
tions of perturbed Skorokhod problems (Theorem 4.1 [15]).
However, this important result does not depend, actually, on

the specific law of the processes, as can be checked follow-
ing the steps of the proof. This enables it, in particular, to be
applied to reflected fractional Brownian motion processes.
For convenience of the reader we present below a simplified
version of this result.

Lemma 4 (Version of Theorem 4.3 [15]) Let d ≥ 1. Given
a d−dimensional polyhedral cone S(V ) in normal form
and associated matrix of directions of constraint Id , assume
that matrix V verifies condition HR in Sect. 2, and that
there exists a sequence of strictly positive constants {δn}n
such that for each positive integer n, there are processes
Wn, W̃ n, Xn, ϕn, Yn defined on some probability space
(Ωn, Fn, Pn) and having paths in Dd , such that
(i) Pn−a.s., Wn = W̃ n + ϕn, W̃ n(0) = ϕn(0) = 0 and
d(W̃ n(t), S(V )) ≤ δn for all t ≥ 0,
(ii) Pn−a.s., Wn = Xn + Yn,

(iii) {Xn}n is C−tight,
(iv) Yn has non-decreasing paths, and for each j =
1, . . . , d, Pn−a.s., Y n

j (0) = 0 and

Y n
j (t) =

t∫

0

1{
d(W̃ n(s),F j )≤δn

} d Y n
j (s),

where F j denotes the j th facet of the cone S(V ),
(v) ϕn → 0 in probability, and δn → 0, as n → +∞.

Then, the sequence {(Wn, Xn, Yn)}n is C−tight, and any
weak limit point of this sequence, of the form (W, X, Y ),
has continuous paths almost surely, and additionally verifies
conditions (i), (ii) and (iv) of Definition 2 (with W (0) =
X (0) = Y (0) = 0 and R = Id ), that is, (W, Y ) is a solution
of the Skorokhod Problem associated to X on the cone S(V )

and with associated matrix of directions of constraints Id .
If, in addition,

(vi) {Xn}n converges in distribution to a d−dimensional
fBm process with associated data (x, H, θ, Γ ),
then W is a rfBm process on S(V ) with associated data
(x, H, θ, Γ, Id).

Brief justification of Lemma 4: First, note that we use The-
orem 4.3 [15] in a particular situation in which the domain G
is a cone S(V ) = ∩d

�=1S� with S� = {x ∈ R
d : 〈v�, x〉 ≥

0}, with directions of constraint the unit vectors in the coordi-
nate directions e1, . . . , ed . In Assumption 4.1 [16], we take
βn ≡ 0 and for any i = 1, . . . , d, γ i,n(y, x) = γ i (x) = ei .

The proof of Theorem 4.3 [15] does not uses any spe-
cific property of the Brownian motion process. Indeed, the
C−tightness of sequence {Xn}n , which is assumption (iii),
is a consequence of (vi), and {(Wn, Xn, Yn)}n inherits
C−tightness from it as showed in Theorem 4.2 [15]. Let
(W, X, Y ) be a (weak) limit point of this sequence. Then, a
subsequence {(Wnk , Xnk , Ynk )}k exists such that

D − lim
k→+∞

(
Wnk , Xnk , Ynk

) = (W, X, Y
)
.
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Then, the Skorokhod representation theorem (Theorem 3.1.8
[12]) is used to replace the above sequence of processes by
one that is term-by-term equivalent in distribution to the
original one and that a.s. converges uniformly on compact
intervals. With this simplification, it is seen that the limit
triplet (W, X, Y ) inherits properties (i), (ii) and (iv) of Def-
inition 2.

Now, instead of use hypothesis (viii) of Theorem 4.3
[15] in order to ensure that all (weak) limit points of
{(Wn, Xn, Yn)}n have the same law, as done in the proof of
this result, we use that by assumption HR on matrix V , the
law of the pair (W, Y ) is unique (see Remark 1), which gives
the desired result. Combining this uniqueness with tightness,
it follows that the whole sequence {(Wn, Xn, Yn)}n con-
verges in distribution to a triplet (W, X, Y ) which satisfies
conditions (i), (ii) and (iv) of Definition 2 (with W (0) =
X (0) = Y (0) = 0 and R = Id ) and, moreover, that if condi-
tion (vi) is satisfied, then W is a rfBm process on S(V ) with
associated data (x, H, θ, Γ, Id). �

4.2 The heavy-traffi limit results

Before stating our main result, the heavy-traffic limit, which
has been split into two theorems, we introduce a key assump-
tion, that is a form of state space collapse since it expresses
the relationship between the scaled workload and flow
count processes through the deterministic lifting operator Δ

obtained by solving the optimization problem OPΔ, in this
way: for any r ≥ 1,

SSC P− lim
N→+∞

(
Ẑ r,N − Δ

(
Ŵ r,N )

)
= 0.

InTheorem1belowweprove that in the heavy-traffic envi-
ronment, concretized by assumption HTa, condition SSC is
not only sufficient, but also necessary for the existence of the
limits of the scaled workload and flow count processes, when
N → +∞, denoted by Ŵ r and Ẑ r , respectively.

Theorem 1 Assume that HTa holds, and that matrix V in
(18) verifies assumption HR (Sect. 2). Then, condition SSC
is necessary and sufficient for the existence of the limits

Ŵ r = D − lim
N→+∞Ŵ r,N and Ẑr = D − lim

N→+∞Ẑ r,N

and, if the limits exist, Ẑ r = Δ(Ŵ r ) and for any t > 0,
Ẑ r (t) ∈ M or, equivalently, Ŵ (t) ∈ W = S(V ), a.s.

Proof Step 1: Sufficiency.

Let us introduce notations γ̂ r,N (t)
def= −√

N (ρr,N − C)t

and ε̂r,N (t)
def= Ẑ r,N (t)−Δ(Ŵ r,N (t)). We first mention that

by Proposition 3 and hypotheses HTa and SSC, we actually
have that for any r ≥ 1 there exists

D − lim
N→+∞

(
Êr,N , X̂r,N , γ̂ r,N , ε̂r,N

) = (Êr , X̂r , γ̂ r , 0
)
,

where Êr and X̂r are processes with continuous paths related
by means of expression (13).

We proceed now to show the corresponding convergence
for processes Ŵ r,N and Ŷ r,N . For that we use (9) and hypoth-
esis HR on matrix V to apply the Invariance Principle in
domains with piecewise smooth boundaries (Theorem 4.3
[15]) in the version given by Lemma 4, with ϕn = ξ̂ r,N and
using that for any j = 1, . . . , J , r ≥ 1, t > 0 and N big
enough, Pr,N − a.s.

Ŷ r,N
j (t) =

∫ t

0
1{

d(W̃ r,N (s),F j )≤δr,N
}dŶ r,N

j (s) (20)

for a sequence of positive numbers δr,N → 0 as N → +∞
and a sequence of probability measures Pr,N ⇒ P as
N → +∞, where W̃ r,N and ξ̂ r,N are introduced in (28),
with ξ̂ r,N (0) = 0. Indeed, (20) is proved in Corollary 1 (Sect.
5), under the MSSC assumption, which is implied by SSC.
Actually, these two conditions are equivalent under HTa, as
shown in Proposition 4 (Sect. 5), from which it follows that
P− limN→+∞ ξ̂ r,N = 0, and for any t > 0 a.s. W̃ r,N (t) ∈ W
is shown in its proof.

Then, sequence {(Ŵ r,N , X̂r,N , Ŷ r,N )}N isC−tight (inher-
its tightness from {X̂r,N }N ), and in D3J there exists

D − lim
N→+∞

(
Ŵ r,N , X̂r,N , Ŷ r,N ) = (Ŵ r , X̂r , Ŷ r )

and the limit satisfies conditions (i), (ii) and (iv) of Definition
2 on the cone S(V ) with R = IJ . That is, (Ŵ r , Ŷ r ) is a
solution of the Skorokhod Problem associated to X̂r on the
cone S(V )with associatedmatrix of directions of constraints
IJ . Then,

Ŵ r = X̂r + Ŷ r (21)

and Ŷ r has continuous and non-decreasing paths, starting
from zero, and

Ŷ r
j (t) =

∫ t

0
1{

Ŵ r (s)∈F j

} dŶ r
j (s). (22)

Taking into account that Ẑ r,N = ε̂r,N + Δ(Ŵ r,N ), SSC and
the continuous mapping theorem, the existence of

Ẑ r = D − lim
N→+∞Ẑ r,N , with Ẑ r = Δ

(
Ŵ r ), (23)

follows from

Ẑ r,N − Δ
(
Ŵ r ) = ε̂r,N +

(
Δ
(
Ŵ r,N )− Δ

(
Ŵ r )

)
,
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since Δ(·) is a continuous function. Finally, by (23) we have
that for any t > 0, Ẑ r (t) = Δ(Ŵ r (t)) = Δ(A M Ẑr (t)) =
Δ(ω(Ẑ r (t))) a.s., which by Lemma 2 is equivalent to writ-
ing Ẑ r (t) ∈ M a.s., and by definition (17) this in turn is
equivalent to Ŵ r (t) ∈ W = S(V ) a.s.
Step 2: Necessity.

Note that for any fixed r ≥ 1, D − lim
N→+∞ ε̂r,N = 0

by the continuous mapping theorem and the fact that by
hypotheses, there exist D − limN→+∞ Ẑ r,N = Ẑ r and
D − limN→+∞ Ŵ r,N = Ŵ r , and Ẑ r = Δ(Ŵ r ). Then,
assumption SSC follows if we prove tightness of sequence
{ε̂r,N }N . First, we have that for any T > 0,

||ε̂r,N (·)||T = ||Ẑ r,N (·) − Δ(Ŵ r,N )(·)||T
≤ ||Ẑ r,N (·)||T + ||Δ(Ŵ r,N )(·)||T , (24)

and by Lemma 1, n0 ≥ 1 exist such that ||Ẑ r,N (·)||T ≤
c2 ||Ŵ r,N (·)||T for any N ≥ n0. Besides, by (9) and (13) we
have that D − limN→+∞ Ŷ r,N = Ŷ r exists and

Ŵ r = A M ˆ̂Er − r1−H

L1/2(r)
γ̂ r e + Ŷ r ,

and hence Ŵ r has continuous paths. Then, for any ε > 0 a
positive constant K ′

ε > 0 exists such that for N big enough,

P
(

||Ẑ r,N (·)||T ≤ K ′
ε

)
≥ 1 − ε

2
. (25)

Note that the existence of Êr and X̂r , which was shown
in Proposition 3, does not require hypothesis SSC. Analo-
gously, taking into account that function Δ(·) is continuous,
we have that a positive constant K ′′

ε > 0 exists such that for
N big enough,

P

(
||Δ(Ŵ r,N )(·)||T ≤ K ′′

ε

)
≥ 1 − ε

2
. (26)

Let Kε
def= K ′

ε + K ′′
ε . Then, by (24), (25) and (26),

P
(
||ε̂r,N (·)||T > Kε

)
≤ P

(
||Ẑ r,N (·)||T > K ′

ε

)

+ P
(||Δ(Ŵ r,N )(·)||T > K ′′

ε

) ≤ ε

for N big enough, that is, P
(||ε̂r,N (·)||T ≤ Kε

) ≥ 1 −
ε, which proves the tightness of {ε̂r,N }N and finishes the
proof. ��
Remark 3 In Theorem 2 below quantity H plays the role
of the Hurst parameter of the reflected fractional Brown-
ian motion process (rfBm), to which the scaled workload
process converges. Note that β ∈ (1, 2) implies H ∈ ( 12 , 1).
In particular, H > 1

2 (the condition on the Hurst parameter

corresponding to the long-range dependence behavior of the
rfBmprocess) is due to the fact thatβ < 2, that is, that theOn-
and/or Off-period lengths (at least one of them) have infinite
variance (heavy tails). As mentioned in Taqqu et al. [26], if
both period lengths were light-tailed (with finite variances),
then βon = βoff = β = 2 and H = 1

2 , which would corre-
spond to the case of the ordinary Brownian motion process,
whose increments are independent.

Theorem 2 Under the assumptions of Theorem 1, suppose
in addition that HTb and SSC hold. Then, the following
conditions are fulfilled:

(i) W = D− lim
r→+∞ Ŵ r , X = D− lim

r→+∞
ˆ̂Xr and

Y = D− lim
r→+∞ Ŷ r exist,

(ii) W = X + Y and it is a rfBm on the polyhedral cone
W = S(V ) with associated data

(x = 0, H, θ = −γ, Γ, IJ ),

withΓ = σ 2 A M diag(α)2 M A′, and H and σ 2 introduced
in Sect. 3.4, and
(iii) Z = D− lim

r→+∞ Ẑ r also exists, and Z = Δ(W ).

Proof By (13), (21) and (22) we have that

X̂r (t) = A M Êr (t) − r1−H

L1/2(r)
γ̂ r t, Ŵ r = X̂r + Ŷ r ,

Ŷ r
j (t) =

∫ t

0
1{Ŵ r (s)∈F j } dŶ

r
j (s),

that is, (Ŵ r , Ŷ r ) is the solution of the Skorokhod problem
associated to X̂r on the cone W = S(V ) and with associ-
ated matrix of directions of constraints IJ (see Definition 2).
Moreover by Proposition 3 it follows D− lim

r→+∞ Êr = BH

and

X = D− lim
r→+∞X̂r = A M BH − γ e

byHTb, which is a J−dimensional fBm process. Therefore,
we can apply the Invariance Principle of Theorem 4.3 [15]
again in the version of Lemma 4, to processes Ŵ r , X̂r and
Ŷ r , taking into account that V verifies assumption HR and
that

D− lim
r→+∞ X̂r = X ,

with ϕr = δr ≡ 0, obtaining that
{(
Ŵ r , X̂r , Ŷ r

)}
r inherits

tightness from sequence
{
X̂r
}
r and consequently,

D− lim
r→+∞

(
Ŵ r , X̂r , Ŷ r

)
= (W, X, Y

)
exists,
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where W = X + Y , and conditions of Definition 2 are
satisfied. Hence W is a J−dimensional rfBm on the sim-
ple polyhedral cone W = S(V ) with associated data (x =
0, H, θ = −γ, Γ, IJ ), and (i) and (ii) are proved.

Finally, we deduce (iii) from (23). Indeed, Ẑ r = Δ(Ŵ r )

and D− lim
r→+∞ Δ(Ŵ r ) = Δ(W ) by the continuity of func-

tion Δ . ��

4.3 An example

For easy viewing of these mathematical results, consider the
following illustrative example of a networkwith J = 2, K =
3 and A =

(
1 0 1
0 1 1

)
, which verifies LT. Indeed, this net-

work is the example of linear network depicted in Fig. 1, in
which each resource has a route that passes only through that
resource and there is also a route (route 3) that passes through
both resources. This example was introduced in [14], from
which we reproduce some elements of interpretation.

In this case,

A B A′ =
(
b1 + b3 b3

b3 b2 + b3

)
,

(A B A′)−1 = 1

b1b2 + b1b3 + b2b3

(
b2 + b3 −b3

−b3 b1 + b3

)

and V =
(

1 − b3
b2+b3

− b3
b1+b3

1

)

, which verifies HR if and

only if the spectral radius ofmatrix

(
0 b3

b2+b3
b3

b1+b3
0

)

is strictly

less than 1, but this can be checked directly since b23 < (b1+
b3) (b2 + b3).

The workload cone in this example is the polyhedral cone
in R

2+ W = A M M = {A M z : z ∈ M}. Taking into
account that

M = {z = (z1, z2, z3)
′ ∈ R

3+ : ∃q = (q1, q2) ∈ R
2+ and

z1 = b1q1, z2 = b2q2, z3 = b3(q1 + q2)
}

Fig. 1 A linear network with two resources and three routes

Fig. 2 The workload cone for the linear network with two resources
and three routes

we see that the cone has the following representation:

W = {ω = (ω1, ω2)
′ ∈ R

2+ : ∃q = (q1, q2) ∈ R
2+ and

ω1=(b1 + b3)q1 + b3q2, ω2=b3q1 + (b2 + b3)q2
}

=
{
ω = (ω1, ω2)

′ ∈ R
2+ : ω1 ≥ b3

b2 + b3
ω2,

ω2 ≥ b3
b1 + b3

ω1

}

and the two boundary facets of the cone are:

F1 =
{
ω = (ω1, ω2)

′ ∈ W : ω1 = b3
b2 + b3

ω2

}
,

F2 =
{
ω = (ω1, ω2)

′ ∈ W : ω2 = b3
b1 + b3

ω1

}

(see Fig. 2). On the other hand, the lifting map Δ is a lin-
ear map on W given by: if ω = (ω1, ω2)

′ ∈ W , Δ(ω) =
(z1, z2, z3)′ ∈ R

3+ with

z1 = b1
b1b2 + b1b3 + b2b3

(
(b2 + b3)ω1 − b3ω2

)

z2 = b2
b1b2 + b1b3 + b2b3

(
(b1 + b3)ω2 − b3ω1

)

z3 = b3
b1b2 + b1b3 + b2b3

(b2ω1 + b1ω2).

As a consequence, points (ω1, ω2)
′ on the boundary facets

F1 or F2 are mapped respectively to points

(
0, b2 ω2,

b3
b2 + b3

ω2

)′
and

(
b1 ω1, 0,

b3
b1 + b3

ω1

)′
.

(27)

Roughly speaking we can say that condition SSC estab-
lishes that in the limit, not only the workload process is a
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function of the amount of flows on each route, as is deduced
from definition (5), which in this example results in the con-
ditions

Wr
1 (t) = Zr

1(t)

μ1
+ Zr

3(t)

μ3
and Wr

2 (t) = Zr
2(t)

μ2
+ Zr

3(t)

μ3
,

but that with the knowledge of the workload process at each
node we can retrieve all the information about the amount of
flows on each of the routes by means of the lifting map Δ in
this way:

Zr
1(t) = b1

b1b2 + b1b3 + b2b3

(
(b2 + b3)W

r
1 (t)−b3 W

r
2 (t)

)

Zr
2(t) = b2

b1b2 + b1b3 + b2b3

(
(b1+b3)W

r
2 (t)−b3 W

r
1 (t)

)

Zr
3(t) = b3

b1b2 + b1b3 + b2b3
(b2 W

r
1 (t) + b1 W

r
2 (t)).

This condition plays a key role in the proof of the heavy
traffic limit. Indeed, by assuming conditions HTa and HR
hold, SSC is sufficient and, what is more important, also
necessary for the existence of the limits in conclusion of
Theorem 1, that is, it cannot be weakened nor dropped.

The conclusion of Theorem 2, which is our heavy traf-
fic limit result, applies provided assumptions of Theorem 1
plus conditionHTb are satisfied. If moreover SSC holds, we
obtain that the limiting workload process when r → +∞ is
a rfBm processW living in the polyhedral coneW , which is
confined there by reflection at the boundary, with associated
data (x = 0, H, θ = −γ, Γ, I2) where

Γ = σ 2

⎛

⎜
⎝

α2
1

μ2
1

+ α2
3

μ2
3

α2
3

μ2
3

α2
3

μ2
3

α2
2

μ2
2

+ α2
3

μ2
3

⎞

⎟
⎠ .

The direction of reflection on the boundary facets is defined
by the columns of thematrix R = I2, that is, reflection occurs
in the horizontal direction (corresponding to node 1 underuti-
lizing capacity) on the bounding facet F1. The interpretation
of this is that although there is no work for node 1 on route
1, there is work for this resource on route 3, but that by the
nature of the bandwidth sharing policy, congestion at node 2
is preventing node 1 from working at its full capacity. Sim-
ilarly, vertical reflection (node 2 underutilizing capacity) on
F2 is interpreted to mean that congestion at node 1 is pre-
venting node 2 from working at its full capacity. Thus, the
shape of the workload spaceW indicates the entrainment of
the nodes, whereby congestion at one of the nodes may pre-
vent the other node from working at its full capacity. Note
that when η3 → +∞ (implying b3 → 0), F1 and F2 tend
respectively to the vertical and the horizontal axes, expand-
ing the polyhedral cone to the whole first quadrant, that is,
approaching the situation with full utilization resources.

Moreover, given W in Theorem 2, define process Z̃ =
diag(b1, b2) (ABA′)−1 W , that is,

Z̃1(t) = b1
b1b2 + b1b3 + b2b3

(
(b2 + b3)W1(t) − b3 W2(t)

)

Z̃2(t) = b2
b1b2 + b1b3 + b2b3

(
(b1+b3)W2(t)−b3 W1(t)

)
.

Then, process Z̃ (corresponding to take the first two compo-
nents of process Z = Δ(W ) in Theorem 2) inherits an rfBm
structure from W . Indeed,

Z̃ = diag(b1, b2) (ABA′)−1 X

+ diag(b1, b2) (ABA′)−1 Y

is a rfBm process living on the two-dimensional first orthant
R
2+, with associated data (x = 0, H, θ̃ , Γ̃ , R̃), where

θ̃ = −diag(b1, b2) (ABA′)−1 γ

Γ̃ = diag(b1, b2) (ABA′)−1 Γ (ABA′)−1 diag(b1, b2)

R̃ = diag(b1, b2) (ABA′)−1,

since Y j increases whenWj is in Fj , that is, when Z̃ j is zero
[by (27)]. The directions of reflection on the axes of R2+ are
defined by the columns of matrix R̃.

5 Multiplicative state space collapse

In this section we introduce a condition that is a kind of
MSSC, and it has appeared in different contexts regarding
heavy-traffic limits (see for instance Williams [30], Kang et
al. [14] and Delgado [7]):

MSSC P − lim
N→+∞

Ẑ r,N − Δ(Ŵ r,N )

||Ŵ r,N (·)||T ∨ 1
= 0

for any T > 0, r ≥ 1.

It is obvious that state space collapse SSC (see Sect. 4)
implies MSSC. Somewhat surprisingly, under heavy traffic
they are, in fact, equivalent. That is,MSSC also implies SSC
as can be seen from Proposition 4 below. This proposition
presents similarities with Lemma 7.5 [14]. Let us introduce
the following notations:

W̃ r,N def= A M Δ
(
Ŵ r,N ) and ξ̂ r,N

def= Ŵ r,N − W̃ r,N .

(28)

Proposition 4 Under assumption HTa (see Sect. 3.5),
assume MSSC holds. Then, for each r ≥ 1, T > 0 and
δ > 0, there exist constants K and N0 (depending on r, T
and δ) such that for each N ≥ N0,
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P
(
||ξ̂ r,N (·)||T ≤ δ, ||Ẑ r,N (·) − Δ(Ŵ r,N (·)||T ≤ δ,

||Ŵ r,N (·)||T ≤ K , ||Ŷ r,N (·)||T ≤ K
)

≥ 1 − δ. (29)

Moreover, for each j = 1, . . . , J and t ∈ [0, T ], on a set
of probability ≥ 1 − δ,

Ŷ r,N
j (t) =

∫ t

0
1{

d(W̃ r,N (s),F j )≤δ
} d Ŷ r,N

j (s). (30)

Note that from (29) we obtain that the sequences {Ŵ r,N }N
and {Ŷ r,N }N are tight, and also that P− lim

N→+∞ ξ̂ r,N = 0 and

P − lim
N→+∞

(
Ẑ r,N − Δ(Ŵ r,N )

) = 0, that is, under HTa we

have that

MSSC ⇒ SSC.

Proof For better understanding, we split the proof into sev-
eral steps.

Step 1:
First, fixed r, N ≥ 1 and j = 1, . . . , J , in order to prove

(30) we have to find out where Ŷ r,N
j (·) increases. By making

a change of variable in the integral of (11), we have that for
any t > 0, Ŷ r,N

j (t) can be written as

√
N

r1−H

L1/2(r)

∫ t

0

(
C j −

∑

k∈K
A jkΛk

(
Zr,N (r s)

))
ds,

and taking into account that C j −∑k∈K A jk Λk(Zr,N ) ≥ 0
by the restriction of the optimization problem OPΛ in Sect.
3.2, we concentrate on finding out where this expression is
strictly positive. For that, fix T, δ > 0, t ∈ [0, T ] and ω ∈
Ω , and take s ∈ [0, t] ⊂ [0, T ] such that

0 < C j −
∑

k∈K
A jk Λk

(
Zr,N (r s, ω)

)

= C j −
∑

k∈K
A jk Λk

(
Ẑ r,N (s, ω)

)
,

where we have used (7b) and Proposition 1(ii). By Proposi-
tion 1(iv), if Ẑ r,N (s, ω) �= 0,

pr,N
(
s, ω

) = (pr,N1 (s, ω), . . . , pr,NJ (s, ω)
)′ ∈ R

J+

exists such that pr,Nj (s, ω) = 0, and

Ẑ r,N
k

(
s, ω

) = Λk
(
Ẑ r,N (s, ω)

) 1
ηk

J∑

�=1

pr,N�

(
s, ω

)
A�k (31)

for any k ∈ K+(Ẑ r,N (s, ω)). By assumption LT on matrix
A (Sect. 3.1), there exists k j such that A jk j = 1 and

A�k j = 0 for all � �= j , and using (31) with k j we have

that Ẑ r,N
k j

(s, ω) = 0.
For any ε > 0, we introduce the following subset of Ω ,

denoted by Br,N
T,ε ,

{
||Ẑ r,N (·) − Δ(Ŵ r,N (·))||T ≤ ε

(||Ŵ r,N (·)||T ∨ 1
)}

. (32)

ByMSSC we have that n1(δ) exists such that if N ≥ n1(δ),
then P(Br,N

T,ε ) ≥ 1 − δ/2, and if ω ∈ Br,N
T,ε , then as

Ẑ r,N
k j

(s, ω) = 0,

(
Δ
(
Ŵ r,N (s, ω)

))

k j
≤ ε
(

||Ŵ r,N (·)(ω)||T ∨ 1
)
. (33)

On the other hand, from Lemmas 3 and 2 we know that
there exists some qr,N (s, ω) ∈ R

J+ of the form qr,N (s, ω) =
(qr,N1 (s, ω), . . . , qr,NJ (s, ω))′, such that

(
Δ
(
Ŵ r,N (s, ω)

))

k j
= λk j

μk j

1

ηk j

J∑

�=1

qr,N� (s, ω) A�k j

= λk j

μk j

1

ηk j
qr,Nj (s, ω), (34)

and then, by (33), if ω ∈ Br,N
T,ε ,

qr,Nj (s, ω) ≤ ε ηk j
μk j

λk j

(
||Ŵ r,N (·)(ω)||T ∨ 1

)
. (35)

Note that if Ẑ r,N (s, ω) = 0 the same applies.
Besides, by using notations (28) we can write

Ŵ r,N = A Mr,N Ẑr,N

as Ŵ r,N = W̃ r,N + ξ̂ r,N , where

ξ̂ r,N = Ŵ r,N − W̃ r,N = A M
(
Ẑ r,N − Δ(Ŵ r,N )

)

+ A
(
Mr,N − M

)
Ẑ r,N . (36)

By Lemma 3 and definition (17), W̃ r,N (s, ω) ∈ W , and by
(34) W̃ r,N (s, ω) = A B A′ qr,N (s, ω), and if ω ∈ Br,N

T,ε ,

taking into account the definition of vector n j (see (19)),

d(W̃ r,N (s, ω), F j ) = 〈n j , W̃ r,N (s, ω)〉
|n j |

= 〈n j , A B A′ qr,N (s, ω)〉
|n j | = qr,Nj (s, ω)

|n j |

≤
ε ηk j

μk j
λk j

( ||Ŵ r,N (·)(ω)||T ∨ 1
)

|n j |
≤ D ε

( ||Ŵ r,N (·)(ω)||T ∨ 1
)
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with D = max
j=1,...,J

(
ηk j

μk j
λk j

1
|n j |
)
, where in the first inequality

we used (35). And then, we have proved that on Br,N
T,ε , if

t ∈ [0, T ], Ŷ r,N
j (t) can be written as

∫ t

0
1{

d(W̃ r,N (s),F j )≤Dε(||Ŵ r,N (·)||T ∨1)
}dŶ r,N

j (s), (37)

which is not yet the desired expression (30), but from which
we will get it in Step 3. For the moment, (37) is what we need
to prove (29) in the next step of the proof.

Step 2:
Secondly we will show (29). For that, note that fixed

r, N ≥ 1 and T, δ, ε > 0 in Step 1, there exists n2(ε, δ) ≥
n1(δ) such that for any N ≥ n2(ε, δ),

P(||X̂r,N (·)||T ≤ K0) ≥ 1 − δ

2
and |Mr,N − M | ≤ ε

for some constant K0 > 0 depending on δ although not
specify in the notation. This is a consequence of assuming
the convergence of Mr,N to M as N → +∞, and of the fact
that sequence {X̂r,N }N is C−tight, since by Proposition 3,
underHTa there exists X̂r = D− lim

N→+∞ X̂r,N = A M Êr −
r1−H

L1/2(r)
γ̂ r e, which has continuous paths. Let

Ω
r,N
T,ε,δ = {||X̂r,N (·)||T ≤ K0} ∩ Br,N

T,ε,δ.

Then, for all N ≥ n2(ε, δ), P(Ω
r,N
T,ε,δ) ≥ 1 − δ. On Ω

r,N
T,ε,δ ,

using (36) and Lemma 1, we have that for all N ≥ n2(ε, δ)∨
n0,

||ξ̂ r,N (·)||T ≤ c3 ε
(||Ŵ r,N (·)||T ∨ 1

)
, (38)

where c3 = |A M | + |A| c2 > 0. We introduce notation

N0
def= n2(ε, δ) ∨ n0. (39)

Note that N0 depends on fixed r ≥ 1, and on T, δ, ε > 0,
and that if N ≥ N0, then P(Ω

r,N
T,ε,δ) ≥ 1 − δ.

On the other hand, by (37) we can apply the Oscillation
inequality (Proposition 7.1 [14]) to W̃ r,N = Ŵ r,N − ξ̂ r,N =
(X̂r,N − ξ̂ r,N ) + Ŷ r,N , and then we have that some constant
Ĉ0 > 0 exists such that on Ω

r,N
T,ε,δ ,

Osc(W̃ r,N (·), [0, T ])
≤ Ĉ0

(
Osc(X̂r,N (·) − ξ̂ r,N (·), [0, T ])

+ D ε
( ||Ŵ r,N (·)||T ∨ 1

) )

≤ Ĉ0
(
2 ||X̂r,N (·)||T + 2 ||ξ̂ r,N (·)||T

+ D ε
( ||Ŵ r,N (·)||T ∨ 1

) )
(40)

and the same bound applies to Osc(Ŷ r,N (·), [0, T ]), that is,

Osc(Ŷ r,N (·), [0, T ]) ≤ Ĉ0
(
2||X̂r,N (·)||T + 2||ξ̂ r,N (·)||T

+ Dε
(||Ŵ r,N (·)||T ∨ 1

))
. (41)

By using that

||Ŵ r,N (·)||T ∨ 1 ≤ Osc(Ŵ r,N (·), [0, T ]) + 1

≤ Osc(W̃ r,N (·), [0, T ]) + Osc(ξ̂ r,N (·), [0, T ]) + 1

≤ Osc(W̃ r,N (·), [0, T ]) + 2 ||ξ̂ r,N (·)||T + 1,

(40) and (38), we have that if N ≥ N0, on Ω
r,N
T,ε,δ ,

||Ŵ r,N (·)||T ∨ 1 ≤2 Ĉ0 K0 + (Ĉ0 (2 c3 + D) + 2 c3
)
ε

( ||Ŵ r,N (·)||T ∨ 1
)+ 1. (42)

From now define ε = ε(δ) by

min

{
1

2
(
Ĉ0(2c3 + D) + 2c3

) ,

δ

2max{D, c3, 1}(2Ĉ0K0 + 1)

}
. (43)

With such an ε > 0, (42) implies that if N ≥ N0, on Ω
r,N
T,ε,δ ,

||Ŵ r,N (·)||T ∨ 1 ≤ 2 (2 Ĉ0 K0 + 1), (44)

and then, by (32), (44) and (43),

||Ẑ r,N (·) − Δ(Ŵ r,N (·))||T ≤ ε (||Ŵ r,N (·)||T ∨ 1) ≤ δ,

which by using the bound in (41) and (38) gives that

||Ŷ r,N (·)||T ≤ Osc(Ŷ r,N (·), [0, T ])
≤ 2 Ĉ0 K0 + Ĉ0 (2 c3 + D) δ.

Then, with

K
def= max{2 (2 Ĉ0 K0 + 1), 2 Ĉ0 K0 + Ĉ0 (2 c3 + D) δ},

which is a function of r, T and δ, we obtain that onΩ
r,N
T,ε(δ),δ ,

if N ≥ N0, ||Ŵ r,N (·)||T ≤ K , ||Ŷ r,N (·)||T ≤ K . Finally,
from (38), (44) and (43), on Ω

r,N
T,ε(δ),δ and if N ≥ N0,

||ξ̂ r,N (·)||T ≤ δ, which completes the proof of (29).
Step 3:
Thirdly, we return to the expression (37), and by (44) and

(43), we obtain that if N ≥ N0, on Ω
r,N
T,ε(δ),δ it holds that if

t ∈ [0, T ],
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Ŷ r,N
j (t) =

∫ t

0
1{

d(W̃ r,N (s),F j )≤δ
} d Ŷ r,N

j (s), (45)

which finishes the proof. ��
Corollary 1 Under assumption HTa, assume in addition
that MSSC holds. Then, for each r ≥ 1 there exists a
sequence of positive numbers {δr,N }N such that δr,N → 0 as
N → +∞, and a sequence of probability measures {Pr,N }N
on (Ω, F)with Pr,N ⇒ P as N → +∞, such that for each
t > 0, j = 1, . . . , J and N big enough, Pr,N − a.s.

Ŷ r,N
j (t) =

∫ t

0
1{

d(W̃ r,N (s),F j )≤δr,N
} d Ŷ r,N

j (s).

Proof (This proof follows the arguments of Theorem 5.2
[14].) Fix r ≥ 1. To make explicit its dependency on T, ε

and δ, we denote by N0(T, ε, δ) the constant defined by (39),
where ε = ε(δ) is the function of δ given by expression (43).
Choose a strictly increasing sequence of positive constants
{N�, � ≥ 1} such that lim�→+∞ N� = +∞ and for each �,
N� ≥ N0(�, ε(1/�), 1

�
), and define the sequence {δr,N }N in

this way:

δr,N
def=
{
1 if N ≤ N1
1
�

if N ∈ (N�, N�+1].

Then, limN→+∞ δr,N = 0 and lim�→+∞ ε(1/�) = 0. Using
notation introduced in the proof of Proposition 4, for any N >

N1 let us define Ωr,N def= Ω
r,N
�,ε(1/�), 1

�

if N ∈ (N�, N�+1].
With this definition, as seen in the proof of Proposition 4,
P(Ωr,N ) ≥ 1 − δr,N , which is > 0 since N > N1. Now
define a sequence of probability measures {Pr,N }N>N1 on
(Ω, F) by:

∀A ∈ F , Pr,N (A)
def= P

(
A ∩ Ωr,N

)

P
(
Ωr,N

)

(that is, Pr,N (·) = P(· /Ωr,N )). If a property holds ∀ω ∈
Ωr,N , then it holds Pr,N−a.s. since Pr,N (Ωr,N ) = 1, and
moreover Pr,N ⇒ P as N → +∞.

For any t > 0 and N big enough, there exists � ≥ t such
that N ∈ (N�, N�+1] and then, from (45) with T = �, δ =
1/� and ε = ε(1/�) we have that for any j = 1, . . . , J ,
Pr,N−a.s.,

Ŷ r,N
j (t) =

∫ t

0
1{

d(W̃ r,N (s),F j )≤ 1
�

} d Ŷ r,N
j (s)

=
∫ t

0
1{

d(W̃ r,N (s),F j )≤δr,N
} d Ŷ r,N

j (s).

��

6 Conclusion

A heavy-traffic limit theorem (split into to parts: Theorems
1 and 2) for a flow-level model of a packet-switched net-
work handling elastic flows, with local traffic and fed by a
huge number of heavy-tailed On/Off sources, is proved in
this paper. The service capacity (bandwidth) on each node of
the network is dynamically allocated to the routes passing by
the node by following a weighted proportional fair sharing
policy, and the fraction of capacity assigned to each route is
shared at any time among the flows in progress at the route.
The choice of the arrival process has beenmade by coherency
with the long-range dependence and self-similarity observed
in modern high-speed network traffic.

In the proof of this result, state space collapse SSC plays
a key role: in the heavy-traffic environment and under some
other technical conditions, if SSC holds we prove that the
limit of the conveniently scaled workload process (associ-
ated to each node) W is a rfBm process on a polyhedral cone
determined by the bandwidth sharing policy. SSC implies
that the limit of the scaled amount of flows process (associ-
ated to each route) can be expressed in terms of W by means
of a deterministic lifting map. The novelty lies in the fact
that it is for the first time that SSC has been considered in the
context of a heavy-traffic limit theorem in the On/Off heavy-
tailed sources model, with a fair bandwidth sharing policy.
We also prove that SSC is equivalent, under heavy traffic, to
the a priori weaker condition known as MSSC.

Another important ingredient in the proof of the heavy-
traffic limit is the version we introduce of the Invariance
Principle in domains with piecewise smooth boundaries by
Kang and Williams [15]. An illustrative example consisting
of a linear network with two resources and three routes, is
introduced to assist in the understanding of the results pre-
sented in the paper.

In this work, we restrict ourselves to the member α = 1
of the family of weighted α-fair bandwidth sharing policies
introduced in [20], but other members of the family, that is,
extensions of the model to other network bandwidth sharing
policies than the weighted proportional fair, could be consid-
ered for future research.
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