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Abstract Energy efficiency in cellular networks is a grow-
ing concern for cellular operators with regard to maintaining
profitability and reducing their overall environmental impact.
Because evolved node Bs (eNBs) for long-term evolution
wireless cellular networks are deployed to accommodate
peak traffic, they are underutilized most of the time, espe-
cially under low-traffic conditions. Hence, switching eNBs
on and off in accordance with traffic pattern variations is
considered to be an effective method of improving energy
efficiency in cellular networks. However, two main concerns
of network operators when applying this technique are cov-
erage issues and securing radio service for an entire area in
response to the increased size of some cells to provide cover-
age for cell areas that are switched off. This study focuses on
the parameters that affect coverage in order to find a balance
between cellular network energy consumption and the area of
cell coverage. To achieve this goal, particle swarm optimiza-
tion, a bio-inspired computational method, has been adopted
in this study to maximize the cell coverage area under the
constraints of the transmission power of the eNB (Ptx ), the
total antenna gain (G), the bandwidth (BW), the signal-to-
interference-plus-noise ratio (SINR), and shadow fading (σ ).
In addition, the study investigated potential for gains in oper-
ational expenditures by operating eNB on solar energy. The
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optimum criteria, including economic, technical and envi-
ronmental feasibility parameters, were analyzed using the
HOMER.
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1 Introduction

The number of long term evolution (LTE) base stations
(BSs) is expected to reach 2.43 million by 2018 to achieve
a population coverage target of 1.3 billion LTE subscribers
[1]. According to [2], BSs are considered to be the pri-
mary source of energy consumption in cellular networks
and account for 57 % of the total energy used. Therefore,
power reduction at BSs is the primary focus in creating
green cellular networks. It is increasingly important for
cellular operators to achieve energy efficiency in cellular
networks to maintain profitability and reduce the overall envi-
ronmental impact of these networks. According to [3], the
emissions of carbon dioxide (CO2) are predicted to rise to
349 MtCO2 in 2020, with 51 % of emissions originating
from the mobile sector, if this issue is not addressed. Thus,
mobile operators are under immense pressure to meet both
the demands of environmental conservation and cost reduc-
tion.

Recently, many research studies have been conducted to
address this issue using ‘greener’ cellular networks that are
less expensive to operate. Two approaches can be used to
reduce environmental impacts and costs. In the first approach,
power-efficient hardware is used to reduce BS power con-
sumption. In the second approach, intelligent management
of network elements is adopted based on traffic load varia-
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tions [4]. However, switching BSs off is considered to be an
effective way to improve the energy efficiency for two rea-
sons: (i) the key source of energy usage in cellular networks
is the operation of BS equipment, and (ii) the infrastructures
of cellular networks are designed to support daytime traffic.
Traffic loads during the day differ from those at night. Hence,
the amount of energy that is wasted because of the inefficient
use of resources should not be overlooked, particularly for
low and idle loads [5].

The philosophy behind the approach of reducing energy
consumption based on traffic load is that if traffic is low
in a given area, several cells can be switched off, and the
radio coverage and service can be provided by the remain-
ing active cells. However, two main concerns of network
operators when applying this technique are coverage issues
and securing radio service for an entire area in response to
the increased size of some cells to provide coverage for cell
areas that are switched off. Therefore, this study focuses
on the parameters that affect coverage to find a balance
between cellular network energy consumption and cell cov-
erage area. To this end, particle swarm optimization (PSO)
has been adopted in this study to maximize the cell cover-
age area under the constraints of transmission power of the
BS (Ptx ), total antenna gain (G), bandwidth (BW), signal-
to-interference-plus-noise ratio (SINR), and shadow fading
(σ ). However, the electrical grid is the primary power source
for BSs. The specific needs in the power supply for BS such
as cost effectiveness, efficiency, sustainability and reliabil-
ity can be met with technological advances in renewable
energy. Moreover, there are numerous drivers and motiva-
tors for the deployment of renewable energy technologies
and the transition towards green energy: this energy is free,
clean, and abundant in most locations throughout the year.
Hence, this study also investigates the potential for gains in
OPEX by operating BSs on solar energy, where the optimum
criteria, including economic, technical and environmental
feasibility parameters, were analyzed using the hybrid opti-
mization model for electric renewables (HOMER) software
developed by the National Renewable Energy Laboratory
(NREL).

The remainder of this paper is organized as follows: Sect. 2
includes related works. The cell switching scheme and cell
coverage area optimization problems are described in Sect. 3.
Section 4 presents a brief introduction of the considered
PSO algorithm. The PSO simulation setup and optimiza-
tion programming are provided in Sect. 5. The renewable
energy approach and the potential for applying renewable
energy for LTE-BS deployment in Malaysia are presented
in Sect. 6. Section 7 describes the system architecture. Sec-
tion 8 presents a brief introduction to the HOMER software,
and Sect. 9 provides a HOMER simulation setup. Results and
discussion are provided in Sect. 10, and Sect. 11 concludes
the paper.

2 Related works

Several studies have investigated the switch-off approach.
In [6–8], different approaches were presented for switch-
ing off a specific number of base stations BSs in Universal
Mobile Telecommunications System (UMTS) cellular net-
works during low-traffic periods. A randomly chosen number
of BSs was switched off, and the energy reduction was com-
puted by simulating UMTS cellular networks [6]. The same
authors have also presented an improvement of their previous
work. They proposed a dynamic network planning scheme
for switching BSs on and off and considered a uniform and
hierarchical scenario [7]. In another study [8], demonstrated
how to optimize energy savings by assuming that any fraction
of cells can be switched off based on a deterministic traffic
variation pattern over time. In addition, two approaches that
achieve energy savings were proposed in [9]: (i) a greedy cen-
tralized algorithm, where each BS is examined based on its
traffic load to determine if the BS will be switched off, and (ii)
a decentralized algorithm, where each BS locally estimates
its traffic load and independently decides if it is going to
be switched off. Reference [10] proposed a dynamic switch
on/off algorithm based on blocking probabilities. The BSs
are switched off based on the traffic variation with respect to
a blocking probability constraint. Reference [11] studied the
optimal number of active BSs that will be deployed based on
the trade-off between fixed power and dynamic power. Ref-
erence [12] presented a novel optimization model that can
be used for energy-saving purposes at the level of a UMTS
cellular access network. Reference [13] proposed a switch-
off decision-making scheme based on the average distance
between BSs and UEs, where the BS at the maximum average
distance will be switched off.

In the literature, there are a number of studies that consider
dynamic cell size adjustments to reduce energy consumption.
Among them, Reference [14] introduced the cell zooming
concept, which adaptively adjusts the size of the cells based
on the current traffic load, to obtain energy savings. In their
work, they used a cell zooming server, which is a virtual
entity in the network controls, to manage the cell zoom-
ing procedure. The cell zooming server collects information,
such as the traffic load, channel conditions, and user require-
ments, and subsequently determines if there are opportunities
for cell zooming. The authors also proposed centralized and
distributed versions of user association algorithms for cell
zooming. Another study that considered variable cell sizes
for energy savings is [15]. In this work, Bhaumik et al.
considered two types of BSs: subsidiary BSs with a low trans-
mission power and umbrella BSs with a high transmission
power. They proposed a self-operating network that adap-
tively turns subsidiary and umbrella BSs on and off based
on the current traffic demands. Similarly, Reference [16]
assumed a cellular network consisting of micro- and macro-

123



Intelligent cooperation management among solar powered base stations... 181

Fig. 1 Summary of previous studies that have investigated the potential for energy savings

BSs, where micro-BSs can be switched on and off, while
macro-BSs can iteratively adjust their transmission power
until the required QoS is achieved. They proposed static
centralized, dynamic distributed, and hybrid topology man-
agement schemes to reduce the overall energy consumption
of the network while satisfying certain QoS requirements.
Figure 1 provides a summary of related works that have inves-
tigated the potential for reducing energy consumption via the
switch-off approach.

The following are examples of the adoption of renew-
able energy resources such as solar and wind power in BSs.
In India, efforts have been made to optimize the size of
wind turbine generators (WTG), solar photovoltaic (SPV)
arrays and other components for a hybrid power system;
generator-based power supplies for global system for mobile
communication (GSM, alternatively referred to as 2G) and
code division multiple access (CDMA, 3G) standards have
also been investigated [17,18]. Reference [19] studied the
feasibility of implementing an SPV/diesel hybrid power gen-
eration system suitable for a GSM base station site in Nigeria.
Reference [20] discussed an SPV-Wind-Diesel-Battery sys-
tem for a station in Catalonia, Spain. In Nepal, reference
[21] studied the optimization of a Hybrid SPV/Wind Power
System for a Remote Telecom Station. Kanzumba et al. [22]
investigated the potential for using hybrid photovoltaic/wind
renewable systems as primary sources of energy to sup-
ply mobile telephone base transceiver stations in the rural
regions of the Republic of the Congo. Reference [23] dis-
cussed three types of renewable energy: (i) a SPV-battery
system, (ii) SPV-fuel cell (FC) system and (iii) SPV-FC-
battery system. The modelling and sizing optimization of
such hybrid systems feeding a stand-alone DC load at a tele-
com base station has been implemented using the HOMER
software. Vincent et al. [24] proposed a hybrid (Solar &
Hydro) and DG system based on the power system mod-
els for powering stand-alone BS sites. Table 1 provides
a summary of related works that have investigated green
wireless network optimization strategies within smart grid
environments.

3 Mechanism of proposed cell-switching scheme

This subsection presents an algorithm proposed for reduced
energy consumption in cellular networks by reducing the
number and size of active macro-cells based on traffic con-
ditions. It is necessary to know the architecture of the BS as
well as the power consumption by various BS parts, summa-
rized in Table 2, with a 2 × 2 MIMO configuration. More
details on the BS internal components can be found in [25].

We start with a motivational example in Fig. 2 that shows
a real traffic profile from a cellular wireless access network.

If the traffic load in a given area is low, several cells will be
switched off, and the other cells will provide radio coverage
and service for the entire region. The question that naturally
arises is the following: which cells should be switched off,
and which cells should remain active? How to determine
which of the cells remain active depends on two factors. The
first is the ease with which radio coverage can be provided
to neighboring cells to guarantee service. The second is that
the largest possible number of neighboring cells should be
switched off to obtain the greatest decrease in energy require-
ments. The cells that satisfy these conditions are located in the
middle of a cluster (called master cells in this study, indicated
in Fig. 3 as yellow cells) and can easily provide coverage to
neighboring cells that will be switched off later. Herein, two
cases are discussed:

(i) The normal case of a high traffic load (0.4 < λ ≤ 1):
The network consists of 29 identical cells, which provide
coverage to a 42.38 km2 area, where each cell has an opti-
mum radius of 750 m. The radius is chosen based on two
considerations: (a) a small cell radius or small cell size,
which results in a radio transmitters (BSs) and receivers
(UEs) that are closer to each other and mitigates proper-
ties of the received signal, such as propagation path loss,
multi-path fading, and shadow fading, which is due to
higher SINR and spectral efficiency, and (b) the cost of
the infrastructure of a wireless system, which is linearly
proportional to the number of BSs. Therefore, the macro-
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Table 1 Summary of the
techniques discussed

Year of
publication

Renewable
energy resource

Storage and
support system

Cellular
generation

Case
study

2009 [23] Photovoltaic Battery GSM India

Wind Fuel-cell

Diesel generator

2010 [18] Photovoltaic Battery GSM India

Wind Diesel generator UMTS

2012 [17] Photovoltaic Battery GSM India

Wind Polar DC generator CDMA

2012 [22] Photovoltaic Battery GSM Congo

Wind Diesel generator

2013 [19] Photovoltaic Battery GSM Nigeria

Diesel generator

2013 [20] Photovoltaic Battery GSM Spain

Wind Diesel generator

2013 [21] Photovoltaic Battery GSM Nepal

Wind Fuel-Cell CDMA

Diesel generator

2013 [24] Photovoltaic Battery GSM Nigeria

Hydro turbine Diesel generator

Table 2 Power consumption of
the hardware elements in LTE
BS [25]

Item Notation Unit Macro-BS

PA Max transmit (rms) power W 39.8

Max transmit (rms) power dBm 46.0

PAPR dB 8.0

Peak output power dBm 54.0

PA efficiency, μ % 38.8

Feeder loss, σ dB 3.0

Total PA (PP A)= Pmax
μ

W 102.6

TRX PT X W 5.7

PR X W 5.2

Total RF (PRF ) W 10.9

BB Radio (inner Rx/Tx) W 5.4

Turbo code (outer Rx/Tx) W 4.4

Processor W 5.0

Total BB (PB B ) W 14.8

DC-DC loss, σDC % 6.0

Cooling loss, σcool % 9.0

AC-DC (main supply) loss, σM S % 7.0

Total per TRX = PP A+PRF +PB B
(1−σDC )(1−σcool )(1−σM S)

W 160.8

Number of sectors # 3

Number of antennas # 2

Number of carriers # 1

Total number of transceivers (NTRX) # 6

Total number of NTRX chains, Pin= NTRX × Total per TRX W 964.9
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Fig. 2 The daily traffic load
pattern of the BS [2]
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Fig. 3 Cellular network
structure (The blue cells
represent a normal case with
Rorg = 750 m, and the red cells
represent low-traffic loads with
R = 2Rorg = 1.5 km) (Color
figure online)
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cells yield the lowest cost for many scenarios because
fewer BSs are used to provide coverage for a large area,
indicating that coverage (i.e., the cell range) is an impor-
tant parameter in designing wireless systems [26].

In this case, all cells in the network (29 cells) are active,
and the BSs operate with full functionality to provide the
full coverage needed to guarantee radio service, as shown in
Fig. 3 for the cells framed in blue. However, this category of
traffic continues for only 13 h (10 a.m. to 11 p.m.), as shown
in Fig. 2. After this period, the mobile traffic decreases to
under 0.4, which represents a low-traffic-load case. This is
the focus of this study: we seek to achieve a balance between
reducing energy consumption in the network and maximizing
coverage to guarantee radio service and to achieve energy
savings.

(ii) A low traffic load (0 < λ ≤ 0.4): It is well known that
power consumption grows proportionally with the num-
ber of cells. In this case, the number of cells is reduced

by 75.86 % (22 cells will be switched off) by increasing
the area coverage of the cells that are located in the mid-
dle of the cluster, i.e., the yellow master cells in Fig. 3,
which provide coverage for the whole area. The following
paragraph discusses the mechanism of the cell switching
process.

During operation, the cells are monitoring the traffic load and
are able to switch off when the traffic load drops and stays
below a certain threshold for a certain period of time. At this
time, the master cells inform their six neighboring BSs in the
same cluster to prepare to switch off by sending a multicast
control signal via an X2 signalling interface. Upon receipt of
the switch-off control signal, neighboring cells immediately
begin to decrease their transmission power gradually, and
their resident UEs will inter-handover to a master cell based
on a stronger UE-BS path. As the master cells monitor the
traffic load when the traffic load increases, they send wake-up
control messages via X2 signalling to the neighboring cells to
signal these cells to return to operation. The neighboring cells
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will begin gradually increasing their transmission power, and
the resident UEs in the network will inter-handover to these
cells based on a stronger UE-BS path.

Increasing the coverage area for master cells may lead to
a lack of coverage, especially at the edge of the cell, due to
the fact that the received signal power rapidly decreases as
the transmit-receive distance increases; in addition, there is
an increase in attenuation factors such as, shadowing fading,
and multipath fading, among others. The following subsec-
tion will highlight the mathematical model and optimization
formulation for a cell coverage area, taking into considera-
tion the most important parameters in maintaining the best
coverage at the edge of the cell.

3.1 Mathematical model and problem formulation

3.1.1 Propagation model

The coverage depends on many parameters, the most impor-
tant of which are the surrounding environment and the
maximum radius of the cell, which have significant impacts
on the received signal. However, three phenomena primar-
ily affect the properties of the received signal: propagation
path loss, multi-path (small-scale) fading, and shadow (large-
scale) fading. The properties are modelled as a zero-mean
Gaussian random variable with a variance on a logarithmic
scale. Therefore, a basic propagation model for the received
power (Pr x ) can be written as follows [27]:

Pr x = Ptx + G − L Hata − σ, [dBm] (1)

where Ptx and G denote the transmitted power and the total
antenna gain, respectively; L Hata represents the Hata path
loss model; and σ is the shadow fading margin.

The Hata path loss model is expressed as a function that
includes the frequency ( f ), BS antenna height (hb), UE
antenna height (hm), and radius of the cell (R). The basic
formula for the Hata path loss is [27]

L Hata = 69.55+26.16 Log10( fM H z)−13.82 Log10(hb)

−a(hm) + [44.9 − 6.55L og10(hb)]
× Log10(Rkm) − Ksuburban [dB] (2)

a(hm) = [1.1 Log10( fM H z) − 0.7] × hm

−[1.56 Log10( fM H z) − 0.8] (3)

Ksuburban = 4.78 [Log10( fM H z)]2 − 18.33 Log10( fM H z)

+ 40.94. (4)

The cell coverage area in a cellular system is defined as the
percentage of the area within a cell that has received a sig-
nal at a power above a given minimum Pmin . A cell requires
some minimum received SINR for acceptable performance;

the SINR requirement translates to a minimum Pmin through-
out the cell. The transmission power at the base station is
designed for an average amount of received power at the cell
boundary of Pmin . However, random shadowing and path loss
will cause some locations within the cell to have a received
power below Pmin . According to [28], the minimum received
power Pmin can be expressed as follows,

Pmin = No Bw + N f + SI N R + I M [dBm] (5)

where NoBW represents the thermal noise level for a specified
noise bandwidth, N f is the noise figure for the receiver, and
IM is the implementation margin.

3.1.2 Cell coverage and problem formulation

It is important that a balance between coverage and energy
consumption be achieved for cellular green networks. The
closed form for the cell coverage can be expressed as follows
[29],

C = Q (a) + exp

(
2 − 2ab

b2

)
Q

(
2 − ab

b

)
[%] (6)

a =
(

Pmin − Pr x (r)

σϕ

)
, b =

(
10α log10 (exp)

σϕ

)
, (7)

where σφ is the standard deviation of the shadow fading
and α is a path loss exponent. In Eq. (6), the cell cov-
erage area is expressed as a function C = f (a, b) =
f (Pmin, Pr x , α, σϕ), where the minimum received power is
expressed as a functionPmin = f (No, BW, N f , SINR, IM)

and the received power is Pr x = f (Ptx , G, L , σ ). The prob-
lem formulation is described as follows:

(p :) maximize
Ptx,G,BW,SI N R,σ[
Q (a) + exp

(
2 − 2ab

b2

)
Q

(
2 − ab

b

)]
(8)

subject to the following constraints:

0 < Ptx ≤ Pmax
t x (9)

Gmin ≤ G ≤ Gmax (10)

BWmin ≤ BW ≤ BWmax (11)

SI N Rmin ≤ SI N R ≤ SI N Rmax (12)

σmin ≤ σ ≤ σmax. (13)

It is clear that the problem posed by Eq. (8) is a nonlinear
optimization problem. A PSO algorithm has been adopted
to maximize coverage under the constraints Ptx , G, BW,
SINR, and σ . This algorithm has several advantages, such
as lower computational costs, better performance, and fewer
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Table 3 List of simulation
parameters

Item Parameter Acronym Value Unit

Network parameters Carrier frequency fc 2.6 GHz

LTE bandwidth BW 1.4–20 MHz

Max. cell radius R 1.5 km

Max. number of cells cell 29 #

Base station parameters Max. BS transmission power Pmax
t x 46 dBm

BS antenna height hb 10 m

Tx antenna gain G 5–15 dB

Number of antenna Nant 2 #

Max. total power consumption P BS
max _tot. 965 W

Mobile station parameters Thermal noise density No 174 dBm/Hz

Noise figure N f 9 dB

Implementation margin IM 3 dB

UE antenna height hm 1.5 m

Propagation losses Morphology Suburban

Propagation model Hata path loss model

SINR SINRmin −5.1 dB

SINRmax 18.6

Shadow fading margin σ 4–8 dB

Exponent path loss α 3.7 #

Standard deviation of the shadow σφ 4 dB

adjustable parameters, compared to other global optimiza-
tion algorithms [30].

4 Bio-inspired particle swarm optimization
algorithm

The PSO algorithm was proposed by Kennedy and Eberhart
in 1995 [30]. A PSO is initialized using a group of ran-
domly positioned particles, and it subsequently searches for
an optimal point; the position and velocity of each particle
in the swarm, with N decision parameters in the optimiza-
tion problem, are defined as Xi = (xi1, xi2, ..., xin) and
Vi = (vi1, vi2, ..., vin), respectively. The best previous posi-
tion of each particle is defined as Pi = (pi1, pi2, ..., pin),
and the global best position of all particles is represented by
Pg = (

pg1, pg2, ..., pgn
)
. Therefore, the velocity and posi-

tion of each particle are updated as follows:

vnew = w × vold + c1 × r1 (pin − xin)

+ c2 × r2
(

pgn − xin
)
, (14)

where w is the inertia weight; r1 and r2 are random num-
bers, which are usually chosen between [0, 1]; c1 is the
self-recognition component coefficient, which is a positive
constant; c2 is the social component coefficient, which is a
positive constant; and the values c1 = c2 = 2 are generally
referred to as the learning factors. The following weighting
function is usually utilized in Eq. (14):

w = wmax − [(wmax − wmin) × i ter ]
i termax

, (15)

where wmax is the initial weight, usually chosen as a large
value less than 1; wmin is the final weight; iter is the current
iteration number; and itermax is the maximum iteration num-
ber. A large w enables a global search, whereas a small w

enables a local search. Linearly decreasing the inertia weight
from a relatively large value to a small value through the
course of the PSO run gives the best PSO performance com-
parisons with fixed inertia weight settings.

From Eq. (14), a particle decides where to move next, con-
sidering its own experience, i.e., the memory of its best past
position, and the experience of the most successful particle
in the swarm. The new position is then determined using the
previous position and the new velocity and can be written
as,

xin_new = xin_old + vnew. (16)

5 Simulation setup and optimization programming

The simulation model has been implemented in MATLAB.
Table 3 summarizes the simulation parameters.

The model applied in this study is described as follows in
Fig. 4. In addition, the pseudocode of the PSO algorithm is
shown in Fig. 5.
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Fig. 4 Model of maximized
coverage programming

Inputs • Initialize network parameters (fc, hb, hm, No, Nf, , , IM). 

• Initialize PSO parameters, Number of particles (N= 20), Learning factors (c1= 
c2= 2), Dimension of particles (D= 5), Stopping condition (Iter. = 50), Initial 
weight (wmax= 0.9), & Final weight (wmin= 0.4). 

Constraints • SINRmin= -5.1, SINRmax= 18.6; BWmin= 1.4,BWmax= 20;  Gmin= 5, Gmax= 15; min= 
4, max=8; Ptx_max = 46 dBm. 

Main algorithm • Finding the best optimized coverage under the constraints of Ptx, G, BW, SINR, 
and . 

Outputs • Given optimal solution best global fitness (Max. coverage) and the best global 
position (Ptx, G, BW, SINR, and ). 

6 Potential of renewable energy for LTE-BS
deployment in Malaysia

Malaysia lies entirely within the equatorial region between
latitudes 1◦ and 7◦ North and longitudes 100◦ and 120◦ East
[31], which offers an abundant potential for using renewable
energy resources, such as solar and wind energy [32].

In the early 1980s, a study on Malaysia’s wind energy was
conducted at the University Kebangsaan Malaysia (UKM).
The Solar Energy Research Group from UKM collected wind
data from 10 stations across the country for the period from
1982 to 1991. The data studied include hourly wind speed
at the stations, mostly located at airports and near coasts,
where land and sea breezes may influence the wind [33].
The study showed that the mean wind speed is low and not
greater than 2 m/s. However, the wind does not blow uni-
formly and varies according to the month and region. The
locations with the greatest wind power potential are Mersing
and Kuala Terengganu, which are located on the East Coast
of Peninsular Malaysia [32]. In 2014, reference [34] pre-
sented a study on predicting the wind speed in those states
over the long term (23 years) using neural networks and a
set of recent wind speed measurement samples from the two
meteorological stations in those states. The results showed
the mean wind speed to be low, not greater than 3.8 m/s.

As for solar energy, Malaysia has a stable climate through-
out the year. Hence, the solar radiation in Malaysia is
relatively high based on global standards. It is estimated that
Malaysia’s solar power is four times that of the global fossil
fuel resources [35]. The global irradiation fluctuates in the
range of 2–6 kWh/(m2 day). There is more cloud cover in
the second part of the year (October to February) and, con-
sequently, poorer solar potential compared with the first part
of the year (March to October); the average temperature per
day ranges from 33

◦
C during the day to 23

◦
C at night [36].

Moreover, the solar cells have low maintenance and high
reliability, with a life span expectation of 20–30 years. In
addition, it is estimated that one square meter of solar panel
in Malaysia can result in an annual reduction of 40 kg of CO2

[32], which makes solar power a favorable source of energy
to be used in telecommunication applications in the future.

Algorithm of the proposed scheme
1: Initialize PSO parameters, Number of particles (N= 20), 

Learning factors (c1= c2= 2), Dimension of particles 
(D= 5), Stopping condition (Iter. = 50), Initial weight 
(wmax= 0.9), & Final weight (wmin=0.4). 

2: Initial populations of particles Xi = (Ptx, G, BW, SINR, 
) with random positions and zero velocities Vi. 

3: Comparing the position of each particle with constraints 

4:  if (Xi > max. constraints) then 

5:           Xi = max. constraints 

6:      end if 

7:  if (Xi < min. constraints) then 

8:          Xi = min. constraints 

9:      end if 

10: Evaluate the initial fitness values f (Xi) of each particle 
according to Eq. (8), 

11: Store the best initial fitness value and both of Pbest (Pi) 
and Gbest (Pg). 

12:  while i< iter do 

13:           r1 = rand (); r2 = rand (); 

14:          Calculate w according to Eq. (15), 

15:          Update Vi according to Eq. (14), 

16:          Update Xi according to Eq. (16), 

17:          Comparing the position of each particle with  
constraints 

18:          Repeat steps 3 – 9 

19:          Evaluate a new fitness values f (Xi) of each 
particle 

20:          Compare each particle's fitness evaluation with 
the current particle's to obtain the individual best 
position 

21:          Compare fitness evaluation with the population's 
overall previous best to obtain the global best 
position 

22:      end while 

23: Given optimal solution best global fitness (Max. 
coverage) and the best global position (Ptx, G, BW, 
SINR, ).  

Fig. 5 Pseudocode of the considered PSO algorithm
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Fig. 6 Annual average solar radiation [Mj/(m2 day)] (note that to convert Mj/(m2 day) to kWh/(m2 day), it should be divided by 3.6) [31]

6.1 Solar energy

Solar radiation data in Malaysia have been the subject of
earlier studies. Malaysia’s climatic conditions are desirable
for extending the utilization of SPV systems due to the high
amount of solar radiation received throughout the year. The
north region and a few areas in east Malaysia receive the
highest amount of solar radiation throughout the year. Kuch-
ing has the lowest irradiance value, whereas Kota Kinabalu
has the highest measured solar radiation [31]. Figure 6 pro-
vides information on solar radiation in different states of
Malaysia.

It can be seen from Fig. 6 that Sabah, Perlis, and Kedah
have sufficient solar resources to support solar energy appli-
cations. Figure 7 represents the daily solar radiation in these
three states [32].

It can be seen that the average amount of daily solar radi-
ation in Kedah, Sabah, and Perlis is 5.48, 5.31, and 5.24
kWh/m2, respectively. The average solar radiation of these
states reveals the high potential of the states to use SPV sys-
tems. Moreover, Fig. 8 shows Malaysia’s average daily solar
radiation, estimated to be 5.15 kWh/(m2 day) [32].

This study investigates five categories of average daily
solar radiation 5.1, 5.2, 5.3, 5.4, and 5.5 kWh/m2, to cover
all the states as much as possible.

6.2 Hindrances to using SPV panels: progress and
recommendations

It is clear from the above discussion that Malaysia has abun-
dant potential for using solar energy. Some barriers that affect

the performance of SPV panels should be taken into con-
sideration because power shortages are not acceptable in
the cellular network sector. The following section highlights
these barriers.

Radiation is higher than average in urban areas due to
man-made structures and effects such as the reflection from
the glass on buildings, which increases radiation. At the same
time, the shade from tall buildings may dramatically reduce
the power produced by solar cells during periods when the
sunlight is blocked. However, Sabah, Perlis and Kedah have a
low level of urbanization, with few tall buildings compared to
the capital and surrounding states. On the other hand, the cli-
mate in the tropics during some seasons includes heavy rain
and cloudy skies for several days at a time, causing battery
banks to run out of charge sooner. To solve this problem, the
study suggests the hybridization of the solar power system
with the existing electrical grid, which will provide sustain-
ability and reliability of the power supply to BS, especially
given the short lifespan of the battery.

The dirt, dust, tree debris, moss, sap, water spots, and
mold that develop on solar panels have a significant impact
on the performance of solar power systems. Cleaning the
panels is a challenge because the height necessary for SPV
panels for good access to the sunlight makes them diffi-
cult to reach, so the rapid growth of moss and grass on
the panels creates an extra cleaning cost for the owner of
the panels. The dual-axis tracking system for the SPV array
allows for wind, rain, and gravity to remove most debris
and dust naturally. Moreover, surveillance and maintenance
of the solar panels can be conducted by just two trained
people.
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Fig. 7 Average daily radiation
[kWh/(m2 day)]
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7 System architecture

Figure 9 is a schematic showing two subsystems, the BS and
the renewable energy source subsystem.

The main components of a SPV power system are listed
below:

1. Solar panels responsible for collecting sunlight and con-
verting it into Direct Current (DC) power electricity. The
SPV generator contains modules that are composed of
many interconnected solar cells in a parallel series to
form a solar array. The energy generated from the PV
generator is represened by the following equation [22]:

EPV = A × ηm × Pf × ηPC × I (17)

where A is the total area of the photovoltaic generator
(m2), ηm is the module efficiency (0.111), Pf is the pack-
ing factor (0.9), ηPC is the power conditioning efficiency
(0.86), and I is the hourly irradiance (kWh/m2).

2. Batteries bank stores excess electricity for future con-
sumption by the BS during night time, load-shedding
hours, or if solar energy is not sufficient to feed the BS
load completely. To protect the battery, the addition of a
charge controller is recommended. A charge controller or
battery regulator limits the rate at which electric current
is added to or drawn from electric batteries. It prevents
overcharging and may protect against overvoltage, which
can reduce battery performance or lifespan and may pose
a safety risk. It may also prevent completely draining
(“deep discharging”) a battery or may perform controlled
discharges, depending on the battery technology, to pro-
tect battery life [37].

The battery is modeled based on the state of charge (SOC)
condition. The SOC of charging and discharging of the bat-
tery can be calculated from Eqs. (18) and (19), respectively
[21], where µbat is equal to the round-trip efficiency in the
charging process, Unom is the nominal DC voltage of indi-
vidual battery, �t is the hourly time step and is equal to a 1-h
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interval, PL is the BS power load, and PS is the total power
supplied to these stations.

Soc(t + 1) = Soc(t) + ηbat

(
PS(t) − PL(t)

Unom

)
�t (18)

Soc(t + 1) = Soc(t) − ηbat

(
PS(t) − PL(t)

Unom

)
�t (19)

The nominal capacity of the battery bank, CN , is the maxi-
mum state of charge SOCmax of the battery and is represented
by Eq. (20), where NB is the total number of batteries, NBS

is the number of batteries connected in series, and CB is the
capacity of the battery.

CN = NB

NBS
CB (20)

The minimum state of charge of the battery, SOCmin , is set to
its lower limit, which does not discharge below the minimum
state of charge and is expressed in Eq. (21), where DOD is the
depth of discharge of battery and SOCmax is the maximum
state of charge [21].

SOCmin = (1 − DO D) (21)

3. Inverter The main load (BS) depends on uninterrupt-
able AC power. Therefore, a highly efficient inverter is
required, which converts the DC voltage from the load
busbar and battery to the requested AC-voltage. The
inverter is also able to log information such as system per-
formance (e.g., electricity produced by the system based
on a daily, monthly or yearly basis) and safety measures
to avoid electrical mishaps [37]. The efficiency of the
inverter can be defined by the following equation:

ηinv = P

P + P0 + K P2 (22)

In which, P , P0 and kcan be determined using the fol-
lowing equations:

P0 = 1 − 99
10

η10
− 1

η100
− 9, (23)

K = 1

η100
− P0 − 1, (24)

P = Pout

Pn
(25)
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Fig. 10 Architecture of
HOMER software
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µ10 and µ100 are provided by the manufacturers and rep-
resent the efficiency of the inverter at 10 and 100 %,
respectively, of its nominal power. The efficiency of the
inverter is roughly assumed to be constant over the whole
of the working range (e.g., 90 %) [38].

4. Control system The control system of the power system is
the brain of a complex control, regulation and communi-
cation system. For the remote interface, wireless modems
or network solutions are the most common communica-
tion units. In addition to the control functions, data-logger
and alarm memory capabilities are of great importance.
All power sources work in parallel and are managed by a
sophisticated control system and central control unit and
share the load.

The optimum criteria, including economic, technical and
environmental feasibility parameters, were analyzed using
the HOMER software.

8 HOMER software hybrid power system
modeling tool

HOMER [39] is primarily an optimization software pack-
age and simulates varied renewable energy sources (RES)
system configurations and scales them based on the net
present cost (NPC). NPC represents the life cycle cost of
the system. The calculation assesses all costs that occur
within the project lifetime, including initial set-up costs
(IC), component replacements within the project lifetime and
maintenance. Figure 10 presents the architecture of HOMER
software.

HOMER calculates NPC according to the following
equation:

N PC = T AC

C RF
(26)

where TAC is the total annualized cost ($). The capital recov-
ery factor (CRF) is represented by

C RF = i(1 + i)n

(1 + i)n − 1
(27)

where n is the number of years and i is the annual real inter-
est rate (6 % in this case). HOMER assumes that all prices
escalate at the same rate and applies an annual real interest
rate rather than a nominal interest rate. NPC estimation in
HOMER also considers the salvage cost, which is the resid-
ual value of the power system components at the end of the
project lifetime. The equation to calculate salvage value (S) is

S = rep

(
rem

comp

)
(28)

where rep is the replacement cost of the component, rem is
the remaining life of the component, and comp is the lifetime
of the component. Annual savings are estimated by subtract-
ing the annualized costs for each supply method from each
other, providing the overall savings or loss for each year.

9 HOMER simulation configuration

The lifetime of the project is 20 years, and the annual real
interest rate is assumed to be 6 %. HOMER makes a decision
at each time step to meet the power needs at the lowest cost,
subject to the constraint from the dispatch strategy chosen
in the simulation and a set value of 80 %. The system must
supply electricity to both the load (base station system) and
backup power system every hour. In this study, the backup
power is reserved by taking 10 % from the hourly load, to
create enough spare capacity to serve the load, even if the
hourly renewable energy output was to suddenly decrease by
10 %. Moreover, several sets of sizes will be considered in
the simulation, taking into account the SPV, inverter and the
number of batteries that will be used to achieve cost effective-
ness, reliability, and efficiency in the optimization process.
The efficiency of the inverter is roughly assumed to be con-
stant over the working range (e.g., 90 %, based on a study
from [38]), and the battery is set at 85 % [38]. For more
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Table 4 Simulation setup of the SPV/electric grid hybrid system

System components Parameters Value

Control
parameters

Annual real interest rate 6 %

Project lifetime 20 years

Dispatch strategy Cyclic charging

Apply set point state of
charge

80 %

Operating reserve: as
percent of load, hourly
load

10 %

SPV Sizes considered 1, 1.5, 2, 2.5 kW

Operational lifetime 20 years

Capital cost $4/W

Replacement cost $4/W

O&M cost/year $0.01/W

Inverter Sizes considered 0.5, 1, 1.5, 2 kW

Efficiency 90 %

Operational lifetime 15 years

Capital cost $0.9/W

Replacement cost $0.9/W

O&M cost/year $0.01/W

Battery Number of batteries 5, 10, 11,12, 13, 14

Round trip efficiency 85 %

Minimum state of charge 30 %

Nominal voltage 6 V

Nominal current 360 Ah at the 20 h

Nominal capacity 2.16 kWh

Lifetime throughput 1075 kWh

Max. charge rate 1 A/Ah

Max. charge current 18 A

Self-discharge rate 0.1 %/h

Operational lifetime 8 years

Capital cost $300

Replacement cost $300

O&M cost/year $10

Grid Purchase capacity 0.8 kW

Energy price $0.13/kWh

details on the the technical specifications, costs, economic
parameters and system constraints that are used in this study,
see Table 4 below.

10 Results and discussion

10.1 Cell switching scheme

The PSO has been used to maximize coverage under five
different constraints: (i) the transmission power of the eNB
(Ptx ), (ii) the total antenna gain (G), (iii) BW, (iv) the SINR,

0 5 10 15 20 25 30 35 40 45 50
-10

0

10

20

30

40

50

Iteration

SINR

BW

Ptx
Gain

Shadowing

C
on

st
ra

in
ts

 

Fig. 11 The behavior of constraint parameters that impact the cell cov-
erage area

0 5 10 15 20 25 30 35 40 45 50
97

97.5

98

98.5

99

99.5

100

Number of iteration

B
es

t c
ov

er
ag

e 
va

lu
e 

(%
)

Fig. 12 The behavior of the fitness function-coverage with change in
the constraint parameters

and (v) shadow fading (σ ). The impact of these parameters
on the coverage is shown in Fig. 11.

The most important parameters for maintaining coverage
at the edge of the cell, where the SINR is low and where the
shadowing is high, are Ptx and G. When these parameters
increase, the coverage also increases, as shown in Fig. 12.

The optimal transmission power Ptx and the antenna gain
G achieved a maximum coverage at a maximum radius of
1.5 km, where the SINR was the lowest, at −5.1 dB, and the
shadowing, at 5.8 dB, is 44.24 dBm and 14.7 dB. Because
the BW is proportional to the noise power, the optimum BW
at the edge is 1.4 MHz.

For the downlink data transmissions in an LTE network,
the eNB typically selects the modulation and coding scheme
(MCS) based on the channel quality indicator (CQI) feedback
characteristics of the UE’s receiver, i.e., the SINR via a link

123



192 M. H. Alsharif et al.

0 0.5 1 1.5
-110

-105

-100

-95

-90

-85

-80

1/8QPSK

1/5QPSK
1/4QPSK

1/3QPSK

1/2QPSK

2/3QPSK
3/4QPSK

4/5QPSK
1/2 16QAM

2/3 16QAM
3/4 16QAM

4/5 16QAM

2/3 64QAM

3/4 64QAM
4/5 64QAM

Max. radius [km]

R
ec

ei
ve

 le
ve

l [
dB

m
]

Fig. 13 Cell radii versus receiver sensitivity power for different MCSs,
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adaptation procedure. The SINR requirement translates into a
minimum received power Pmin throughout the cell. Figure 13
shows the relation, based on assumptions made in a reference
[28], between the radius of the cell, Pmin and the MCS.

It is clear that when the Pmin decreases, the MCS decreases
because the demodulation error rate increases as a result of
the increase in both the noise and the interference that often
occurs at the edge of a cell. Low-order modulation, such
as quadrature phase shift keying (QPSK), is more robust and
can tolerate higher levels of interference but provides a lower
transmission bit rate, whereas the high-order modulation 64-
QAM offers a higher bit rate but is more susceptible to errors
because of its higher sensitivity to interference, noise and
channel estimation errors. Therefore, the high-order modu-
lation 64-QAM is only useful for a sufficiently high SINR.
However, the bit rate and data rate depend on the MCS, BW,
and the number of antennas. For any system, the data rate
is calculated in symbols per second. Furthermore, it is con-
verted into bits per second based on the how many bits a
symbol can carry, which is dependent on the MCS. It is known
that increasing the radius can cause the data rate to decrease
because of the low SINR, high path loss, and low MCS level.
Figure 14 highlights the data rate versus macro-cell radii,
with Ptx = 44.3 dBm and BW = 1.4 MHz.

This study focuses on a cell radius of 1.5 km, which
corresponds to that of a cell in a low-traffic case; the low-
est modulation rate (QPSK) supports a 1.5-km cell radius.
For LTE with a 1.4 MHz BW, this means that there are six
resource blocks (RBs), each RB has 12 subcarriers, each sub-
carrier has seven symbols for normal CP, and the time of the
slot is 0.5 ms. Hence, the total number of symbols per RB
is 12 × 7 × 2 = 168 symbols/ms; therefore, there are 1008
symbols/ms. When 1/8 QPSK is used (2 bits/symbol), the
data rate will be 252 Kbps for a single chain, and with 2 × 2
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MIMO, the data rate will be two times that of a single chain,
i.e., 504 Kbps.

10.2 Optimal design of the energy source hybrid
SPV/electric grid system

For a high-traffic-load scenario, all cells (29 cells, from
Fig. 3) in the network are active, and the BSs will work with
full functionality to provide full coverage as needed to guar-
antee radio service. This level of traffic load continues for
only 13 h (10 a.m. to 11 p.m.), as shown in Fig. 2. However,
in the case of a low-traffic load, 22 cells will be switched off,
while only seven cells, the ‘master cells’, will remain active.
The ‘master cells’ operate for 24 h (13 h during high-traffic
loads and 11 h during low-traffic loads) to provide coverage
for the entire region. Therefore, this study investigated two
designs of a hybrid power system. The first, for the cells that
operate in high traffic, translates to only 22 cells, as shown
with a blue frame in Fig. 3. The second, for the cells that
operate 24 h, translates to seven cells, which are called mas-
ter cells, as shown in Fig. 3, filled in yellow.

A different set of values of average daily solar radiation,
5.1, 5.2, 5.3, 5.4, and 5.5 kWh/m2, were taken into account
in order to simulate the potential for the application of solar
energy in a wide range of states. The total power consump-
tion by the BS is 965 kW (as shown in Table 1), and the
energy retail price is $0.13/kWh [40]; in addition, this study
assumes that the grid purchase capacity is fixed at 0.8 kW
for all cases of solar radiation, based on that assumption the
technical criteria was determined for an optimal design of the
hybrid SPV/electric grid system. The energy output, the eco-
nomic analysis of the proposed hybrid systems and the related
sensitivity analysis are provided in the following paragraphs.
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Fig. 15 Optimal design of the energy source hybrid SPV/electric grid system for the master cell (operates 24 h)

Fig. 16 Optimal design of the energy source hybrid SPV/electric grid system for the cell that operates at high traffic only (13 h)

10.2.1 Optimization criteria

Figures 15 and 16 include a summary of the technical and
economic criteria for an optimal design of the SPV/electric
grid system with different values for the daily radiation for
both the cell that operates 24 h, which represents the master
cell, and the cell that operates 13 h at high traffic only.

For the first three cases [5.1–5.3 kWh/(m2 day) from
Fig. 15], the SPV optimal size is the same, 2 kW; the differ-
ence is in the energy contribution. The contribution of energy
from the solar power system increases with the increase
in radiation rate, while the pollution rate decreases. How-
ever, with the continuing increase in solar radiation [5.4–5.5
kWh/(m2 day)] and the electrical grid capacity of 0.8 kW, the
optimal size of SPV will be decreased in order to minimize
NPC for the solar power system, with guaranteed efficiency
of both sustainability and reliability in the system, which is
the goal of the HOMER software. The same analysis can be
applied to the SPV optimal size in Fig. 16.

System costs consist of (i) initial capital costs paid at the
beginning of the project with the largest proportion of costs
going to solar cells (approximately $4/W), (ii) operating costs
paid annually, mostly to operate and maintain the electric
grid, and (iii) NPC, representing all costs that occur within
the project lifetime, including initial capital costs, operation
and maintenance cost of components, and replacement costs.
More details are provided in the economic analysis in the next
subsection.

10.2.2 Energy yield analysis

Figures 17 and 18 summarize the annual energy contribution
of the solar electric system and the existing electrical grid for
different values of the average daily solar radiation for both
the master cell and the cell that operates 13 h at high traffic

only. It is clear that when the solar radiation rate increased,
the annual contribution of the solar power system increased at
the same SPV size. The instances when the energy purchased
from an electrical corporation decreased provide a good indi-
cator of when to decrease the maintenance and operational
costs for the EG.

From Fig. 17, in the first three cases [5.1–5.3 kWh/(m2

day)] where the system has the same size SPV, the solar
power system contributes 46, 47, and 48 %, respectively, of
the total annual energy needed to supply the BS load. At
[5.4–5.5 kWh/(m2 day)], increases in the rate of radiation at
the same condition of a grid purchase with a capacity of 0.8
kW leads to a decrease in the size of SPV, hence decreasing
the overall costs with the contribution of energy up to 45 and
46 %. It is clear that the average annual energy consumption
of the electrical grid decreased to 45–48 % in the master cell
case.

From Fig. 18, in the first four cases [5.1–5.4 kWh/(m2

day)] where the system has the same size of SPV, the solar
power system contributes 49, 50, 51, and 52 % of the total
annual energy; the percentage of contributions of the solar
power system are high, due to the short duration of the load
(10 a.m. to 11 p.m.) and, moreover, mostly occurred during
the day when sunlight was available (10 a.m. to 6 p.m.).
The average annual energy consumption of the electrical grid
decreased to 49–54 %.

10.2.3 Economic analysis

The costs for both of the two cases are provided in Figs. 15
and 16. In this analysis, Malaysia, with its average daily solar
radiation of 5.1 kWh/m2, was used as a case study for a
master cell design, but the same methodology can be applied
to other cases. The total NPC represents all costs that occur
within the project lifetime (20 years), including initial capital
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Fig. 17 Annual energy
contribution of different sources
with different average solar
radiation for the master cell
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Fig. 18 Annual energy
contribution of different sources
with different average solar
radiation values for cell
operation at high traffic only
(13 h)
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costs, operation and maintenance cost of components, and
replacement costs. From Fig. 15, the total NPC at 5.1 kWh/m2

is $23,520; how is this amount distributed over the project’s
lifetime? Fig. 19 provides more details.

The initial capital cost is paid only at the beginning of
the project. This cost is directly proportional to the size of
the solar power system. Therefore, when the solar radiation
rate increases, this leads to a decreased SPV size and initial
capital cost, due to the fact that SPV is the most expensive
element in the solar power system, as shown above in Figs. 15
and 16. In this study, at 5.1 kWh/(m2 day), the total initial
capital cost is $12,200, as shown in Fig. 15 above, which
breaks down as follows: (i) 65.6 % for the SPV (size 2kW
× cost $4,000/1kW = $8,000), (ii) 27 % for the battery units
(11 units × cost $300/unit = $3300), and (iii) 7.4 % for the
inverter (size 1 kW × cost $900/1kW = $900); the charger
controller cost is $2000. SPV represents the bulk of these
costs.

The annual cost for the maintenance and operation of
the system amounts to $800, as shown in Fig. 19. The

grid represents the bulk of this cost at $660/year (grid pur-
chases (kWh/year) are shown in Fig. 17 × energy retail
price $0.13/kWh). Thus, the lower energy consumption of the
electrical grid and the increased reliance on the solar power
system provide more operational expenses, which achieves
a greater rate of solar radiation. Figure 20 below describes
the comparison between solar radiation, grid purchases, and
grid energy cost for a master cell design. As for the other
components, the battery, SPV, and inverter costs are $110,
$20, and $10/year, respectively.

For replacement costs, the batteries represent the bulk, 88
% (11 unit × $300/unit = 3300 every 10 years, as shown
in Fig. 19), as each battery is replaced twice during the
project lifetime; this is due to the fact that the number of
batteries in the system is large and the operational life-
time is very short compared with the other components.
Figure 21 below shows the comparison between solar radi-
ation, number of batteries, and the exact battery lifetime in
this study. The inverter is replaced once during the project
lifetime (1 kW × $900 = $900), and there is no replace-
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Fig. 19 Cash flow summary of
the SPV/electric grid hybrid
power system within the project
lifetime at a solar radiation level
of 5.1 kWh/(m2 day)
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ment cost for the SPV because the project lifetime is equal
to the SPV lifetime. Thus, the total replacement cost dur-
ing the project lifetime is 2 × 3, 3300 + 900 = $7500/20
years.

10.2.4 Greenhouse gas (GHG) emissions

Due to improved manufacturing techniques and higher vol-
umes, the carbon footprint of solar panels is now much lower.
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Fig. 22 Comparison between
solar radiation, SPV array
capacity, and CO2 emission
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In general, when both the solar radiation rate and SPV array
capacity are increased, the pollution rate decreases. Figure 22
illustrates the comparison between solar radiation, SPV array
capacity, and annual carbon dioxide (CO2) emissions for
master cell design.

It is clear that when the solar radiation rate increases with
the same size of the SPV, the CO2 emissions will be decreased
due to the fact that the contribution of energy from solar
cells become higher, while the energy contribution of the
grid decreases, as discussed in Sect. 10.2.2.

11 Conclusion and remarks

This study examined the feasibility of the integration of a
solar power system with the electrical grid to supply BS for
on-grid sites during the day in order to minimize the cost
of OPEX and carbon emissions and to create a method for
switching cells on and off to achieve energy gains at night
(during low traffic).

The approach of switching on and off should take into
account the cell coverage area. A PSO technique was adopted
to maximize coverage due to the increasing coverage size of
master cells to provide coverage for cells that are switched
off during low-traffic periods. The cells are switched off to
achieve energy savings at the network level under the con-
straints of parameters that affect the cell coverage area: the
transmission power of a BS, the total antenna gain, the band-
width, the signal-to-interference plus noise ratio, and shadow
fading. The simulation results show that when the cell cov-
erage area increases, the shadowing increases and the SINR
decreases, translating into a minimum amount of received
power, which may impact the detected and decoded signals.
However, the transmitted power and antenna gain maintain

high coverage at the edge of the cell. This study demonstrated
that a daily energy savings of up to 34.77 % can be achieved
with guaranteed cell coverage area.

In the section on using solar energy for cellular base sta-
tions to reduce network operating expenses, three key aspects
were investigated: (i) energy yield analysis, (ii) economic
analysis, and (iii) greenhouse gas emissions, which can be
summarized as follows. When there are increases in both the
solar radiation rate and the size of the solar cell, the energy
produced from the solar power system will be increased with
a positive effect on pollution reduction. Meanwhile, the costs
of the system should be taken into account, as the costs will
increase with the increase in the size of the solar power sys-
tem and as the price of solar cells is high. Therefore, this
study examined the balance between the size of the solar sys-
tem, grid purchase capacity, energy purchased, and system
costs in order to minimize NPC for the solar power system,
with guaranteed efficiency, sustainability and reliability in
the system and the goal of using the HOMER software. The
study also highlighted that the average daily solar radiation
for Malaysia is 5.1 kWh/m2. The results show that 48 % of
the annual OPEX can be saved.
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