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Abstract Cognitive radio has been proposed as a promis-
ing technology to resolve the spectrum scarcity problem by
dynamically exploiting underutilized spectrum bands. Cog-
nitive radio technology allows unlicensed users to exploit
the spectrum vacancies at any time with no or limited extra
interference at the licensed users. Usually, cognitive radios
create networks in order to better identify spectrum vacan-
cies, avoid resultant interference, and consequently, magnify
their revenues. One of the main challenges in cognitive radio
networks (CRNs) is the high energy consumption, which
may limit their implementation especially in battery-powered
terminals. The large consumption mainly occurs during the
spectrum sensing stage, especially if a cooperative approach
is employed, and has an impact on the data transmission
stage. Many algorithms have been proposed in the literature
in order to improve the energy efficiency of cooperative spec-
trum sensing methods in CRNs. In this article, we provide an
overview of state-of-the-art research that addresses this prob-
lem. Furthermore, we suggest important design guidelines
of an energy-efficient framework for cooperative spectrum
sensing.
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1 Introduction

Due to worldwide growth of the number of mobile terminals
and the request of higher data rates, a tremendous increase
of the energy consumption of the telecommunications indus-
try has been recently reported, which has a significant envi-
ronmental impact. From the mobile terminals’ perspective,
given the limitation on energy resources, energy consumption
poses a main concern. Thus, energy efficiency has recently
triggered a significant amount of research [1]. Indeed, energy
efficiency (EE) is receiving a higher priority for some wire-
less systems and becomes a pressing need for their operation.
A notable example is Cognitive Radio (CR) [2].

CR technology was presented to be a tempting solution
to the spectrum scarcity problem. The spectrum scarcity is a
result of the exponentially-increase in the number of termi-
nals, applications and data rates in view of the current static
allocation of the limited frequency spectrum. CR technology
allows unlicensed users to opportunistically exploit tempo-
rally and spatially unused portions of the licensed spectrum
[3]. Several standardization organizations have developed
CR standards or modified their standards with the objective
of including this novel technology [4–7].

A key function of CR consists in the capability of acquir-
ing the knowledge of the instantaneous spectrum status. Such
capability can be accomplished by using geo-location tech-
niques, by receiving control and management information
or by performing spectrum sensing [8–10]. Geo-location
methods require a central database, self-locating capability
and frequently updates of the database by license-holders.
Likewise, control and management information techniques
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require both infrastructure elements and a database. On the
other hand, spectrum sensing is considered the most promis-
ing solution for spectrum awareness [11].

Spectrum sensing is a periodic monitoring process of the
spectrum, which is aimed at detecting the presence of the
licensed users [12,13]. Due to the high desired detection
requirements [11], spectrum sensing performed by individ-
ual radios suffers from unreliable estimates in presence of
multipath fading and shadowing [14–18]. Thus, spectrum
sensing is usually performed in a cooperative fashion among
several altruistic cognitive users (CU), which are willing to
share their individual sensing results in order to provide a
more reliable global estimate of the spectrum occupancy.
This approach is referred to as cooperative spectrum sens-
ing (CSS) [19,20]. The application of CSS in CR systems
induces new design and optimization challenges, such as
transmission delay [21,22], security risks [23,24] and energy
consumption [25,26]. Much effort has been devoted to over-
come these implementation challenges, which may offset the
potential benefits of CSS [27].

In the literature, there are several surveys, tutorials and
overview papers in topics related to CR. For example, Sur-
veys in CR networking, spectrum management, architec-
tures, routing, standardization activities, economic aspects
and recent advances are found in [4,27–35]. Other surveys
on MAC protocols and strategies can be found in [36–38].
The applications of game theory and artificial intelligence
in cognitive radio networks (CRNs) have been reviewed
in [39] and [40], respectively. As for spectrum sensing,
[41–46] discuss the performance of different spectrum sens-
ing techniques. In [47], wide-band spectrum sensing algo-
rithms have been reviewed. However, the above mentioned
works have not deeply discussed CSS. The challenges asso-
ciated to CSS have been surveyed in some other works. For
example, a survey in the design of common control channel
is presented in [48], while the security risks are reviewed
in [23,49–52]. Surveys in [13] and [53] are fully dedicated
for CSS process, where its mechanisms, performance, and
challenges have been discussed. However, a little attention
has been paid to energy efficiency problem in CSS. This arti-
cle provides an overview of current research activities that
are aimed at reducing energy consumption of CSS applied to
CRNs. To the best of our knowledge, this is the first work that
handles this issue. The presented article classifies the avail-
able works on energy-efficient CSS into three approaches.
The classification is based on the running stage of each work.
All the works are discussed in detail, emphasizing on the per-
formance in terms of energy efficiency.

The EE is defined as the ratio of the average transmitted
bits to the average consumed energy [54]. Recently, it has
gained an increasing importance, and it has received a lot of
interest in different topics in wireless communications [55–
60]. This attention is due to the limited energy resources at

the CRs, which is often accompanied with a big demand
for data rates. The EE is considered to be a comprehensive
metric that is able to represent the overall performance of a
CRN because it is capable of jointly taking into account the
achievable throughput, the overall energy consumption and
the detection accuracy. The combination of these indicators
in a single metric has made the EE metric a relevant indicator
of the quality of cognitive transmission.

2 Cooperative spectrum sensing

Cooperative spectrum sensing is the key factor of a success-
ful cognitive transmission. The ultimate aim of CSS is to
identify temporally and spatially unused portions of the spec-
trum. CSS usually starts by an individual spectrum sensing
process, which is performed by each CU individually. This
first stage is then followed by a sharing stage, where the sens-
ing results are processed in order to make a final decision
about the spectrum occupancy. CSS can be either central-
ized or distributed. In centralized CSS, local sensing results
are reported at a common receiver that is in charge of mak-
ing a global decision [61]. In distributed CSS, on the other
hand, the CUs exchange their sensing results among them-
selves without the need of an infrastructure [62,63]. This
article focuses on the centralized CSS that is shown in Fig. 1.
In this section, we review in detail the stages that consti-
tute CSS and the available metrics to evaluate the achievable
performance.

2.1 Stages of CSS

A typical frame structure of a cognitive transmission is shown
in Fig. 2. CSS starts by a local sensing performed by each
CU individually. Different methods to sense the spectrum
are available in the literature, such as energy detection [64],
matched filters based sensing [65], cyclostationarity-based
sensing [66], wavelet-based sensing [67] and waveform-
based sensing [68]. Energy detection is the most popular
method due to its low computational and implementation
complexity. Besides, it does not require any prior knowl-
edge about the signal to be detected, while the others depend
mainly on the prior knowledge of the signals to be identified
[69]. However, energy detection achieves the worst detec-
tion accuracy compared to the other available techniques
[44,46,70].

Regardless the sensing method used, each CU, before
sharing the local results with other CUs, has to find a way to
represent the local result. There are two popular schemes to
this end: soft-based and hard-based schemes. In soft-based
scheme [71], the local result is reported as it is , usually
by quantizing it with a large number of bits in order to mini-
mize the impact of the resultant distortion. On the other hand,
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Fig. 1 General description of
centralized cooperative
spectrum sensing process

Fig. 2 The frame structure of
the cognitive transmission

hard-based scheme are based on comparing the local result
to a predefined threshold in order to make a local binary
decision that can be transmitted via a single bit [14].

The next stage is to report the local results/decisions to a
common receiver, called fusion center (FC), that is responsi-
ble for processing them and for making a global decision of
the spectrum occupancy. The reporting of the results is usu-
ally accomplished through a common control channel based
on either a centralized time-division multiple access (TDMA)
[72] or a random access [73]. In a centralized TDM access,
each CU has its own time slot for reporting its local result,
while in a random access reporting scheme the CUs transmit
their reports without any coordination.

At the FC, the results received from different CUs are
processed by employing a specific fusion rule (FR) in order
to make the global decision. In general, the results received in
soft-based CSS schemes are weighted and summed up, and
then, the sum is compared to a threshold to make a global
decision. FRs for soft-based scheme can be classified accord-
ing the weights used, such as equal-gain combining (EGC),
where the weights of the all CUs are identical, maximal ratio
combining (MRC) [71], where each CU is weighted by its
signal-to-noise-ratio (SNR) and likelihood-ratio (LR) [74],
where the likelihood ratio statistical test is used to obtain
the most likely decision of the spectrum availability. As for
hard-based CSS schemes, the general rule is called K-out-of-
N rule [75], where the number of CUs that detect a signal is
compared to a threshold (K ), where N is the total number
of CUs. Depending on K , several rules can be derived for
the K-out-of-N rule, such as the OR rule (K = 1) [61], the
AND rule (K = N ) [76] and majority-logic rule (K = N/2),

also called voting or counting rule [77]. Figure 3 depicts the
function of the K-out-of-N rule.

2.2 Performance metrics

In the literature, the performance of CSS has been evaluated
by using different metrics, such as detection accuracy, energy
consumption, and achievable throughput. Detection accuracy
is measured by two probabilities: the detection probability
and the false-alarm probability. The detection probability is
defined as the probability that the CSS scheme identifies a
used spectrum as used, while the false-alarm probability is the
probability that the CSS scheme identifies an unused spec-
trum as used. The complementary probability of the detec-
tion probability is called missed-detection probability. It is
apparent that a low false-alarm probability improves the effi-
cient exploitation of the unused spectrum, as well as that a
low missed-detection probability limits the resulting inter-
ference at the licensed users. Usually, the detection accuracy
is evaluated through the error probability which represents
the sum of false-alarm and missed detection probabilities.

The energy consumption is defined as the average energy
consumed during local sensing, results’ reporting and data
transmission by all the CUs in the network. The energy
consumption depends on the number of cooperating CUs,
the sensing time and the detection accuracy. The achievable
throughput is represented by the average successfully trans-
mitted data by the scheduled CU. It is worthy mentioning that
the achievable throughput is directly affected by the detection
accuracy.
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Fig. 3 The function of the
K-out-of-N fusion rule

EE is the most recent metric that has been used to assess
the performance of CSS. The EE is defined as the aver-
age successfully transmitted data normalized by the energy
consumption. Based on this definition, the energy efficiency
combines all the other performance metrics presented above.
Thus, the EE has been widely accepted as a comprehensive
metric that can achieve the balance between the different
aspects of CSS performance.

3 Energy-efficient CSS approaches

The energy consumption of CR system is related to: (i) the
periodic nature of the process, (i i) its increase with the num-
ber of CUs, and (i i i) the increase of the number of channels.
Moreover, the energy loss in the case of missed-detection
magnifies the problem. Thus, energy-efficient approaches for
CSS are mandatory.

Many approaches aiming at improving the EE of CSS have
been presented in the literature. In this section, we review

these approaches. The presented approaches are classified,
as shown in Fig. 4, according to the CSS stage that they are
aimed at optimizing. As such, they can be split in three cate-
gories: (i) EE approaches for the local sensing stage, (i i) EE
approaches for the reporting stage and (i i i) EE approaches
for the decision-making stage.

3.1 Energy-efficient approaches for the local sensing stage

The energy consumed for local sensing is equal to the product
of the number of sensing users, the sensing time and the
sensing power. Thus, reducing energy consumption in the
sensing stage can be accomplished in two different ways,
either reducing the number of sensing users or by reducing
the sensing time.

3.1.1 Optimizing the number of sensing users

The number of sensing users plays a significant role in the
energy consumed in CSS. This is related to the fact that any

Fig. 4 The classification of the several energy-efficient CSS approaches found in the literature
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reduction in the number of sensing users leads to a reduc-
tion in all the preceding stages. In [78–80], the energy con-
sumption is reduced based on different scenarios by using the
minimum number of CUs that satisfies predefined thresholds
on the detection accuracy. In [78], an energy efficiency opti-
mization problem is formulated by minimizing the number
of sensing CUs while satisfying predefined constraints on the
detection and false-alarm probabilities. However, consider-
ing a limited frame length, minimizing the number of sensing
CUs does not necessarily maximize energy efficiency. In lim-
ited frame length, modifying the time given for a stage will
affect the time distribution for other stages in CSS. Hence,
minimizing the the number of sensing CUs may decrease the
reporting time but it gives more time for data transmission
which consumes more energy. In [80], the minimum num-
ber of sensing CUs that satisfies two constraints on detec-
tion and false-alarm probabilities is mathematically formu-
lated. Unlike [78], in [80] only the energy consumed in sens-
ing stage is considered, while energy consumed in results’
reporting and data transmission have not been taken into con-
sideration. A similar approach is presented in [79], where a
dynamic algorithm is presented to let only the minimum num-
ber of CUs participate in the sensing process. The proposed
algorithm continuously checks a binary indicator which rep-
resents the satisfaction of the desired detection accuracy in
terms of detection and false alarm probabilities. A new join-
ing CU is ordered to sense if the desired detection accuracy is
not attained. Otherwise, it can join the network without sens-
ing. The energy consumed in data transmission has not been
considered in [79]. It is worth mentioning that the attention
in [78–80] has been focused to energy consumption not to
energy efficiency, representing a drawback in all of them.
Moreover, they assume identical sensing performance for
all CUs, which is unrealistic assumption in light of differ-
ent channel conditions including the multi-path fading and
shadowing.

In [81], the CUs are divided into non-disjoint subsets such
that only one subset senses the spectrum while the other sub-
sets enter a low power mode. The energy minimization prob-
lem is formulated as a network lifetime maximization prob-
lem with constraints on the detection accuracy. However, the
mapping between network life time and energy consumption
is not investigated. Similarly, the authors of [82] propose an
algorithm that divides the CUs into subsets. Only the subset
that has the lowest cost function and guarantees the desired
detection accuracy is selected. The desired detection accu-
racy is defined by two thresholds on detection and false-alarm
probabilities, while the cost function is represented by the
total energy consumption. The proposed algorithm is built
based only on the OR rule. Although OR rule can limit the
interference at the licensed users, but it causes a high false-
alarm rates. Moreover, the achievable throughput of the pro-
posed algorithm is not discussed in the paper. In both works

[81,82], the proposed algorithms assume that the local sens-
ing performance of each CU is available at the FC in advance,
which requires extra resource expenditure in terms of time
and energy due to the accompanied overhead.

A distributed approach for selecting the participating CUs
is proposed in [83], where the expected energy consumption
is calculated by each CU prior to the beginning of the CSS
process: if it is lower than a given threshold, the correspond-
ing CU will participate. Otherwise, it will not participate.
However, the optimization of the participation threshold is
not investigated, especially in terms of the achievable detec-
tion accuracy.

Another distributed approach for selecting the sensing
CUs is presented in [84]. The proposed algorithm is based
on excluding CUs that have high correlated spectrum sensing
results. In detail, it is assumed that each CU has the ability
to overhear the sensing results of other CUs. Thus, each CU
calculates its correlation is within an acceptable range, it will
participate in the sensing stage. Otherwise, the correspond-
ing CU will not participate. Besides its additional complexity,
the ability to overhear the sensing result of other CUs is not
always possible.

In [85], the instantaneous battery level is considered as
a base for selecting the participating CUs in CSS. Particu-
larly, the FC classifies the CUs into two groups based on their
battery level which is assumed to be known at the FC. The
minimum number of sensing CUs is determined such that
a predefined threshold on detection probability is satisfied.
The minimum number of the sensing users is selected from
the second group (which has th battery highest level). If the
number of CUs in the second group is less than the mini-
mum required number of CUs, the rest is selected from the
first group (which has the lowest battery level) with equal
probabilities. Although the algorithm shows a good perfor-
mance in extending the lifetime of the CRN by considering
the battery level, it does not guarantee the achievable energy
efficiency.

In [86], a two-stage CSS is proposed, where CUs are
divided into two groups. In the first stage, the first group
senses the spectrum and reports the local decisions to the
FC. If the FC decides that the spectrum is occupied, the CSS
will be terminated. Otherwise, a second stage will be com-
menced, where the second group of CUs senses and reports
the results to the FC. At the FC, the sensing results of both
stages are processed in order to issue a global final decision.
The EE is maximized by optimizing the number of CUs in
each group and the fusion thresholds. A suboptimal solu-
tion for the maximization problem is found using the well-
known particle swarm optimization algorithm. A practical
drawback is in combining sensing results obtained at differ-
ent time instants. This might degrade the reliability of the
global decision as it is based on results gathered from two
different stages.

123



82 S. Althunibat et al.

Three different energy-efficient CSS algorithms for multi-
channel systems are proposed in [87]. The three approaches
select the sensing users based on their SNRs. In the first algo-
rithm, the minimum number of CUs that satisfies the desired
false-alarm probability and minimizes the the energy con-
sumption is assigned to sense a specific channel. The energy
consumption includes the energy consumed in sensing and
reporting. The second algorithm assigns the CUs with the
highest SNRs over a specific channel to sense it, while, in
the third algorithm, it is assumed that CUs already sensed the
channel, and only the CUs with the highest SNRs will report
their sensing results. However, the three proposed algorithms
assume the availability of the SNRs at the FC which is unre-
alistic assumption. Moreover, the energy consumed in data
transmission is not taken into account.

3.1.2 Optimizing the sensing time

Optimizing the sensing time/period constitutes another
approach that can be adopted for enhancing the EE of CSS.
In [88–90], the sensing time/period is investigated for indi-
vidual sensing systems. An adaptive sensing period based
on the past spectrum occupancy pattern is presented in [88].
Also, they propose a sequential sensing policy that enforces
the CUs to extend the sensing time when its sensing result
lies in a specific range. In [89], the CU switches to a non-
sensing mode (sleep mode) when a licensed user is detected.
The non-sensing time is optimized for maximizing a utility
function that combines energy saving and throughput loss.
The sensing and transmission durations are optimized in [90]
with the aim of maximizing the energy efficiency while satis-
fying constraints on detection accuracy and maximum avail-
able power. However, the proposals in [88–90] consider only
a single CU and do not investigate their proposal based on
CSS scenario.

As for CSS, [91,92] and [80] consider the sensing time as
a possible approach in order to reduce the energy consump-
tion. In [91], the CUs perform an initial short sensing stage
called coarse sensing. If the sensing result of a CU lies out-
side a specific predefined range, a binary local decision will
be reported from the corresponding CU to the FC. In the case
that the sensing result lies in the predefined range, no local
decision will be reported from the corresponding CU. At the
FC, a global decision (either used or unused) can be made
only if the majority decide it. The global decision cannot be
made if no majority exists, and therefore, a another sens-
ing stage is commenced by all CUs, called fine sensing. The
fine sensing stage is two times longer that the coarse stage.
Regardless of the fine sensing results, all CU will report their
binary decision to the FC where the global decision should
follow the majority decision. Although this two-stage sensing
scheme can affectively reduce sensing time, it causes extra
energy consumption in reporting stage since it is repeated

twice, which is not taken into account. Moreover, the influ-
ence of waiting the first global decision on the achievable
throughput is not investigated in [91], which might degrade
energy efficiency.

In [92], a utility function that consists of the difference
between the achievable throughput (revenue) and the con-
sumed energy (cost) is maximized by optimizing the sensing
time. A constraint is kept on the detection probability. How-
ever, the utility function does not consider the energy/time
spent during reporting the results to the FC. Also, only
the AND rule is adopted at the FC, which causes a high
missed detection rate. The optimal sensing time that min-
imizes energy consumption is obtained in [80]. Two con-
straints on the false alarm and detection probabilities are set,
while only the sensing energy is considered in the formulated
problem.

In [93], EE is maximized by optimizing the number of
sensing users, the sensing time, the transmit power and the
local detection threshold jointly and individually. An itera-
tive algorithm is presented to solve the joint optimization.
An interesting property of [93] is considering the energy
efficiency as a performance metric to be maximized with a
constraint on the detection probability. However, the energy
consumed in reporting is not considered in energy consump-
tion calculations.

A utility function that includes the difference between the
achievable throughput and the consumed energy is maxi-
mized in [94] by a joint optimizing of the sensing time and
the number of sensing users. The optimal solution is found
using an iterative algorithm. However, the energy and time
consumed in reporting the results to the FC are not taken into
consideration.

In [95] the sensing time is optimized in order to maxi-
mize the energy efficiency. The energy consumption function
includes all the energy consumed in sensing, reporting and
data transmission. However, no closed form expression of
the optimal sensing time is given. Instead, the golden section
search algorithm is used to find the optimal value.

A related work is in [96], where the sampling rate of the
sequential sensing is optimized in order to reduce the energy
consumption. The optimization problem is subject to con-
straints on detection and false alarm probabilities. However,
the work only considers a single CU, and energy expenditure
during CSS has not been considered while formulating the
optimization problem.

3.2 Energy-efficient approaches for the reporting stage

The second stage of CSS is the reporting stage, where CUs
transmit their local sensing results to the FC. Compared to the
sensing power, the power consumed in the reporting could
be higher. On the other hand, the time spent in sensing is
much longer than the time spent in reporting. Therefore, the
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energy consumed in the reporting stage may be comparable to
the energy consumed during the sensing stage. Several works
have studied techniques for reducing the energy consumption
during the reporting stage, as summarized as follows.

3.2.1 Optimizing the report form

In order to report the local result to the FC, each CU has to
represent its own result by using a finite a number of bits. The
reporting load has a contrasting impact on the overall perfor-
mance of the CSS. On the one hand, increasing the number
of bits enhances the amount of knowledge that is available
at the FC, which improves the detection accuracy. On the
other hand, a larger number of bits requires more bandwidth
and increases the energy consumption. A single-bit report-
ing scheme is called hard-based scheme, while multiple-bit
reporting schemes are called soft-based reporting schemes.
Although many works have compared them under different
setups and assumptions [97–101], none of them has investi-
gated the resulting energy consumption nor energy efficiency.

In [102], a novel reporting scheme is proposed, which
requires a single bit as in the hard-based scheme, but, at
the same time, it is capable of achieving a similar detection
accuracy as in soft-decision scheme. The idea is that each
CU reports one bit in a time slot that is related to its sensing
result, so that at the FC the sensing result can be inferred
from the arriving time slot. Considering the collision prob-
ability between CUs, the proposed scheme is shown to be
more energy-efficient than both soft-based and hard-based
schemes. A main drawback is that the scheme requires a high
accuracy in the synchronization between the FC and CUs.

3.2.2 Censoring and confidence voting

Censoring is a promising approach that can significantly
reduce the reporting CUs. In censoring, a CU does not
report its sensing result unless it lies outside a specific range
[61,103,104]. The censoring thresholds are optimized for
minimizing the energy consumption with constraints on the
detection accuracy in [72]. Two setups for the availability of
the prior information about the probability of spectrum occu-
pancy are considered, namely, blind setup and knowledge-
aided setup. However, the considered problem would show
more effectiveness if the EE maximization was considered
rather than energy consumption minimization as a problem
objective. Besides, energy consumed in data transmission is
not considered while computing the total energy consump-
tion.

Recently, in [105], censoring and truncated sequential
sensing are combined in order to reduce the energy con-
sumption in CSS. Specifically, the spectrum is sequentially
sensed, and once the accumulated energy of the sensed sam-
ples lies outside a certain region, the sensing is stopped and

a binary decision is sent to the FC. If the sequential sensing
process continues until a timeout, censoring is applied and
no decision is sent. The thresholds of the censoring region
are optimized in order to minimize the maximum energy
consumption per CU subject to a constraint on the detection
accuracy. Similar to [72], transmit energy is not considered.
Moreover, only two FRs are investigated instead of consid-
ering the general K-out-of-N FR.

In [106], a confidence voting scheme is presented. It works
as follows: if the sensing result of a specific CU agrees with
the global decision, it gains its confidence; otherwise, it loses
its confidence. When a user’s confidence level drops below a
threshold, it considers itself as unreliable and stops sending
its results. But it keeps sensing the spectrum and tracking
the global decision. As long as the result matches, it gains
its confidence. Once its confidence level passes beyond the
threshold, it rejoins the voting. The energy saving and the
detection accuracy of this approach are investigated in [106].
However, confidence level is based on the global decision
which is in some cases not reliable enough, especially in
case of malfunction or malicious CUs. Moreover, detection
accuracy cannot be guaranteed since the number of reported
CUs is varying in each sensing round.

Another simple approach for reducing the number of
reporting CUs without affecting the detection accuracy can
be found in [107]. The idea is based on an instantaneous
processing of the received results at the FC. Whenever a
global decision can be made, the reporting process is ter-
minated and the rest of the CUs do not report their local
sensing results. Despite its simplicity, this approach does not
impact the detection accuracy and it offers more EE than
other approaches. On the other hand, in case of non-identical
sensing performance among CUs, the reporting order of CUs
brings extra complexity and overhead at the FC. A similar
approach to [107] is presented in [108], where the reported
sensing statistics from CUs will processed sequentially at the
FC. The FC performs a hypothesis test each time after receiv-
ing a statistic from a CU. The FC stops the reporting process
when statistics gathered is sufficient for making a decision
at a specified reliability level. Otherwise, it will acquire an
additional statistic from another CU and repeat the above
procedures until it terminates. Unlike [107], the FC employs
Neyman-Pearson decision strategy instead of K-out-of-N FR.
The analytical and simulation results in [108] do not show
the performance of the proposed algorithm in terms of energy
efficiency.

3.2.3 Clustering

Clustering is a popular approach to reduce the overhead load
between the CUs and the FC. In clustering, CUs are sepa-
rated into clusters and one from each cluster is nominated as
cluster-head, which is in charge of collecting sensing results
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Fig. 5 An example of
cluster-based cooperative
spectrum sensing

from cluster-members and reporting a cluster-decision to the
FC on behalf of the cluster-members [109]. The cluster-
head can be dynamically changed in each CSS round. Fig-
ure 5 shows an example of cluster-based CSS. The energy
saving and the accuracy loss are investigated in [106]. In
addition to energy consumption analysis, time delay is con-
ducted in [110]. In [111] and [112] clustering and censoring
approaches are combined in one energy-efficient algorithm
considering the noisy reporting channels. In [113], a multi-
level cluster-based CRN is proposed, where the cluster-head
that are far away from the FC can forward their cluster deci-
sions to the near cluster-head rather than the FC. Such a
technique aims at reducing energy consumption in report-
ing process, however, it may generate synchronization chal-
lenges.

Although clustering reduces reported information to the
FC, it induces extra energy consumption during results
exchange inside the cluster itself. Besides, creating cluster-
ing is a complicated process that adds a significant amount of
complexity to the CRNs, especially in mobile CUs scenario.

3.3 Energy-efficient approaches for the decision-making
stage

Every CSS round ends by making a global decision about the
spectrum occupancy. The global decision is made by process-
ing the received local results/decisions, where a specific FR
is applied. Regardless of the form of the received results, a

predefined fusion threshold is needed to make a decision.
In [114], the fusion threshold of the K-out-of-N FR is opti-
mized for maximizing energy efficiency without constraints,
while a constraint on resulting interference represented by the
missed detection probability is set in [115]. In [116], the opti-
mal fusion threshold that maximizes the throughput of CRN
is obtained with constraints on the consumed energy per CU
and the overall detection probability. However, these opti-
mization problems require prior information bout the activ-
ity of the licensed users. Besides, an identical sensing per-
formance among all CUs is assumed in [114–116], which is
considered unrealistic assumption.

Three popular FRs for the noisy binary decisions are com-
pared based on limited time assumption in [117]. The con-
sidered FRs are LR, MRC and EGC. It is assumed that the
amount of prior information required for each FR is reported
together with the sensing decision, which impacts the time
and energy resources. Considering the limited time assump-
tion, EGC has been proved to be the optimal FR in terms of
detection accuracy and energy efficiency.

4 General discussion and concluding considerations

In this section, we present a simple example to show the per-
formance of some CSS approaches that have been reviewed
in the previous sections. We consider a CRN of 20 CUs
that experience the same signal-to-noise-ratio (−20 d B). The
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cognitive transmission is divided into frames, where each
frame lasts 50 ms. The sub-frame for data transmission is
assumed 45 ms, while the reporting time for each CU is
assumed 0.05 ms. The hard-based CSS is employed.

Figure 6 plots the performance of six different EE
approaches. First, the number of sensing users is optimized
for EE maximization as proposed in [78]. Second, the sens-
ing time is optimized for energy efficiency maximization , as
presented in [95]. The third column shows the maximum EE
if the fusion threshold is optimized, as proposed in [114] and
[115]. The energy efficiency if clustering approach is applied,
as proposed in [113]. The confidence voting approach, pre-
sented in [106] is shown in the fifth bar. Finally, the achieved
EE by the optimal censoring threshold is represented by the
last bar, as proposed in [72].

The results show that optimizing the number of sens-
ing users is the most efficient approach in improving the

energy efficiency. This is due to the reason that excluding
some users from sensing will not only save sensing energy,
but also will reduce energy consumption in reporting stage.
Another observation that can be seen on Fig. 6 is that the
least significant approach is optimizing the sensing time as it
directly affects the detection accuracy for all CUs. Although
the clustering reduces energy consumed in reporting to the
FC, it induces extra energy consumption during reporting
the results to the cluster-heads.Therefore, clustering shows a
moderate EE value. As both censoring and confidence voting
affect the detection accuracy, they do not outperform other
techniques in energy efficiency. Optimizing the employed FR
achieves a high EE since it does not require any other energy
costs.

We conclude this article by providing some design guide-
lines that are useful for designing energy efficient CSS meth-
ods (summarized in Table 1):

– More practical conditions should be considered while
proposing, designing and evaluating energy-efficient
approaches. Table 2 summarizes the whole energy-
efficient works discussed in this article. Apparently, faded
sensing channels and noisy reporting channels have been
rarely considered although channel characteristics might
severely influence the performance. Therefore, we rec-
ommend that realistic channel conditions, for sensing and
reporting, should be assumed in order to provide accepted
practical evaluation.

– The overall performance of the CRN can be compre-
hensively described by the EE rather than using other
metrics. In other metrics, additional constraints should
be set in order to avoid negative effects on other per-
formance aspects. For instance, minimizing energy con-
sumption is usually accompanied by additional con-
straint(s) on detection probability, false-alarm probabil-
ity and/or throughput as shown in Table 2. However,

Table 1 Summary of the proposed guidelines for designing EE CSS approaches

1 An EE algorithm that is designed for a specific stage should not induce extra energy consumption in the
preceding/following CSS stages

2 An EE algorithm should not affect the detection accuracy, or should be able to keep it within an acceptable range

3 Realistic channel conditions including fading and shadowing should be considered while evaluating the performance of the
proposed EE algorithm

4 Noisy reporting channels between the FC and The CUs should be considered

5 Non-identical channel conditions should be taken into account while designing EE CSS algorithms

6 Energy consumed during data transmission should be taken into consideration since it is directly affected by the CSS

7 The performance of the designed EE CSS algorithms should be performed in terms of the energy efficiency with additional
constraint on the detection probability

8 The designer should take into account that the available resources including time and energy are limited

9 Maximizing the energy efficiency of CSS is achieved by a comprehensive EE approach that addresses the energy efficiency
in all CSS stages
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Table 2 Summary of the EE approaches for CSS

Work Adopted
approach
(Section No.)

Constraints Channel fading
considered?

Noisy reporting
considered?

Employed energy
metric

Transmit energy
considered?

[78] 3.1.1 Detection and false-alarm
probs.

No No No. of users No

[79] 3.1.1 Detection and false-alarm
probs.

No No Percentage No

[80] 3.1.1 & 3.1.2 Detection and false-alarm
probs.

No No Energy in Joule No

[81] 3.1.1 Detection and false-alarm
probs.

No No Network lifetime No

[82] 3.1.1 Detection prob. No No Energy in Joule No

[83] 3.1.1 None Yes Yes Energy efficiency in
bit/J

Yes

[84] 3.1.1 False-alarm prob. No No Energy in Joule No

[85] 3.1.1 Detection prob. Yes Yes Sensor’s lifetime &
no. of sensors

Yes

[86] 3.1.1 None No No Energy efficiency in
bit/Hz/J

Yes

[87] 3.1.1 Detection prob. No No Energy inJoule No

[88] 3.1.2 None Yes No Energy efficiency
ratio

No

[89] 3.1.2 None ND No Energy saving ratio No

[90] 3.1.2 Detection prob. ND No energy efficiency in
bit/J

Yes

[91] 3.1.2 None No No Energy saving ratio No

[92] 3.1.2 Detection prob. No No Normalized utility
function

Yes

[93] 3.1.1 & 3.1.2 Detection and false-alarm
probs.

No No energy efficiency in
bit/J

Yes

[94] 3.1.1 & 3.1.2 Detection prob. Yes No Utility function Yes

[95] 3.1.2 None No No Energy efficiency in
Bit/Hz/J

Yes

[96] 3.1.2 Detection and false-alarm
probs.

No No energy consumption
in Joule

No

[102] 3.2.1 false-alarm probability No No Energy efficiency in
bit/J

Yes

[105] 3.2.2 Detection and false-alarm
probs.

No No Energy consumption
in Joule

No

[106] 3.2.2 & 3.2.3 None No No Energy consumption
ratio

No

[107] 3.2.2 None No Yes Energy efficiency in
bit/J

Yes

[108] 3.2.2 None No No No. of users No

[110] 3.2.3 None ND No Power consumption
ratio

No

[111] 3.2.3 & 3.2.2 None Yes Yes Energy saving
percentage

No

[112] 3.2.3 & 3.2.2 None No No Power consumption
ratio

No

[113] 3.2.3 None No Yes Energy in Joule Yes
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Table 2 continued

Work Adopted
approach
(Section No.)

Constraints Channel fading
considered?

Noisy reporting
considered?

Employed energy
metric

Transmit energy
considered?

[114] 3.3 None No No Energy efficiency in
bit/J

Yes

[115] 3.3 Detection probability ND Yes Energy efficiency in
bit/J

Yes

[116] 3.3 Detection probability and
energy consumption

No No Normalized
throughput

Yes

[117] 3.3 None Yes Yes Energy efficiency in
J/bit

Yes

ND not determined

employing EE as the evaluating metric will strike a bal-
ance between the different aspects of the performance
from the CUs perspective since all the other metrics are
inherently combined in it. The only constraint that might
be required is an upper bound on the missed-detection
probability, which limits the interference at the licensed
users.

– Following the EE definition, the transmit energy of the
scheduled CU, if any, should be taken in considera-
tion once the total energy consumption is calculated.
Although transmit energy is spent after CSS, it is directly
affected by the detection accuracy of CSS and the remain-
ing time resources of the total cognitive frame. Similarly,
energy and time that are spent in results reporting should
be considered in the energy efficiency evaluation.

– According to limited time/ bandwidth resources assump-
tion, decreasing (or increasing) the number of partici-
pating CUs in CSS does not necessarily entail reducing
energy consumption (or increasing achievable through-
put). Therefore, the available limited resources should be
considered while optimizing the number of participating
CUs for maximizing energy efficiency.

– Proposed approaches for a single stage should take into
account the possible influence on the other stages. Specif-
ically, a proposed algorithm may decrease energy expen-
diture in a specific stage, but it causes (or requires) addi-
tional energy consumption in preceding (or following)
stages, leading to inferior overall performance of the
proposed algorithm. For instance, some CU-selection
algorithm requires additional information about each
CU, which should be accounted while evaluating the
performance. Also, in clustering approach, the induced
overhead to form clusters and nominate heads causes
extra time and energy resources. However, there are
some other approaches with low complexity and have
no side-effects. An example is censoring technique that
can hugely reduces the reporting load, and consequently,
energy consumption, without extra resources expenditure

since censoring is performed distributively with a simple
manner.

– The literature lacks a comprehensive solution that inte-
grates several proposed algorithms among multiple stages
of the CSS. However, the diversity of the scenarios
and assumptions that delineate the cognitive transmis-
sion makes a unique universal solution not an easy task.
For instance, algorithms designed for cognition in TV
band should be different from those dedicated for cellular
bands, where the different activity pattern of the licensed
users should be considered. Similarly, other factors play
a significant role in marking a specific solution among
others, such as the amount of prior information, the num-
ber of CUs, the frame time length, the maximum allow-
able interference, the available limited power resources,
channel characteristics and QoS requirements. Moreover,
all cognitive transmission stages starting from the local
sensing and ending by the data transmission should be
included in the designed global energy-efficient frame-
work.
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