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Abstract In this paper, we propose a clustering approach
for solving the problem of reconstructing cross-cut shred-
ded documents. This problem is important in the field of
forensic science. Unlike other clustering approaches which
are applied as a preprocessing step before the actual recon-
struction algorithms, our clustering approach is part of the
reconstruction process itself. We define a new cost function
which mainly relies on black pixels to measure the cost of
pairing two shreds together. The reconstruction algorithm
creates multiple clusters which grow by adding additional
shreds based on the cost function. Adding a shred may result
in merging two or more clusters to produce a larger cluster.
We, also, propose a way to involve the user in the recon-
struction process. We compare our approach with a recent
proposal and conclude that our approach gives better solu-
tions in less time.

Keywords Cross cut · Shred · Reconstruction · Cost
function · Document

1 Introduction and related work

Recent years have witnessed a growing interest in the field
of document analysis [5, 8, 9, 12]. One interesting prob-
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lem in this field is the problem of reconstructing shredded
documents, which is very important in the field of foren-
sic science [16]. Documents can be shredded by hand [7]
or using a shredding machine [13]. One type of shredding
machines shreds the document into strips, in which case the
document is called strip-cut document. Another type of ma-
chines shreds documents both horizontally and vertically.
This type of machines produces cross-cut shredded docu-
ments. The problem of reconstructing these documents can
be considered as a special case of the jigsaw puzzle [16].
Proposals for solving the jigsaw puzzle can be found in [3,
6, 15]. Given N shreds, each of which is presented as a bi-
nary bitmap of size W × H pixels, and assuming that the
shreds are placed in the correct orientation, the problem of
reconstructing shredded document is to find the correct po-
sitioning of these shreds such that they compose the origi-
nal document. Few researches have worked on solving the
problem of reconstructing strip-cut documents. Prandtstet-
ter and Raidl proposed a method that used a specific Vari-
able Neighborhood Search [11] approach to reconstruct doc-
uments [13], which involved the user in the construction
process to enhance the results. Ukovich et al. proposed an
algorithm for the reconstruction of strip-cut shredded doc-
uments, paying particular attention to the possibility of us-
ing MPEG-7 descriptors [16]. Marques and Freitas used fea-
tures such as boundary color and utilized the Nearest Neigh-
bor Algorithm to calculate the Euclidean distance between
the feature vectors corresponding to the concerned strips.
The winner takes all approach was used to decide which
strips would fit together [10].

In [14], Prandtstetter and Raidl introduced an algorithm
for reconstructing a cross-cut document consisting of N

rectangle-shaped equal sized shreds in the correct orienta-
tion. The algorithm utilized a cost function to measure the
alignment incompatibility error arising due to setting two
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specific shreds next to each other. The cost function counts
the number of pixels not having the same values on both
borders of the two shreds.1 A smaller cost means better pos-
sibility that the alignment is correct. It is worth noting that in
this case the cost of aligning two shreds with white borders
is 0, while most correct alignments will have cost > 0. This
is because the cost function treats white and black pixels
similarly. An initial solution can be obtained in polynomial
time, which is followed by a search method such as Variable
Neighborhood Search [11] or Ant Colony Optimization [4]
to enhance the initial solution.

This article proposes a new clustering approach for re-
constructing cross-cut shredded text documents. Unlike
other clustering approaches used as a preprocessing step,
such as in [17], our clustering approach is part of the actual
reconstruction process. Our algorithm utilizes a cost func-
tion that only considers black pixels; i.e., when two shreds
have matching white pixels on their edges, the algorithm
does not consider this as a sign that these shreds should be
paired together. We argue that black pixels carry more mean-
ingful information in comparison with white pixels. Given
N shreds in the correct orientation, we assume that a prepro-
cessing algorithm such as the ones in [1, 2] runs before our
algorithm starts. Each shred is presented as a binary bitmap
of size W × H pixels. The problem is to find the correct po-
sitioning of these shreds such that they compose the original
document. A human is the final judge for the correctness of
the solution.

Section 2 describes our proposed cost functions. Next,
Sect. 3 proposes a reconstruction algorithm and gives an ex-
ample of the reconstruction process. Then, Sect. 4 shows the
results of the experiments conducted to evaluate the perfor-
mance of our proposed algorithm and to compare it with the
algorithm in [14]. Section 5 describes the process of user
interaction that we implemented to obtain enhanced results
and Sect. 6 summarizes the article.

2 Proposed cost functions

This section proposes two cost functions; namely, CostX(A,
B) and CostY(A, B). CostX(A, B) returns the error ob-
tained due to placing shred B right next to shred A, whereas
CostY(A, B) returns the error obtained due to placing shred
A on top of shred B. Both cost functions consider black pix-
els only. To show why this is important, assume that the
right border of shred A is white except for some black pix-
els on the top and the left border of shred B is white except
for some pixels on the bottom. In this example, it is most
probably that shred B should not be aligned on the right of

1They actually use a slightly different cost function, see [13] for more
information.

Fig. 1 The meaning of
RightLines and LeftLines
functions in a sample shred

shred A, but considering white pixels may erroneously con-
sider this alignment to be valid.

For each shred A, we define:

– RightLines(A) = the array of text lines that appear in the
t% right part of the shred.

– LeftLines(A) = the array of text lines that appear in the
t% left part of the shred.

The threshold value t is determined experimentally. Fig-
ure 1 shows a sample shred. When t is chosen to be 15, the
vertical red lines show the 15% left part and the 15% right
part of the shred. For the left part, there are 5 text lines while
for the right part there are 7 text lines. The horizontal red
lines show the start and end of text lines.

RightLines and LeftLines can be calculated in many
ways. We start by scanning the first row of the shred for
black pixels. When such pixels are found, we mark this row
as the start of a text line in the shred. We continue to the
next row until we find a row with no black pixels. When we
reach such a row, we mark this row as the end of the text
line. Then, we search for the next row with black pixels to
mark it as a start of a new line. The process is repeated until
the last row has been reached. In order to avoid considering
noise or a small number of pixels as a line, we ignore lines
with height less than some threshold value. However, in case
that the first line starts at row 0 or that the last line ends at
row H − 1, we accept first and last lines to be of any height.
While this threshold value may vary, a heuristic algorithm
can easily determine the average height of text lines in a
shred, and this threshold value is a percentage of the height
of text lines. By experimenting, we found that this threshold
should be 25% of the average line height.

Before we define the horizontal cost function CostX, we
need to define some functions that are utilized by CostX
function. The NumberOfCompatibileLinesX(A, B) function
(defined in Algorithm 1) counts the number of compatible
lines between the right part of A and the left part of B. A line
in A is considered to be compatible with a line in B if they lie
approximately at the same vertical position. RightLines(A)
is the array of lines in the right side of A. Each element of
this array has a property named Location which specifies
the vertical position of the line (as per Fig. 2). The vertical
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Fig. 2 The meaning of the
Location property in RightLines
and LeftLines arrays in a sample
shred, each red line corresponds
to the Location property of each
text line

Algorithm 1 NumberOfCompatibileLinesX(A, B)
i ← 0

j ← 0

numLines ← 0

while i < RightLines(A).Length

and j < LeftLines(B).Length do

posDifference ← |RightLines(A)(i).Location–

LeftLines(B)(j ).Location|

if posDifference < Pixelth then

numLines ← numLines +1

i ← i + 1

j ← j + 1

else

if RightLines(A)(i).Location>

LeftLines(B)(j ).Location then

j ← j + 1

else

i ← i + 1

end if

end if

end while

return numLines

position of a line is the center of gravity of black pixels be-
tween the vertical position of the beginning of the line and
the vertical position of the end of the line. We assume that
this array is sorted according to the vertical position in an
increasing manner. LeftLines(B) is defined in the same way
with respect to the left side of the shred.

Experimentally, we found that Pixelth should be of value
33% of the average text line height, which may differ de-
pending on the font sizes. A simple heuristic function can
determine the average line height and hence determine this
value.

Next, we define an important function LinesCompatibili-
tyX(A , B) that returns whether the right lines of A are com-
patible with the left lines of B (Algorithm 2).

In our implementation for the LinesCompatibilityX algo-
rithm, we use Linesth of value 1. The following PixelCom-
patibilityX(A, B, y) Algorithm 3 determines the compatibil-

Algorithm 2 LinesCompatibilityX(A, B)
if RightLines(A).Length = 0 or

LeftLines(B).Length = 0 then

return false

end if

linesDifference ←
|RightLines(A).Length −LeftLines(B).Length|

if linesDifference > Linesth then

return false

end if

numCompatibileLines ←
NumberOfCompatibileLinesX(A,B)

if numCompatibileLines = 0 then

return false

end if

return true

Algorithm 3 PixelCompatibilityX(A, B, y)
return PixelCompatibilityXLeftSide(A,B,y) +
PixelCompatibilityXRightSide(A,B,y)

ity between the pixels at height y in the right border of A
and the left border of B.

The pixels of the right border of shred A can be obtained
by the function RightBorderPixel(A, y) where y is the row
number which may have a value from 0 to H − 1. Likewise,
the pixels of the left border of shred B can be accessed via
the function LeftBorderPixel(B, y). The weights of the pix-
els that we use (0.75, 1.5, 4 and 5) are determined exper-
imentally. The PixelCompatibilityXLeftSide (Algorithm 4)
and PixelCompatibilityXRightSide (Algorithm 5) functions
are outlined as follows. Please note also that these functions
are considered as an extension of the cost function [14].

The AllPixelsCompatibilityX(A, B) Algorithm 6 deter-
mines the overall compatibility between the border pixels of
shred A and B.

The following CostX(A, B) function (Algorithm 7) is
the cost function which characterizes the cost of horizon-
tally aligning shred A next to shred B. CostX utilizes the
two functions BlackPixelsRight(A) and BlackPixelsLeft(B)
which return the number of black pixels on the right border
of A and the number of black pixels on the left border of B,
respectively. If any shred has less black pixels on its border
than Blackth, then the information obtained by this border is
unreliable and thus we need to ignore it. In our implementa-
tion, we use Blackth of value 2.

The CostY(A, B) function (Algorithm 8) characterizes
the cost of aligning shred A on top of shred B. It utilizes
the BlackPixelsBottom(A) and BlackPixelsTop(B) func-
tions which return the number of black pixels in row H − 1
in shred A and the number of black pixels in row 0 in shred
B, respectively.
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Algorithm 4 PixelCompatibilityXLeftSide(A, B, y)
if RightBorderPixel(A,y) = White then

return 0

end if

Sum ← 0

if LeftBorderPixel(B,y − 1) = Black then

Sum ← Sum +1.5

else

Sum ← Sum−0.75

end if

if LeftBorderPixel(B,y) = Black then

Sum ← Sum +4

else

Sum ← Sum −5

end if

if LeftBorderPixel(B,y + 1) = Black then

Sum ← Sum +1.5

else

Sum ← Sum −0.75

end if

return Sum

Algorithm 5 PixelCompatibilityXRightSide(A, B, y)
if LeftBorderPixel(B,y) = White then

return 0

end if

Sum ← 0

if RightBorderPixel(A,y − 1) = Black then

Sum ← Sum +1.5

else

Sum ← Sum −0.75

end if

if RightBorderPixel(A,y) = Black then

Sum ← Sum +4

else

Sum ← Sum −5

end if

if RightBorderPixel(A,y + 1) = Black then

Sum ← Sum +1.5

else

Sum ← Sum −0.75

end if

return Sum

Algorithm 6 AllPixelsCompatibilityX(A, B)

return
∑H−2

y=1 PixelCompatibilityX(A,B,y)

The AllPixelsCompatibilityY(A, B) function is the same
as AllPixelsCompatibilityX(A, B), except that AllPixels-
CompatibilityY(A, B) considers the last row of A and the
first row of B. Please note that both functions return −1x

Algorithm 7 CostX(A, B)
if BlackPixelsRight(A) < Blackth or

BlackPixelsLeft(B) < Blackth then

return ∞
end if

if LinesCompatibilityX(A,B) then

return −1x AllPixelsCompatibilityX(A,B)

else

return ∞
end if

Algorithm 8 CostY(A, B)
if BlackPixelsBottom(A) < Blackth or

BlackPixelsTop(B) < Blackth then

return ∞
end if

return −1× AllPixelsCompatibilityY(A,B)

their respective pixel compatibility function because cost is
inversely proportional to compatibility.

3 The reconstruction algorithm

The reconstruction algorithm starts by creating an array
called the CostArray of 2×N ×(N −1) items. Each item
has four fields: Shred1, Shred2, Direction and Cost. Shred1
and Shred2 can have values from 0 to N −1 and Direc-
tion can have one of two values: Vertical or Horizontal. The
fourth field Cost captures the cost of aligning Shred1 and
Shred2 according to the value stored in the Direction field.
The CostArray represents all possible pairs of shreds on dif-
ferent directions and the cost of such pairing. This array is
created by the following CreateCostArray Algorithm 9. The
CostArray array is sorted after it is created.

The SolutionStructure is a data structure that holds the
solution or part of the solution. It is a 2-dimensional repos-
itory of ShredNode objects. A ShredNode object holds in-
formation about a single shred. Each ShredNode can be ac-
cessed by the position which is relative to the position of the
first shred inserted in the structure. For example, if the struc-
ture is initialized with shred A, then shred A will have posi-
tion (0, 0). If shred B is inserted to the right of shred A, then
shred B will have position (1, 0). If shred C is inserted to the
left of shred A then shred C will have position (−1,0), as per
Fig. 3. Each ShredNode maintains the number(index) of the
shred it represents and its position. This information is cap-
tured by the fields ShredNode.ShredIndex, ShredNode.xPos
and ShredNode.yPos. The SolutionStructure maintains four
important fields which are MinimumX, MaximumX, Mini-
mumY and MaximumY that define the borders of the solu-
tion.
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Algorithm 9 CreateCostArray
arrayIndex ← 0

for i = 0 to N − 1 do

for j = 0 to N − 1 do

if i �= j then

CostArray[arrayIndex] ← (i,

j,Horizontal,CostX(i, j))

arrayIndex ← arrayIndex +1

CostArray[arrayIndex]←
(i, j,Vertical,CostY(i, j))

arrayIndex ← arrayIndex +1

end if

end for

end for

sort array CostArray by Cost in an increasing manner

return CostArray

Fig. 3 The shred indexing method

The InsertShredNode (SolStruct, ShredIndex, xPos, yPos)
function inserts a shred into the solution at the specified po-
sition. The MergeTwoSolutionStructures (SolStruct1, Sol-
Struct2, xPos1, yPos1, xPos2, yPos2) (Algorithm 10) takes
two solution structures and merges them together. This func-
tion adds the contents of SolStruct2 into SolStruct1 and
deletes SolStruct2, the function places the nodes of Sol-
Struct2 into SolStruct1 such that their new relative posi-
tion to (xPos1, yPos1) is the same as their original relative
position to (xPos2, yPos2). This function fails if it tries to
place a shred from SolStruct2 in a non-empty position of
SolStruct1; i.e., if the merging process results in having two
shreds in the same position in SolStruct1, the whole merg-
ing process will be canceled. The MergeTwoSolutionStruc-
tures function utilizes the InsertShredNode function as well
as the FindShredNodeByShredIndex (SolStruct, ShredIn-
dex) and FindShredNodeByPosition (SolStruct, xPos, yPos)
functions which retrieve a ShredNode by index or relative
position, respectively.

Now, we are ready to define the reconstruction algorithm
ReconstructShreds. For simplicity, we use MTSS as an ab-
breviation for MergeTwoSolutionStructures.

The ReconstructShreds Algorithm 11 is responsible for
discovering the positions of the N shreds using the CostAr-
ray array. Each time it reads an item from CostArray, it per-
forms an action depending on whether the shreds in this
item have already been placed into some cluster. Clusters
are of type SolutionStructure. When the algorithm retrieves
the first item in CostArray array (which is the pair of shreds

Algorithm 10 MergeTwoSolutionStructures (SolStruct1,
SolStruct2, xPos1, yPos1, xPos2, yPos2)
for i = SolStruct2.MinimumX to

SolStruct2.MaximumX do

for j = SolStruct2.MinimumY

to SolStruct2.MaximumY do

sNode ←
FindShredNodeByPosition(SolStruct2, i, j )

if sNode �= NULL then

newPosX ← i − xPos2 + xPos1

newPosY ← j − yPos2 + yPos1

dNode ←
FindShredNodeByPosition(SolStruct1,

newPosX , newPosY)

if dNode �= NULL then

return false

end if

end if

end for

end for

for i = SolStruct2.MinimumX to

SolStruct2.MaximumX do

for j = SolStruct2.MinimumY

to SolStruct2.MaximumY do

sNode ←
FindShredNodeByPosition(SolStruct2, i, j )

if sNode �= NULL then

newPosX ← i − xPos2 + xPos1

newPosY ← j − yPos2 + yPos1

InsertShredNode(SolStruct1,

sNode.ShredIndex, newPosX,

newPosY)

end if

end for

end for

remove all nodes from SolStruct2

return true

that have the smallest alignment cost), it creates a new clus-
ter and inserts the two paired shreds into this cluster (Al-
gorithm 12). On the second read, the array returns the pair
of shreds with the next least cost. If none of the shreds of
this item are already placed in a previous cluster, then the
algorithm will create a new cluster for the two shreds, see
the CreateNewCluster (Algorithm 13) sub-function. If only
one of these shreds is already placed in any of the exist-
ing clusters, the algorithm inserts the other shred in that
cluster in the appropriate position unless that position is
already occupied, in which case the algorithm skips this
item, see the InsertShred2IntoCluster1 (Algorithm 14) and
the InsertShred1IntoCluster2 (Algorithm 15) sub-functions.
If both shreds are already placed in two different clusters,
the reconstruction algorithm tries to merge the two clusters



1496 A. Sleit et al.

Algorithm 11 ReconstructShreds
The following variables (up to numClusters) are

global variables

numberOfShredsPut ← 0

for index = 0 to N − 1 do

shredPut[index] ← false

end for

CostArray ← CreateCostArray()

CostArrayIndex ← 0

Clusters ← ϕ

numClusters ← 0

while numberOfShredsPut < N do

S1 ← CostArray[CostArrayIndex].Shred1

S2 ← CostArray[CostArrayIndex].Shred2

shredsDirection ←
CostArray[CostArrayIndex].Direction

if shredPut[S1] and shredPut[S2] then

ReconstructShreds.MergeClusters

(shredsDirection,S1, S2)

else

if not shredPut[S1] and not shredPut[S2] then

ReconstructShreds.CreateNewCluster

(shredsDirection, S1, S2)

else

if shredPut[S1] then

ReconstructShreds.InsertShred2IntoCluster1

(shredsDirection, S1, S2)

else

ReconstructShreds.InsertShred1IntoCluster2

(shredsDirection, S1, S2)

end if

end if

end if

CostArrayIndex ← CostArrayIndex +1

end while

using the position of these two shreds and the direction spec-
ified by CostArray to select the merge positions of these
clusters, see the MergeClusters sub-function. The algorithm
stops when all shreds are placed into the solution. The Re-
constructShreds algorithm is detailed as follows.

In order to explain the ReconstructShreds algorithm, we
provide an example for reconstructing 8 shreds using the
computed and sorted CostArray in Table 1.

The reconstruction algorithm starts with the first item. It
checks it to see that both shred 0 and shred 1 have not yet
been placed into any clusters. The algorithm creates a new
cluster for them as shown in Fig. 4.

Inspecting the second item of CostArray, the algorithm
finds that both shred 10 and 11 have not yet been placed
into a cluster. Therefore, it creates a new cluster for them as
shown in Fig. 5.

Algorithm 12 ReconstructShreds.MergeClusters (shredsDi-
rection, S1, S2)
C1 ← ShredCluster[S1]
C2 ← ShredCluster[S2]
if C1 �= C2 then

S1Node ←
FindShredNodeByShredIndex(Clusters[C1], S1)

S2Node ←
FindShredNodeByShredIndex(Clusters[C2], S2)

xPos2 ← S2Node.xPos

yPos2 ← S2Node.yPos

if shredsDirection = Horizontal then

xPos1 ← S1Node.xPos +1

yPos1 ← S1Node.yPos

if MTSS(Clusters[C1],Clusters[C2], xPos1,

yPos1, xPos2, yPos2) then

for each shreds s in Clusters[C2] do

ShredCluster[s] ← C1

end for

end if

else

xPos1 ← S1Node.xPos

yPos1 ← S1Node.yPos +1

if MTSS(Clusters[C1],Clusters[C2], xPos1,

yPos1, xPos2, yPos2) then

for each shreds s in Clusters[C2] do

ShredCluster[s] ← C1

end for

end if

end if

end if

Algorithm 13 ReconstructShreds.CreateNewCluster
(shredsDirection, S1, S2)
Clusters[numClusters] ← new SolutionStructure

InsertShredNode(Clusters[numClusters], S1,0,0)

ShredCluster[S1] ← numClusters

if shredsDirection = Horizontal then

InsertShredNode(Clusters[numClusters], S2,1,0)

else

InsertShredNode(Clusters[numClusters], S2,0,1)

end if

shredPut[S1] ← true

shredPut[S2] ← true

ShredCluster[S2] ← numClusters

numClusters ← numClusters +1

numberOfShredsPut ← numberOfShredsPut +2

Then, the algorithm inspects the third item in the array
to find that shred 1 is already placed in cluster 1 but shred
2 has not yet been placed into any cluster. Consequently, it



An alternative clustering approach for reconstructing cross cut shredded text documents 1497

Algorithm 14 ReconstructShreds.InsertShred2IntoCluster1
(shredsDirection, S1, S2)
C1 ← ShredCluster[S1]
S1Node ← FindShredNodeByShredIndex(Clusters[C1],
S1)

if shredsDirection = Horizontal then

xPos2 ← S1Node.xPos +1

yPos2 ← S1Node.yPos

else

xPos2 ← S1Node.xPos

yPos2 ← S1Node.yPos + 1

end if

SomeNode ← FindShredNodeByPosition(Clusters[C1],

xPos2, yPos2)

if SomeNode = NULL then

InsertShredNode(Clusters[C1], S2, xPos2, yPos2)

ShredCluster[S2] ← C1

numberOfShredsPut ← numberOfShredsPut +1

shredPut[S2] ← true

end if

Algorithm 15 ReconstructShreds.InsertShred1IntoCluster2
(shredsDirection, S1, S2)
C2 ← ShredCluster[S2]
S2Node ← FindShredNodeByShredIndex(Clusters[C2],
S2)

if shredsDirection = Horizontal then

xPos1 ← S2Node.xPos −1

yPos1 ← S2Node.yPos

else

xPos1 ← S2Node.xPos

yPos1 ← S2Node.yPos −1

end if

SomeNode ← FindShredNodeByPosition(Clusters[C2],

xPos1, yPos1)

if SomeNode = NULL then

InsertShredNode(Clusters[C2], S1, xPos1, yPos1)

ShredCluster[S1] ← C2

numberOfShredsPut ← numberOfShredsPut +1

shredPut[S1] ← true

end if

Fig. 4 Cluster 1 is created after
processing the first item of the
example CostArray

adds shred 2 into cluster 1 right next to shred 1 preserving
the direction specified in the CostArray as shown in Fig. 6.

Inspecting the fourth item of the CostArray, the algorithm
finds that both shred 1 and shred 10 have been assigned to

Table 1 The CostArray array used in the example

Shred1 Shred2 Direction Cost

0 1 Horizontal –300

10 11 Horizontal –290

1 2 Horizontal –280

1 10 Horizontal –277

2 11 Vertical –275

18 19 Horizontal –270

19 28 Vertical –260

10 19 Vertical –250

. . . . . . . . . . . .

. . . . . . . . . . . .

Fig. 5 Cluster 2 is created after processing the second item of the
example CostArray

Fig. 6 Processing the third item of the example CostArray

Fig. 7 Processing the fourth item of the example CostArray

two different clusters. The algorithm tries to merge the two
clusters. However, the algorithm finds that merging the two
clusters will make two shreds (shred 10 and shred 2) have
the same position in cluster 1. Therefore, the algorithm can-
cels the merge operation and the clusters keep the original
state as per Fig. 7.

Inspecting the fifth item of the CostArray, the algorithm
finds that both shred 2 and shred 11 have been assigned to
two different clusters. The algorithm uses this information
to merge the two clusters as shown in Fig. 8.

Then, the algorithm will inspect the sixth item in the ar-
ray to find that both shred 18 and shred 19 have not been
placed yet into any clusters. The algorithm creates a new
cluster for these two shreds as shown in Fig. 9.
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Fig. 8 Merging cluster 1 and 2
due to processing the fifth item
of the example CostArray

Fig. 9 Cluster 2 is created due to processing the sixth item of the ex-
ample CostArray

Fig. 10 Processing the seventh item of the example CostArray

Fig. 11 Merging cluster 1 and
2 due to processing the eighth
item of the example CostArray

Inspecting the seventh item in the array, the algorithm
finds that shred 19 is already assigned to cluster 2 but shred
28 has not yet been assigned to any cluster. The algorithm
adds shred 28 into cluster 2 right under shred 19 as shown
in Fig. 10.

Finally, the algorithm inspects the eighth item of the
CostArray to find that both shred 10 and shred 19 have
been assigned to two different clusters. The algorithm will
use this information to merge the two clusters as shown in
Fig. 11.

Fig. 12 Average number of correct pairs for different documents and
different sizes

Fig. 13 Average run time for different documents and different sizes

4 Experimental results

In order to evaluate the performance of the proposed al-
gorithm, we considered two main performance metrics;
namely, the number of generated correct pairs and run time
requirement. We used a single core of a Core2 duo 2.00 GHz
with 3 Gigabytes of RAM. Please note that a document
cut into Y × Y shreds has 2 × Y × (Y − 1) correct pairs;
Y × (Y − 1) horizontal pairs and Y × (Y − 1) vertical pair.

We considered a set of 100 documents shredded into
5 × 5, 6 × 6, 7 × 7, 8 × 8, 9 × 9, 10 × 10, 11 × 11, 12 × 12,
13 × 13, 14 × 14, and 15 × 15 shreds by the computer. Fig-
ures 12 and 13 characterize the performance of the proposed
reconstruction algorithm in terms of the average number of
correct pairs and average time needed to execute the algo-
rithm, respectively. The displayed run times include reading
the shred bitmaps from disk, calculating the CostArray array
and running the reconstruction algorithm.
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Table 2 A comparison between our algorithm and the one in [14]

# Shreds Correct Pairs Time in milliseconds

Our proposal [14] Our proposal [14]

9 × 9 63.08 (δ : 26.48) 54.78 1097.92 62022.25

12 × 12 93.03 (δ : 27.42) 66.03 1948.30 280782.58

Table 2 compares our algorithm and the algorithm pro-
posed in [14] with respect to another dataset of 4 documents
shredded into 9 × 9 and 12 × 12 shreds, where the aver-
age number of correct pairs and run times were obtained for
both algorithms. The algorithm in [14] was run using our
dataset by the authors of [14] upon our request. The table
shows that our proposed algorithm is superior in terms of
the average number of obtained correct pairs and runtime.
The massive difference in run times between the two algo-
rithms is attributed to the fact that although the algorithm
in [14] finds an initial solution in a reasonable time, it goes
through several iterations using meta-heuristic optimization
algorithms to find a better solution which ends up requiring
massive run time.

5 User interactions

In this section, we describe our implementation for user in-
teraction with the reconstruction algorithm. The idea of user
interactivity has been used to enhance the results of many
solutions to problems related to documents and image pro-
cessing [13, 18–20]. We run the reconstruction algorithm to
a point where the current item being read from CostArray
has cost ∞. At this point there will be several clusters. Each
cluster will be shown to the user, who will mark the correct
pairs with green and incorrect pairs with red. He/she will
also mark pairs that he/she is not sure about with blue. Af-
ter the user gives his/her feedback, the CostArray array will
be modified to set the cost of the green pairs to −∞ and
the cost of the red pairs to ∞. Then, the algorithm will start
again with the new CostArray array.

The process continues until the user is satisfied with the
results. We also allow the user to pair two shreds together
by selecting the borders of the two shreds that he/she thinks
should be paired.

Figure 14 shows a window that is given to the user, which
displays one cluster. The user uses the mouse and keyboard
to mark the areas between the shreds with green, red or blue.
The user can also move around the cluster since sometimes
the size of the window is smaller than the size of the cluster.

Figure 15 shows another cluster shown to the user, who
has marked some pairs with red and some with green. Fig-
ure 16 shows the same cluster but in the second iteration (i.e.
after the CostArray array was updated and the reconstruc-
tion algorithm ran again using the new CostArray array).

Fig. 14 A part of a cluster as given to the user, the user has marked
some pairs with green and some with red

Fig. 15 A part of a cluster as given to the user, the user has marked
some pairs with green and some with red

Fig. 16 A part of the same cluster shown in Fig. 15 as given to the
user, the yellow color means that the user has already marked these
pairs green in a previous iteration

The yellow pairs indicate that the user has already marked
these pairs with green in a previous iteration. Note that the
second and third shreds from the left have been swapped in
the second iteration as a result of the feedback given by the
user.
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Fig. 17 A part of a cluster as given to the user, the user wants to pair
two shreds together, in this figure the user marked the lower border of
one shred

Fig. 18 A part of the same cluster in Fig. 17 in the same iteration,
the user used the mouse and keyboard to navigate to this part of the
cluster, in this figure the user marked the upper border of the shred that
he thinks should be put under the shred marked in Fig. 17

Figures 17 and 18 show two different parts of the same
cluster in the same iteration. The user wishes to pair the
shreds marked in these figures together. He/She can achieve
this objective by marking the corresponding borders of the
two shreds.

Figure 19 shows the same cluster in Figs. 17 and 18 in
the next iteration. The two shreds were paired together as
a result of the user feedback. Please note that the borders
of these two shreds are white. There is no simple and auto-
matic method to figure out that these two shreds should be
paired together. The user have read the readable parts of the
document to decide that these shreds should be paired.

6 Conclusions

In this paper, we proposed a new clustering approach for
reconstructing crosscut shredded documents. The algorithm
applies clustering as part of the reconstruction process and
not as a preprocessing step. We have demonstrated the supe-
riority of our algorithm by comparing it with another algo-

Fig. 19 A part of the same cluster in Figs. 17 and 18 but in the next
iteration, the two shreds were paired together as a result of the user
feedback

rithm [14]. During our research, we observed that the cost
function has the most influential impact on the reconstruc-
tion process. As a future research avenue, it will be recom-
mended to further research enhancements for the proposed
cost function in order to increase the percentage of correct
pairs. Also, we would like to test the algorithm using real
data; i.e., using documents shredded by shredding machines.
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