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Abstract In this paper, a Particle Swarm Optimization
with Constriction Factor and Inertia Weight Approach with
Wavelet Mutation (PSOCFIWA-WM) is applied to the pro-
cess of synthesizing three-ring Concentric Circular Antenna
Arrays (CCAA) without and with central element feed-
ing, focused on maximum sidelobe level reductions. Side-
lobe level (SLL) is a critical radiation pattern parameter in
the task of reducing background noise and interference in
the most recent wireless communication systems. To im-
prove the radiation pattern with maximum SLL reduction,
an optimum set of antenna element parameters as excita-
tion weights and radii of the rings are to be developed.
The extensive computational results show that the method
of PSOCFIWA-WM provides a maximum sidelobe level re-
duction of 96.06% with respect to the uniformly excited case
for the particular CCAA containing 4, 6, and 8 numbers of
elements in the three successive rings along with central el-
ement feeding.
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1 Introduction

Antenna arrays have considerable interest in various appli-
cations including radar, sonar, imaging, biomedicine, and
mobile communications [1–6]. The array geometries that
have been studied include mainly uniform linear arrays, uni-
form rectangular (URA), and circular arrays (UCA). A lin-
ear array has excellent directivity and it can form the nar-
rowest main-lobe in a given direction, but it does not work
equally well in all azimuthal directions. A major disadvan-
tage of the URA is that an additional major lobe of the same
intensity appears on the opposite side. An obvious advan-
tage results from the symmetry of the circular array struc-
ture. Since a circular array does not have edge elements, di-
rectional patterns synthesized with a circular array can be
electronically rotated in the plane of the array without a sig-
nificant change of the beam shape [3]. Concerning the two
geometries, the URA and the planar uniform circular array
(PUCA) with similar areas, slightly greater directivity was
obtained with the use of the PUCA [4]. On the other hand,
a circular array is a high side-lobe geometry. For mitigat-
ing high side-lobe levels, a concentric circular antenna array
(CCAA) [7–9] contains many concentric circular rings of
different radii sharing the same center and different numbers
of elements in each ring are utilized. It has several advan-
tages including the flexibility in array pattern synthesis and
design both in narrowband and broadband beam-forming
applications [9–12]. CCAA are also used for direction find-
ing and applications requiring main beam symmetry. CCAA
provide almost invariant azimuth angle coverage.

Over the past few decades [13–20] many synthesis meth-
ods are concerned with suppressing the SLL while pre-
serving the gain of the main beam. Uniformly excited and
equally spaced antenna arrays have high directivity but they
usually suffer from high side lobe level. Compared with
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the uniformly excited array, the non-uniformly excited array
with optimal excitations and optimal radii of the rings have
more degree of freedom and is able to lower the peak side-
lobe with smaller number of elements. So, the optimizing
parameters would be large in number and discrete, resulting
in highly non-linear, discontinuous and non-differentiable
array factors of CCAA design.

Classical optimization methods have several disadvan-
tages such as: (i) highly sensitive to starting points when
the number of solution variables and hence the size of the
solution space increase, (ii) frequent convergence to local
optimum solution or divergence or revisiting the same sub-
optimal solution, (iii) requirement of continuous and differ-
entiable objective cost function (gradient search methods),
(iv) requirement of the piecewise linear cost approximation
(linear programming), and (v) problem of convergence and
algorithm complexity (non-linear programming). Particle
Swarm Optimization (PSO) [21–27], an evolutionary algo-
rithm based on the swarm intelligence, which does not suf-
fer from above disadvantages may be adopted. The original
conception comes from the birds’ flocking or fish schooling.
PSO algorithm can be used to solve complex near-global op-
timization problems. Currently, the algorithm and its varia-
tions are applied to solve many practical problems [23–27].
In this work, for the optimization of complex, highly non-
linear, discontinuous, and non-differentiable array factors of
CCAA design, Particle Swarm Optimization with Constric-
tion Factor and Inertia Weight Approach (PSOCFIWA), and
its modified version with Wavelet mutation are adopted.

However, for maintaining the diversity from one genera-
tion of the population to the next, mutation takes an impor-
tant role in the evolution process. The presence of mutation
can help to reach the near-global optimal solution but a too
vigorous mutation in every iteration step may slow down
or even destroy the convergence of the algorithm. On doing
the mutation operation, one can have the solution space to
be more widely explored in the early stage of the search by
setting a larger searching space and it is more likely to ob-
tain a fine-tuned near-global solution in the later stage of the
search by setting a smaller searching space, The above re-
quirement can be fulfilled by Wavelet [28–30]. The Wavelet
is a tool to model seismic signals by combining dilations
and translations of a simple, oscillatory function (mother
Wavelet) of a finite duration. Its properties enable us to im-
prove further the optimization performance of PSOCFIWA
through mutation. Thus, PSOCFIWA-WM, a new variant
of PSOCFIWA is proposed in this work. PSOCFIWA-WM
yields near-global solution and provides a much faster con-
vergence than PSOCFIWA. Moreover, Wavelet mutation
helps to achieve higher solution stability. Thus, optimal
CCAA design achieved by PSOCFIWA-WM would have the
near-global optimized set of non-uniform current excitation
weights and radii of the rings.

In this paper we study mostly uniform CCAA that have
an inter-element spacing d (d ∈ [λ/2, λ]) in the same array.
The beam pattern, sidelobe level and beamwidth are exam-
ined for two cases; the first with no central element feed-
ing and the other with the existence of such element. It is
found that the existence of the central element can apprecia-
ble reduce the sidelobe level with minimal beamwidth in-
crease.

The paper is arranged as follows; in Sect. 2, the CCAA
geometry and its design equations are stated. In Sect. 3 the
brief introduction for the PSO based algorithms is given,
while in Sect. 4 the sidelobe levels and beamwidths as de-
termined by computational experiments with the optimiza-
tion techniques are presented, and finally the conclusions are
given in Sect. 5.

2 Design equation

Geometrical configuration is a key factor in the design pro-
cess of an antenna array. For CCAA, the elements are ar-
ranged in such a way that all antenna elements are placed in
multiple concentric circular rings, which differ in radii and
in number of elements. Figure 1 shows the general configu-
ration of CCAA with M concentric circular rings, where the
mth (m = 1,2, . . . ,M) ring has a radius rm and the corre-
sponding number of elements is Nm. If all the elements in
all the rings are assumed to be isotropic sources, the radia-
tion pattern of this array may be written in terms of its array
factor only.

Referring to Fig. 1, the array factor, AF(θ,φ, I ) for the
CCAA may be written as (1) [25]:

AF(θ,φ, I )

=
M∑

m=1

Nm∑

i=1

Imi exp[j (krm sin θ cos(φ − φmi) + αmi)] (1)

where Imi denotes current excitation of the ith element of the
mth ring. k = 2π/λ,λ being the signal wave-length. θ and
φ symbolize the zenith angle from the positive z axis and
the azimuth angle from the positive x axis to the orthogonal
projection of the observation point respectively. It may be
noted that the array factor is always a periodic function of
φ with a period of 2π radian, whatever be the value of θ .
The azimuth angle to the ith element of the mth ring is φmi.
As the elements in each ring are assumed to be uniformly
distributed, we have.

φmi = 2π

(
i − 1

Nm

)
; m = 1, . . . ,M; i = 1, . . . ,Nm (2)

The term αmi is the phase difference between the individual
elements in the array which is a function of angular separa-
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Fig. 1 Concentric circular
antenna array (CCAA)

tion φmi and ring radii rm.

αmi = −krm sin θ0 cos(φ0 − φmi)

m = 1, . . . ,M; i = 1, . . . ,Nm (3)

where θ0 and φ0 are the values of θ and φ (θ,φ ∈ [−π,π])
respectively where the highest peak of the main lobe is ob-
tained.

In this work, the elevation angle is assumed to be 90 de-
grees i.e. θ = 900. The array factor, AF(θ,φ, I ) of (1) for
the CCAA in x–y plane can now be rewritten as (4):

AF(φ, I ) =
M∑

m=1

Nm∑

i=1

Imi exp[jkrm(cos(φ − φmi)

− cos(φ0 − φmi))] (4)

Normalized absolute array factor, AF(φ, I ) in dB can be ex-
pressed as follows:

AF(φ, I )|dB = 10 log10

[ |AF(φ, I )|
|AF(φ, I )|max

]2

= 20 log10

[ |AF(φ, I )|
|AF(φ, I )|max

]
(5)

After defining the array factor, the next step in the design
process is to formulate the objective function which is to
be minimized. The objective function “Cost Function” (CF)

may be written as (6):

CF = WF1 × |AF(φmsl1, Imi) + AF(φmsl2, Imi)|
|AF(φ0, Imi)|

+ WF2

× (FNBWcomputed − FNBW(Imi = 1)) (6)

FNBW is an abbreviated form of first null beamwidth,
or, in simple terms, angular width between the first nulls
on either side of the main beam. CF is computed only if
FNBWcomputed < FNBW(Imi = 1) and the corresponding so-
lution of current excitation weights is retained in the active
population otherwise not retained. φmsl1 is the angle where
the maximum sidelobe (AF(φmsl1, Imi)) is attained in the
lower band and φmsl2 is the angle where the maximum side-
lobe (AF(φmsl2, Imi)) is attained in the upper band. After ex-
perimentation, best proven values of WF1 and WF2 are fixed
as 18 and 1 respectively. WF1 and WF2 are so chosen that
optimization of SLL remains more dominant than optimiza-
tion of FNBWcomputed and CF never becomes negative. In
(6) the two beamwidths, FNBWcomputed and FNBW(Imi = 1)

basically refer to the computed first null beamwidths in ra-
dian for the non-uniform excitation case and for uniform
excitation case respectively. Minimization of CF achieves
maximum reductions of SLL both in lower and upper bands
dominantly. The evolutionary optimization techniques em-
ployed for optimizing the current excitation weights result-
ing in the minimization of CF and hence reduction in SLL
are described in the next section.

3 Optimization techniques employed

3.1 Particle swarm optimization (PSO)

PSO is a flexible, robust population-based stochastic
search/optimization technique with implicit parallelism,
which can easily handle with non-differential objective
functions, unlike traditional optimization methods. Standard
PSO is less susceptible to getting trapped on local optima
unlike GA, Simulated Annealing etc. Kennedy, Eberhart
and Shi [21, 22] developed standard PSO concept simi-
lar to the behavior of a swarm of birds. Standard PSO is
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developed through simulation of bird flocking in multidi-
mensional space. Bird flocking optimizes a certain objective
function. Each agent knows its best value so far (pbest).
This information corresponds to personal experiences of
each agent. Moreover, each agent knows the best value so
far in the group (gbest) among pbests. Namely, each agent
tries to modify its position using the following informa-
tion:

• The distance between the current position and pbest.
• The distance between the current position and gbest.

Mathematically, velocities of the particles are modified ac-
cording to the following equation:

V k+1
i = w × V k

i + C1 × rand1 × (pbesti − Sk
i )

+ C2 × rand2 × (gbest − Sk
i ) (7)

where V k
i is the velocity of agent i at iteration k; w is the

inertia weighting function; Ci is the weighting factor; randi

is the random number between 0 and 1; Sk
i is the current po-

sition of agent i at iteration k; pbesti is the pbest of agent
i; gbest is the gbest of the group. The searching point in
the solution space can be modified by the following equa-
tion:

Sk+1
i = Sk

i + V k+1
i (8)

The first term of (7) is the previous velocity of the agent.
The second and third terms are used to change the velocity
of the agent. Without the second and third terms, the agent
will keep on “flying” in the same direction until it hits the
boundary. Namely, it corresponds to a kind of inertia and
tries to explore new areas. The values of w,C1 and C2 are
given in the next section.

3.1.1 Particle swarm optimization with constriction factor
and inertia weight approach (PSOCFIWA)

For PSOCFIWA [24, 25], the velocity of (7) is manipulated
in accordance with (9).

V k+1
i = CFa × (

wk+1 × V k
i

+ C1 × rand1 × (pbesti − Sk
i )

+ C2 × rand2 × (gbest − Sk
i )

)
(9)

Normally, C1 = C2 = 1.5–2.05 and constriction factor
(CFa) varies from 0.6–0.73. The best values of C1, C2, and
CFa are found to vary with the design sets. In Inertia Weight
Approach (IWA), inertia weight (wk+1) at (k + 1)th cycle is
as given in (9).

wk+1 = wmax − wmax − wmin

kmax
× (k + 1) (10)

where wmax = 1.0; wmin = 0.4; kmax = Maximum number
of iteration cycles. The solution updating is the same as (8).

3.2 PSOCFIWA with wavelet mutation (PSOCFIWA-WM)

3.2.1 Basic wavelet theory: a concept

Certain seismic signals can be modeled by combining trans-
lations and dilations of an oscillatory function with a finite
duration called a “Wavelet”. Wavelet transform can be di-
vided in two categories: continuous Wavelet transform and
discrete Wavelet transform. The continuous Wavelet trans-
form Wa,b(x) of function f (x) with respect to a mother
Wavelet ψ(x) ∈ L2(�) is given by the following equa-
tion [28–30].

Wa,b(x) = 1√
Cψ

∫ +∞

−∞
f (x)ψ∗

a,b(x)dx

where ψa,b(x) = 1√
a
ψ

(
x − b

a

)

x ∈ �, a, b ∈ �, a > 0 (11)

In (11), (∗) denotes the complex conjugate, a is the dilation
(scale) parameter, and b is the translation (shift) parameter.
It is to be noted that a controls the spread of the Wavelet
and b determines its control position. A set of basis func-
tions ψa,b(x) is derived from scaling and shifting the mother
Wavelet. The basis function of the transform is called the
daughter Wavelet. The mother Wavelet has to satisfy the fol-
lowing admissibility condition.

Cψ = 2π

∫ +∞

−∞
|ψ(ω)|2

ω
dω < ∞ (12)

where ψ(ω) is the Fourier is transform of ψ(ω) and given
by the following equation:

ψ(ω) = 1√
2π

∫ +∞

−∞
ψ(x) × e−jωxdx (13)

Most of the energy ψ(x) is confined to a finite domain and
is bounded.

3.2.2 Association of wavelet based mutation with
PSOCFIWA (PSOCFIWA-WM)

It is proposed that every element of the particle of the pop-
ulation will have a chance to mutate, governed by a user
defined probability pm ∈ [0,1]. For each element, a random
number between 0 and 1 will be generated such that if it
is less than or equal to pm, the mutation will take place on
that element. Among the population, a randomly selected ith
agent and its j th element (within the limits [Sj,min, Sj,max])
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Fig. 2 Morlet Wavelet, ψ(x)

Fig. 3 Various dilated morlet wavelets (x-axis: x, y-axis: ψa,0(x))

at kth iteration (S
(k)
i,j ) will undergo mutation as given in the

following equation:

S
(k)
i,j =

⎧
⎨

⎩
S

(k)
i,j + σ × (Sj,max − S

(k)
i,j ), if σ > 0

S
(k)
i,j + σ × (S

(k)
i,j − Sj,min), if σ ≤ 0

where σ = ψa,0(x) = 1√
a
ψ

(
x

a

)
(14)

A Morlet Wavelet (mother Wavelet) defined in the fol-
lowing equation may be shown as in Fig. 2.

ψ(x) = e
−x2

2 cos(5x) (15)

Thus,

σ = 1√
a
e

−( x
a )2

2 cos

(
5

(
x

a

))
(16)

Different dilated Morlet Wavelets are shown in Fig. 3.
From this figure it is clear that as the dilation parameter a

increases, the amplitude of ψa,0(x) will be scaled down. In

order to enhance the searching performance, this property
will be utilized in mutation operation.

As over 99% of the total energy of the mother Wavelet
function is contained in the interval [−2.5,2.5] (Prop-
erty II), x can be randomly generated from [−2.5 × a,2.5 ×
a]. The value of the dilation parameter a is set to vary
with the value of k/K in order to meet the fine-tuning pur-
pose, where k is the current iteration number and K is the
maximum number of iterations. In order to perform a lo-
cal search when k is large, the value of a should increase
as k/K increases to reduce the significance of the muta-
tion. Hence, a monotonic increasing function governing a

and k/K may be written as given in the following equa-
tion [30]:

a = e − ln(g) ×
(

1 − k

K

)ξωm

+ ln(g) (17)

where ξωm is the shape parameter of the monotonic increas-
ing function, and g is the upper limit of the parameter a. The
value of a is between 1 and 10000.

A perfect balance between the exploration of new regions
and the exploitation of the already sampled regions in the
search space is expected in PSOCFIWA-WM. This balance,
which critically affects the performance of the PSOCFIWA-
WM, is governed by the right choices of the control parame-
ters, e.g. swarm size (np), the probability of mutation (pm),
and the shape parameter of WM (ξωm). Changing the param-
eter ξωm will change the characteristics of the monotonic
increasing function of WM. The dilation parameter a will
take a value to perform fine tuning faster as ξωm increases.
In general, if the optimization problem is smooth and sym-
metric, it is easier to find the solution, and the fine tuning
can be done in early iteration. Thus, a larger value of ξωm

can be used to increase the step size (σ) for the early muta-
tion.

4 CCAA design sets and setting of algorithm
parameters

The optimization techniques described in the previous sec-
tion are individually implemented to optimize the radiation
pattern for non-uniformly excited CCAA. For all sets of ex-
periments, the number of current excitation elements for the
inner most ring is N1, for outermost ring is N3; whereas the
middle ring consists of N2 number of current excitation ele-
ments. Several cases are considered with different number of
antenna elements in the three-ring CCAA (N1, N2, N3) de-
signs for both without and with central element feeding are
(2,4,6), (3,5,7), (4,6,8), (5,7,9), (6,8,10), (7,9,11),
(8,10,12), (9,11,13), (10,12,13), and (11,13,15). (Each
CCAA is required to have optimal current excitation weights
and also to maintain fixed but different from ring to ring
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Table 1 SLL and FNBW for uniformly excited (Imi = 1) CCAA sets

Set No. No. of
elements in
each rings
(N1,N2,N3)

Without central
element (Case (a))

With central
element (Case (b))

SLL
(dB)

FNBW
(deg)

SLL
(dB)

FNBW
(deg)

I 2, 4, 6 −12.56 128.4 −17.0 140.0

II 3, 5, 7 −13.8 107.2 −15.0 116

III 4, 6, 8 −11.23 90.3 −12.32 95.4

IV 5, 7, 9 −11.2 78.2 −13.24 81.6

V 6, 8, 10 −10.34 68.4 −12.0 71.1

VI 7, 9, 11 −10.0 61.0 −11.32 63.0

VII 8, 10, 12 −9.6 54.8 −10.76 56.4

VIII 9, 11, 13 −9.28 50.0 −10.34 51.3

IX 10, 12, 14 −9.06 46.0 −10.0 47.0

X 11, 13, 15 −8.90 42.0 −9.8 43.2

optimal inter-element spacing in each ring with the help
of optimal radii.) For all the cases, φ0 = 00 is considered
so that the peak of the main lobe is obtained at the ori-
gin.

Each particle vector of PSOCFIWA and PSOCFIWA-
WM consists of real-coded sub-stings of current excitation
weights and three radii within their respective maximum and
minimum limits. Number of sub-strings of current excita-
tion weights depends on the total number of current excita-
tion elements. The current excitations for the array elements,
(I11, I12, . . . , Imi) are normalized to be called as current ex-
citation weights using max(Imi) = 1. So, for current excita-
tion weights, the maximum and minimum limits are 1 and 0
respectively. The limits of the radius of a particular ring of
CCAA are decided by the product of number of elements in
the ring and the inequality constraint for the inter-element
spacing, d (d ∈ [λ

2 , λ]).
The best algorithm parameters set after several experi-

ments are: (i) Population of particle vectors (swarm size) =
120, (ii) Maximum number of iteration cycles = 100,
(iii) C1 = C2 = 1.5, (iv) For Wavelet Mutation, rigorous trial
runs with respect to the dependence of a on (k/K),pm, ξωm

and g is performed to determine the individual best val-
ues of pm, ξωm and g as 0.15, 2.0 and 10000 respec-
tively.

4.1 Computational results

PSOCFIWA and PSOCFIWA-WM based optimal results are
produced in Tables 2–5 to show the improvement in PSOC-
FIWA based results. Table 1 depicts SLL values and FNBW
values for all corresponding uniformly excited ((Imi) = 1)

CCAA with d = λ/2 inter-element spacing in each ring.
Figure 4 shows a comparison between the radiation patterns
for uniformly excited CCAA with d = λ/2 and the same

CCAA with optimal current excitation weights with opti-
mal radii obtained by PSOCFIWA. The radiation pattern be-
havior shown in Fig. 4 indicates that a uniformly excited
((Imi) = 1) CCAA with d = λ/2 in each ring has a radia-
tion pattern with −11.23 dB SLL for the particular CCAA
containing 4, 6, and 8 number of antenna elements in the
three successive rings without central element feeding and
the SLL for the same set with central element feeding and
uniform excitation with d = λ/2 is −12.32 dB. All side-
lobes are suppressed to a level less than −31.16 dB and
−36.88 dB for the above set without and with central el-
ement feeding respectively, as a result of the optimization
by PSOCFIWA. In this case, it is observed in Fig. 4 that the
PSOCFIWA provides maximum sidelobe level reductions of
89.92% and 94.08% with respect to the corresponding uni-
form case for without and with central element feeding re-
spectively.

Similarly, Fig. 5 also illustrates the array factors obtained
for the CCAA having N1 = 4, N2 = 6, N3 = 8 elements as
compared to uniformly excited CCAA with uniform inter-
element spacing d = λ/2 in each ring. For the above set,
the PSOCFIWA-WM generates a set of optimal current ex-
citation weights and radii as shown in Tables 4, 5, that pro-
vide a radiation pattern with −34.7 dB and −40.4 dB for the
above set without and with central element feeding respec-
tively, i.e. maximum sidelobe level reductions of 93.29%
and 96.06% with respect to the corresponding uniform case
for without and with central element feeding respectively are
achieved.

The above reductions of SLL can be easily determined
by referring to Table 1 and Tables 2, 3, 4, 5. PSOCFIWA-
WM yields consistently better optimal results than PSOC-
FIWA.

The minimum CF values are plotted against the num-
ber of iteration cycles to get the convergence profiles for
PSO based techniques. Figure 6 shows the convergence pro-
files for PSOCFIWA and PSOCFIWA-WM for Set No. III
CCAA. PSOCFIWA yield suboptimal higher values of CF
but PSOCFIWA-WM yields true optimal (least) CF values
consistently in all cases. With a view to the above fact, it may
finally be inferred that the performance of PSOCFIWA-WM
technique is better than that of PSOCFIWA. All optimiza-
tion programs are written in MATLAB 7.5 version on core
(TM) 2 duo processor, 3.00 GHz with 2 GB RAM.

The CCAA model using isotropic sources in this work
will be useful for the calculation of the radiation patterns of
any practical antenna by simply multiplying the proposed
array factor by the array factor of single such antenna using
Pattern multiplication theorem [5].
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Table 2 Current excitation weights, radii, CF, SLL and FNBW for optimally excited CCAA sets (Case (a)) using PSOCFIWA

Set No. (I11, I12, . . . , Imi); (r1, r2, r3) in λ CF SLL (dB) FNBW (deg)

III 0.9731 1.0000 1.0000 1.0000 0.6842 1.15 −31.16 74.3

0.6365 0.9143 0.6883 0.6872 0.9137

0.6037 1.0000 0.6558 0.3301 0.6598

1.0000 0.5707 0.1862;

0.3385 0.5809 0.9825

V 0.4256 0.7281 0.3679 0.7213 0.3864 2.39 −24.92 60.1

0.7212 1.0000 0 0.9319 1.0000 0.8668

0 0.8535 1.0000 0.4616 0.6344 0.9680

0 0 0.1622 1.0000 0.5467

0.5582 0.3460;

0.4805 0.7234 1.1608

VII 0.5047 0.7723 0.4207 1.0000, 1.0000 0 2.62 −24.52 60.5

0.6304 1.0000 0.5897 0.4000 0.1816

1.0000 1.0000 0.5354 0.2338 0.2843

0.7795 0.9798 0.4236 0 0.7926 0.2780

0.5493 0.3813 0.6452 0 0.6617

0 0.5092 0.2532;

0.6688 0.9652 1.3327

Table 3 Current excitation weights, radii, CF, SLL and FNBW for optimally excited CCAA sets (Case (b)) using PSOCFIWA

Set No. (I11, I12, . . . , Imi); (r1, r2, r3) in λ CF SLL (dB) FNBW (deg)

III 0.4124 0.7748 0.8370 0.7863 0.7963 0.57 −36.88 86.4

1.0000 1.0000 0.9210 1.0000 1.0000

1.0000 0.5387 1.0000 0.5680 0.3426

0.5786 1.0000 0.5485 0.3991;

0.3376 0.5207 0.9793

V 1.0000 0.9796 1.0000 0.6388 1.0000 1.15 −29.46 64.4

1.0000 0.4391 0.8441 0.1797 0.8168

1.0000 1.0000 0.4176 0.7032 1.0000

0.3300 1.0000 1.0000 0.4447 0.2162

0.3409 1.0000 0.8096 0.3148 0.2698;

0.4547 0.7410 1.1566

VII 1.0000 0.7922 1.0000 0.6768 0.8687 1.87 −26.4 60.5

0.3921 1.0000 0.4983 1.0000 1.0000

0.7203 0.4846 0.7811 1.0000 1.0000

0.2393 0.4808 1.0000 1.0000 0.5573

0.4321 1.0000 0.2565 0.4101 0.3630

0.7667 0 1.0000 0.1471 1.0000 1.0000;

0.6179 0.9009 1.3474
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Table 4 Current excitation weights, radii, CF, SLL and FNBW for optimally excited CCAA sets (Case (a)) using PSOCFIWA-WM

Set No. (I11, I12, . . . , Imi); (r1, r2, r3) in λ CF SLL (dB) FNBW (deg)

III 0.9873 1.0000 0.9997 1.0000 0.5488 0.85 −34.70 91.4

0.6244 0.8523 0.5471 0.5789 0.8233

0.5139 0.8390 0.5418 0.3631 0.5399

0.8687 0.5464 0.3551;

0.3272 0.5969 0.9932

V 0.5351 0.5678 0.7606 0.5075 0.5102 2.03 −27.14 62.46

0.6465 0.6918 0 0.7210 0.9565 0.7635

0 0.6463 0.9478 0.4941 0.6648 0.6766

0.5399 0.4933 0.5208 0.6358 0.5508

0.4671 0.4642;

0.5064 0.7787 1.1845

VII 0.6602 0.2828 0.5378 0.9875 0.7343 1.90 −27.54 53.29

0.4022 0.4818 1.0000 0.5089 0.3606

0.0597 0.6740 0.9245 0.5923 0.1030

0.1157 0.5992 1.0000 0.7768 0.2435

0.8709 0.2266 0.6679 0.5689 0.5610

0.3182 0.9455 0.2538 0.6775 0.7301;

0.7413 1.0739 1.4209

Table 5 Current excitation weights, radii, CF, SLL and FNBW for optimally excited CCAA sets (Case (b)) using PSOCFIWA-WM

Set No. (I11, I12, . . . , Imi); (r1, r2, r3) in λ CF SLL (dB) FNBW (deg)

III 0.8230 0.3073 0.6584 0.3034 0.6191 0.41 −40.40 95.4

0.9665 1.0000 1.0000 0.9887 0.9754

0.9906 0.5120 0.5599 0.5224 0 0.4944

0.5327 0.4951 0.0055;

0.3313 0.5103 0.8743

V 1.0000 1.0000 0.9004 0.8323 1.0000 1.29 −29.22 61.88

0.9615 0.8660 0.5715 0.2435 0.7012

0.7271 0.6479 0.2854 0.6052 0.6899

0.3366 0.9061 1.0000 0.3099 0.4124

0.3330 0.9777 0.9902 0.3553 0.5128;

0.5112 0.7941 1.2199

VII 1.0000 0.4153 1.0000 0.5718 1.0000 1.52 −27.77 55.01

0.7573 0.9752 0.4530 1.0000 0.7132

0.1473 0.1414 1.0000 1.0000 0.9622

0.1574 0.1328 0.9701 1.0000 0.9373

0.2020 1.0000 0.5629 0.5830 0.4990

0.4129 0.5989 0.9499 0.3832 0.7377

0.7309;

0.7044 0.9948 1.3978
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Fig. 4 Radiation patterns for a
uniformly excited CCAA and
corresponding PSOCFIWA
based optimized non-uniformly
excited CCAA for the Set. No.
III (N1 = 4, N2 = 6, N3 = 8
elements)

Fig. 5 Radiation patterns for a
uniformly excited CCAA and
corresponding PSOCFIWA-WM
based optimized non-uniformly
excited CCAA for the Set.
No. III (N1 = 4, N2 = 6, N3 = 8
elements)

5 Conclusions

In this paper, the PSO based techniques are used to adjust
the radius of each ring and excitation of each element in
the three-ring CCAA to obtain optimal sidelobe level sup-
pression. The PSOCFIWA and PSOCFIWA-WM algorithms
can efficiently handle the design of non-uniformly excited
CCAA by generating radiation patterns with maximum SLL
reductions. PSOCFIWA-WM proves to be much more ef-
fective algorithm by reducing notably the sidelobe levels
as compared to the case of uniform current excitation with

d = λ/2 inter-element spacing. This paper has the following
conclusions: (1-) In CCAA, the central element plays a very
important role to improve the performance of radiation pat-
tern. (2-) The existence of the central element in the CCAA
having N1 = 4, N2 = 6, N3 = 8 elements reduces the side-
lobe level to 96.06% with respect to the uniform current ex-
citation with d = λ/2 inter-element spacing. (3-) It is shown
that the proposed PSOCFIWA-WM technique outperforms
significantly the other counterpart PSOCFIWA in terms of
solution quality and solution robustness. Thus, the proposed
Particle Swarm Optimization with Constriction Factor and
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Fig. 6 Convergence curves for
PSOCFIWA and
PSOCFIWA-WM in case of
optimized non-uniformly
excited CCAA for the Set.
No. III (N1 = 4, N2 = 6, N3 = 8
elements), with central element
feeding

Inertia Weight Approach with Wavelet Mutation is a good
evolutionary optimization technique for the near-global op-
timization of any other antenna array problem.
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