
Telecommun Syst (2010) 45: 61–76
DOI 10.1007/s11235-009-9234-1

Blocking attacks on SIP VoIP proxies caused by external
processing

Ge Zhang · Simone Fischer-Hübner · Sven Ehlert

Published online: 19 November 2009
© Springer Science+Business Media, LLC 2009

Abstract As Voice over IP (VoIP) applications become
increasingly popular, they are more and more facing se-
curity challenges that have not been present in the tradi-
tional Public Switched Telephone Network (PSTN). One
of the reasons is that VoIP applications rely heavily on ex-
ternal Internet-based infrastructures (e.g., DNS server, web
server), so that vulnerabilities of these external infrastruc-
tures have an impact on the security of VoIP systems as
well. This article presents a Denial of Service (DoS) attack
on VoIP systems by exploiting long response times of ex-
ternal infrastructures. This attack can lead the whole VoIP
system in a blocked state thus reducing the availability of
its provided signalling services. The results of our experi-
ments prove the feasibility of blocking attacks. Finally, we
also discuss several defending methods and present an im-
proved protection mechanism against blocking attacks.

Keywords Session Initiation Protocol (SIP) · Voice over IP
(VoIP) · Denial of Service (DoS) · Security · DNS ·
Protection mechanism

1 Introduction

The emergence of VoIP has offered numerous features for
both end users and providers alike, such as low cost, flexi-

G. Zhang (�) · S. Fischer-Hübner
Karlstad University, Karlstad, Sweden
e-mail: ge.zhang@kau.se

S. Fischer-Hübner
e-mail: simone.fischer-huebner@kau.se

S. Ehlert
Fraunhofer FOKUS, Berlin, Germany
e-mail: sven.ehlert@fokus.fraunhofer.de

ble services, simplified configuration, etc. These advantages
are difficult to realize in traditional PSTN. However, as a
closed network environment, PSTN provides high security,
and particularly availability and reliability. That is why an
extremely low number of attacks on PSTN have been re-
ported until now. In contrast to PSTN, VoIP is more vul-
nerable due to two main reasons: Firstly, contrary to PSTN,
VoIP is based on an open network environment, the Internet.
Thus, a VoIP infrastructure can be easily accessed by attack-
ers with automation tools. Secondly, current VoIP applica-
tions rely heavily on external Internet-based infrastructures
(e.g., DNS server, web server). As a result, vulnerability of
these external infrastructures also affect VoIP systems. The
main security threats against VoIP systems are summarized
in [1, 2].

The Session Initiation Protocol (SIP) [3] is designed as
a signalling protocol standard for VoIP services running
on the Internet and 3G Realms. In this article, we present
a kind of DoS attack targeting SIP-based VoIP infrastruc-
tures using crafted SIP messages, which we call a blocking
attack. Since VoIP systems require support from external
hosts on the Internet (e.g., recursive domain-name resolv-
ing, downloading certificates, etc.), communication with ex-
ternal hosts may increase the latency of SIP services. The
latency varies primarily according to hardware and network
conditions of external hosts. Better hardware and network
conditions of external hosts yield to lower latency. Unfor-
tunately, this is beyond the control of VoIP systems. Actu-
ally, there are many hosts on the Internet with poor hardware
or network conditions. In this article, we call them high-
latency hosts. An attacker can craft special messages for a
blocking attack in order to make a victim SIP proxy to in-
teract with these high-latency hosts. Then, the victim proxy
has to spend additional time on these attacking messages

mailto:ge.zhang@kau.se
mailto:simone.fischer-huebner@kau.se
mailto:sven.ehlert@fokus.fraunhofer.de

62 G. Zhang et al.

Fig. 1 A general overview of
SIP components and the
working procedure

and thus cannot handle messages from legal users. The re-
sults of our experiments show that blocking attacks can be
easily launched against SIP proxies by using external DNS
servers or web servers. We also discuss several defending
solutions and propose an improved solution based on a pri-
ority mechanism.

This article builds on previous work published in [4].
Here, we innovate in three new directions: Firstly, we show
a new method of blocking attacks by using certificate down-
loading besides domain name resolving. Secondly, a formal-
ized model is given to analyse the blocking attacks in de-
tail. Finally, we present an improved solution, called priority
mechanism, for attack mitigation.

The rest of this article is organized as follows. In Sect. 2
we give a short introduction to VoIP using SIP. Section 3
presents related work. Then, we analyze the attacking
method in Sect. 4. We propose our testbed and experiments
in Sect. 5. Several countermeasure solutions are discussed in
Sect. 6. Finally, Sect. 7 provides conclusions for this article.

2 SIP-based VoIP

SIP works as a signaling protocol at the application layer of
the TCP/IP model aiming for establishing or tearing down
media sessions between two parties. A basic SIP infrastruc-
ture consists of User-Agents (UAs) and several SIP servers,
such as registrar servers, proxy servers (called proxy or
proxies in the remainder of this article), etc. UAs are the
users’ equipments which generate, receive and response SIP
messages. Registrar servers enable users to login to corre-
sponding domains. Proxies forward SIP messages within
SIP networks.

The general SIP-based telephony calling setup is shown
in Fig. 1. There are two SIP users located in different do-
mains in this scenario: Alice, a caller, is located in the do-
main kau.se and Bob, a callee, is located in iptel.org. Ini-
tially, Alice sends an INVITE message to one of the local
proxies. This INVITE message indicates that she wants to
talk to Bob at iptel.org. Then, the local proxy forwards this

Fig. 2 An example of SIP INVITE request

INVITE message to the remote proxy at iptel.org. The re-
quest is finally delivered to the UA of Bob. If Bob wants to
accept the call, his UA will reply with a 200 OK message
back through the proxies. After Alice has sent an ACK mes-
sage to confirm the request, the signaling handshaking is ac-
complished. Thus, Alice and Bob will build a peer-to-peer
media session in which they can exchange voice packets.
When Alice wants to tear down the conversation, her UA
will send a BYE message to Bob, and Bob’s UA will reply
with a 200 OK message. Then the call is terminated.

An example of a SIP INVITE message is shown in Fig. 2.
The format of SIP messages is similar to HTTP [5], with
message headers and corresponding values. The destination
of a SIP message (SIP identity of the callee) is provided in
the first line of the message. The remaining SIP message
headers in Fig. 2 are explained as follows.

To: indicates the SIP identity of the callee.
From: indicates the SIP identity of the caller.
Call-ID: unique identifier for each call. It is used to indicate

a SIP transaction.
Contact: indicates the actual location where the sender can

be reached. The value can be different from the from field.
Content-Type: indicates which kind of payload is included

in this message.

http://iptel.org

Blocking attacks on SIP VoIP proxies caused by external processing 63

In this example, the INVITE message contains a message
body using the Session Description Protocol (SDP) [6] as
the payload. This SDP message body is used to negotiate
the media type and format of the proposed session.

SIP applications are time-sensitive. Users probably will
give up their calling requests if their calls take a long time
to be built up. As defined in [3], after sending a message, a
UA will wait for its response. However, if no response is re-
ceived during a certain time interval, the UA will retransmit
the message. The retransmission could be done up to 7 times
until a timeout occurs and if still no response for the mes-
sage is received, the UA will consider the message as failed
and give up waiting for its response. The default timeout for
each SIP message is 32 seconds, that is, after sending a SIP
message, a UA should receive its response within 32 sec-
onds. Thus, if the SIP proxy is busy and cannot generate
the response to users in time, the users cannot successfully
place calls. This real-time requirement poses a great chal-
lenges for SIP services and makes SIP services vulnerable
to DoS attacks.

3 Related work

The objective of DoS attacks is to reduce the availability of
services as long as possible. The motive of attackers could
be fun or profit. Some recent research has focused on DoS
attacks on SIP VoIP infrastructures.

Sisalem et al. [7] investigated the issues of DoS attacks
targeting SIP infrastructures. They developed a taxonomy
of attacks by different exploitable resources: CPU, mem-
ory and bandwidth. They also mentioned the blocking attack
against SIP proxies using high-latency DNS servers, but no
experiments were performed.

A stateful SIP proxy has to consume memory resources
to keep the transaction states of unfinished SIP transactions.
Therefore, stateful SIP proxies are especially vulnerable to
INVITE flooding attack, in which an attacker floods SIP
proxies with only INVITE messages to create a large num-
ber of broken transactions. Sengar et al. [8] proposed a ma-
chine learning method to distinguish legal against INVITE
flooding attacks. Based on this method, they firstly charac-
terize legal SIP traffic behavior by summarizing the normal-
ize frequency of INVITE, 200 OK, ACK and BYE mes-
sages. Compared with the normalized samples, the attacking
traffic behavior can be easily detected by an algorithm called
Hellinger distance. Moreover, [9–11] propose specification-
based detection methods using SIP state machine models to
counter INVITE flooding attacks.

Conner et al. [12] proposed a ringing-based DoS attack
to consume memory resources of stateful SIP proxies. Dif-
ferent to INVITE flooding, this attack exploits the potential
long time 180 Ringing state. They also designed an algo-
rithm to optimize the system.

Geneiatakis et al. [13] introduced a mechanism to detect
malformed SIP messages. Malformed messages are non-
standard SIP messages, which are skillfully generated by at-
tackers in order to exploit the implementation flaw of SIP
infrastructures. Malformed message may drive the services
to various unstable states and consequently cause DoS. The
detection of malformed messages is based on a message sig-
nature, which is defined by using regular expressions ac-
cording to the SIP grammar. Their tests prove that the over-
all processing overhead caused by this detection is insignif-
icant.

The blocking attack we present in this article is a kind of
Denial of Service attacks. However, blocking attacks are not
targeted to create unfinished transaction states as discussed
in related works. The blocking attacks that we discuss are
effective on both stateful and stateless proxies. Furthermore,
the attacking messages are well-formed. Thus, current pro-
tection mechanisms are not effective as a countermeasure
against such blocking attacks as described in this article.

In our previous work [4], we represented a blocking at-
tack on SIP VoIP infrastructures by exploiting high-latency
DNS servers. We also implemented an unblocking cache
mechanism to defend against such an attack. Continuing,
this article addresses aspects of the blocking attacks. We
formalize and analyze why the vulnerability can cause a
Denial-of-Service in detail and propose a new type of block-
ing attack using high latency web servers. Besides, we per-
form our experiments with new parameters. Finally, we dis-
cuss the problems of the previous designed solutions and
propose the priority mechanism as an improved protection
mechanism.

4 Blocking attacks

Blocking attacks introduced in this article is a kind of DoS
attack targeting SIP proxies. As explained above and illus-
trated in Fig. 1, SIP proxies play a very important role in
SIP networks. Thus, the VoIP services cannot be provided
any longer if SIP proxies stop operating due to attacks.

To analyze how such a blocking attack works, we illus-
trate a basic working flow of SIP proxies in Fig. 3.1 When a
SIP proxy receives a SIP message, it will insert this message
into a message buffer. Next, the buffered messages will be
distributed to the parallel working processes. (In practice, a
SIP proxy can be configured with parallel working processes
to enhance its performance. Each working process is then re-
sponsible for one messages synchronously.) We classify the
steps of each processing into two categories, named internal
processing and external processing, respectively.

1However, the actual order of the internal and external processing de-
pends on the concrete implementation of the proxy. The order of the
internal and external processing is irrelevant for our topic.

64 G. Zhang et al.

Fig. 3 The procedure of proxy working: the proxy has to contact with
other hosts for external processing

Internal processing: Internal processing consists of the
processing steps that are only performed directly within
the local proxy (e.g., message parsing, computing for ver-
ification, etc.). The time consumption for internal process-
ing mostly depends on the computational capability of
the proxy itself. Thus, the time consumption for internal
processing is predictable.

External processing: External processing consists of the
processing steps that do not take place locally, but also re-
motely (e.g., contact with a DNS server to issue a domain
name request, or download a certificate from a web server
to verify a SIP message). The purpose of external process-
ing is to get Related External Information (REI) (e.g.,
DNS mapping of the destination domain or a certificate
of the sender’s domain) for message processing. Since the
SIP proxy has to communicate with external hosts (DNS
server, web server) over the Internet, the time consumption
for external processing depends not only on the capabil-
ity of the local proxy, but also on the hardware and net-
work conditions of the remote hosts. As a consequence, the
time consumption for external processing is unpredictable.
Furthermore, the SIP proxy will contact the external hosts
according to the information contained in SIP messages.
Therefore, the SIP users who generate SIP messages can
specify which external hosts a SIP proxy should contact.

Blocking attacks addressed in this article exploit exter-
nal processing. The vulnerability is based on two aspects.
Firstly, SIP users have the ability to select which external
hosts that the SIP proxy should contact. Secondly, the time
consumption for SIP proxies needed to communicate with
external hosts is unpredictable. Thus, an attacker can per-
form a series of pretests to collect a list of external hosts
which could be time consuming to communicate with, de-
fined as high-latency hosts. The measurements in [14] show
that the connection latency on the Internet strongly depends
on the physical distances between the hosts. The attacker
can easily find high-latency hosts which are in a remote lo-
cation. Then, the attacker can craft attacking messages and
send them to a victim SIP proxy. The attacking messages

require a victim proxy to contact these high-latency hosts
for external processing. As a result, the proxy spends a long
time on the attacking messages so that it cannot handle the
legal messages in due time.

To explain this problem better, we formalize the process-
ing model as follows. The purpose of this model is two-
fold: Firstly, it illustrates the parameters which influence the
throughput of a proxy and allows us to discuss how far these
parameters can be controlled by an attacker. Secondly, this
model also demonstrates how perspective countermeasures
can be influenced by these parameters. We assume that a
SIP proxy receives a batch of SIP messages during a period
of time T with a constant rate R. The proxy is equipped
with n parallel working processes. Each process can work
independently. The average processing time needed for each
message of this batch on each parallel process is assumed to
be t . Then, the processing capability of this SIP proxy dur-
ing time T is at most C if all the parallel working processes
are fully working during time T .

C = n

t
(1)

Further, we separate t as t = te + ti . We define that te
is the average time on external processing. ti is the average
time on internal processing. Thus, the processing capability
(C) becomes

C = n

te + ti
(2)

Then, the size of the message buffer changes at a rate S

is

S = R − C (3)

We know that if S > 0, more and more message will be
kept waiting in the waiting queue. Therefore, the size of the
message buffer increases as long as S > 0, which could lead
to two results. Firstly, the memory resources of the proxy
will be depleted if there is no maximum limitation on the
size of message buffer. Also the messages in the buffer have
to be waiting for a longer time to get processed. Secondly,
if there is a maximum limitation on the size of buffer, then
the proxy will refuse to accept new SIP messages as long as
the limitation is reached. Thus, any of these two alternatives
result in a Denial of Service on the proxy. Hence, for system
stability, we assume that overall S should be less or equal
than 0: S = R − C ≤ 0. Thus,

R − n

te + ti
≤ 0 (4)

From the model, the stability of SIP proxy depends on
four parameters: R, te, ti and n. Attackers can easily con-
trol the first three parameters. As long as an attacker can

Blocking attacks on SIP VoIP proxies caused by external processing 65

increase one or more of the three parameters, the steady-
state of the proxy might be broken and a Denial of Service
might happen. For example, attackers can flood the victim
proxy with thousands of messages to increase R. However,
a flooding attack can be easily detected e.g., by an Intru-
sion Detection System (IDS). It is abnormal and suspicious
if a user constantly tries to setup a large number of calls in
a given time interval. As an alternative, attackers also can
send malformed SIP messages to the victim proxy. Then,
the proxy needs to perform additional grammar checking so
that ti increases. Nevertheless, the caused delay time on ti is
relatively small [13].

Compared with the other two parameters, te can be more
easily controlled by attackers. As we introduced before, te

partly depends on the conditions of external hosts and can
be out of control of the SIP proxy. The attackers can find
some high-latency hosts on the Internet and craft SIP mes-
sages (attacking messages) so that the victim SIP proxy will
contact them. The consequences are as follows.

1. Firstly, the working processes have to spend much time
on these attacking messages when they perform external
processing to contact high-latency hosts. Hence, the in-
crease of te reduces the capability of the proxy.

2. Secondly, as it takes long time for working processes to
handle attacking messages, the messages in the message
buffer have to be waiting for a long time to get processed.
As we mentioned in Sect. 2, after sending a message, a
UA will only wait for its response until the timeout (32
seconds in default). In this way, even if these messages
can be processed eventually, they probably are already
expired.

3. Finally, considering the retransmission mechanism in
SIP, a UA will resend the message up to 7 times if its re-
sponse is not received within a given time period. There-
fore, R increases as well resulting in a heavy load on the
proxy. However, these retransmitted messages are from
legal users and formed in a legal way.

For blocking attacks there is no need to flood the vic-
tim proxy and all attacking messages are well-formed. Since
messages originated from legal users can sometimes cause
a large te as well, it is difficult to distinguish between le-
gal and illegal messages by simply observing te. We explain
how attackers can craft attacking messages to control te in
the next section.

Certainly, the system administrator can increase n to fork
more parallel working processes so that the proxy can han-
dle more messages synchronously. However, each forked
process consumes system resources. Too many processes
can lead to the proxy being unstable.

5 Two attacking examples

In this section, we describe how attackers can craft attacking
messages with high te to perform a DoS attack. We show
two concrete examples. One takes advantages of external
processing with DNS servers, and another exploits external
processing with web servers.

5.1 Blocking attack using high-latency DNS servers

5.1.1 DNS usage in SIP

The Domain Name Service (DNS) [15] is one of the fun-
damental infrastructures for most current Internet applica-
tions available today, including web and email services. It is
a globally distributed database, providing an essential do-
main name mapping service for Internet users. Also, the
DNS plays a key role in SIP networks for the following rea-
sons.

1. Similarly to the email addressing scheme, SIP VoIP users
logically belong to their home domains. The format of
their SIP identities (also called Uniform Resource Iden-
tifier (URI)) [16] is similar to the one of email ad-
dresses, including user name and domain name (e.g.,
sip:ge.zhang@kau.se). As shown in Fig. 2, the identities
of both caller and callee contain domain names. A SIP
proxy has to contact a DNS server to resolve these do-
main names to locate remote domains.

2. To interconnect the PSTN with a SIP network, ENUM
[17] telephone number mapping is used. This allows the
mapping of a PSTN telephone number to a valid SIP ad-
dress.

3. SIP can utilize different transport layer protocols (e.g.,
UDP, TCP). To find its right contact server in regard to
the used transport layer protocol, a SIP proxy will per-
form a DNS SRV request for the domain of the regarding
SIP URI [18]. The response may contain one or more
destination hosts that provide the required services.

4. In some implementations, the callee’s proxy may issue
a reversing DNS request for the caller’s IP address to
check whether this SIP message is really coming from
the domain as announced in the message. The purpose is
to counter SIP identity fraud [19].

5.1.2 Attacking method

Issuing a DNS request to DNS servers is classified as exter-
nal processing since the SIP proxy cannot resolve domain
names itself. The SIP proxy needs to fetch DNS mapping
information of the destination domain from DNS servers. In
this scenario, REI is DNS mapping information. As a re-
sult, the time on resolving domain name is beyond the SIP
proxy’s control. With a distributed database, the processing

66 G. Zhang et al.

Fig. 4 Procedure of recursive DNS requests

time of DNS request sometimes can be quite long. When-
ever a SIP proxy requests a domain name resolution to a
DNS server, there are generally two cases to distinguish:

1. The DNS server knows the name mapping. The DNS
might know the mapping because it is the authoritative
name server for this domain. As such, all mappings for
the domain are preconfigured for this domain server. The
server might also know the name because it has resolved
the same request previously. In this case, the mapping re-
sult is still stored in the DNS server’s internal cache.

2. The DNS server does not know the name mapping. Thus,
this DNS server has to perform recursive requests to other
DNS servers that might be able to provide an answer. Fi-
nally, the DNS server will receive a response, either con-
taining a valid result or an error message that no map-
ping is possible. In the former case, the mapping will be
stored in the server’s internal cache for a period. In most
cases, the DNS server can also set a timeout for requests.
If no answer is received from recursive request during
this timeout, the domain name is considered irresolvable.

In Fig. 4, we show an example where a SIP proxy of
the kau.se domain issues a DNS request to sip.iptel.org. The
DNS server of kau.se performs a series of recursive requests
until it finds the authoritative DNS server of this domain (ip-
tel.org). Finally, this server replies with the IP address of
sip.iptel.org to kau.se’s DNS server. Only after getting the
result, the SIP proxy of kau.se can forward the messages to
the iptel.org domain.

The recursive DNS requests might be taking a long time.
In step 4 of Fig. 4, the DNS server of kau.se has to con-
tact the DNS server of iptel.org to get the final result. Thus,
the query time can be long if the DNS server of iptel.org is
poorly implemented or has poor network conditions.

In this way, an attacker can do a pretest by querying dif-
ferent domain names and observing their reply time. Then,
the attacker can craft attacking messages containing those
domains with high-latency DNS servers, which we defined
as hard-to-resolve domain names in this article. The at-
tacker can simply insert a SIP identity with a hard-to-resolve

Fig. 5 An example attack SIP message using a domain name

Fig. 6 The victim proxy will be blocked while processing attacking
messages

domain name in the request line. An example for such a
crafted SIP message can be seen in Fig. 5. The highlighted
part of the message can lead to proxy blocking. When a SIP
proxy receives attacking messages, it has to spend additional
time on domain name resolving (as shown in Fig. 6). There-
fore, the SIP proxy is blocked due to the messages it has
to process with high te. In the real world, a domain name
resolving can cost up to 15 seconds according to our tests.

5.2 Blocking attack using high-latency Web servers

5.2.1 Inter-domain authentication

Spammers frequently use faked SIP identities in order to
be untraceable. However, there is no centralized database of
user accounts for all domains. It is difficult for the callee’s
domain to authenticate the originator of a SIP message in
an inter-domain context since the callee’s domain may do
not have the account information of the originator. In this
way, spammers can easily send SIP messages with faked
identities. To prevent such a identity fraud problem, a so-
lution based on certificates for inter-domain authentication

Blocking attacks on SIP VoIP proxies caused by external processing 67

Fig. 7 The inter-domain authentication mechanism defined in RFC 4474

has been proposed in RFC 4474 [20]. Its purpose is to au-
thenticate the originator of inter-domain SIP messages. The
method is shown in Fig. 7. For each outgoing message to
other domains, the SIP proxy in the caller’s domain gener-
ates a hash digest for this message. The digest is signed by
the caller’s proxy with its private key. The generated signa-
ture is encoded in a new header field Identity added to the
original SIP message. Furthermore, the SIP proxy attaches
another new header field Identity-info, which contains the
Uniform Resource Locator (URL) [21] where the certificate
can be fetched from. Then, this SIP request is forwarded to
the callee’s domain. It is regulated that each certificate must
be provided by its domain itself. That is, in a SIP message,
the URL indicated in the Identity-info field and the origina-
tor domain indicated in the From field should be matched.
For each incoming message from other domains, the SIP
proxy in the callee’s domain first downloads the certificate
according to the URL given in the Identity-info field. The
public key extracted from the certificate is used to decrypt
the signature contained in the Identity field. Then, a hash di-
gest will be recomputed for the request. The result is used to
be compared to the newly generated hash digest. The proxy
will continue to process the message only if the two values
are equal. This mechanism is recommended to be deployed
in future SIP services to prevent SPAM [22].

5.2.2 Attacking method

Downloading certificates from web servers on the Internet
can be classified as external processing. The REI in this
scenario are the certificates of the senders’ domain. Af-
ter receiving an inter-domain message, the proxy must au-
thenticate the message beginning by downloading the cer-
tificate from the URL indicated in the Identity-info field.
Whether the proxy will continue to process this message de-
pends on the authentication result. If this message cannot
be successfully verified or its certificate can not be down-
loaded, the proxy will not process this message further, but

replies with an message with “authentication failed”. Other-
wise, the proxy will continue the processing of this message.
Thus, the proxy cannot decide whether it should continue to
process this message until it tried certificate downloading.
During the time for certificate downloading, there are 4 steps
to be performed, which are the following ones.

1. The proxy issues a DNS request for the URL indicated
in the Identity-info field to get the IP address of the web
server which provides the certificate.

2. The proxy tries to establish a HTTP or HTTPS connec-
tion with the web server.

3. The proxy tries to download the certificate from the loca-
tion given in the Identity-info field by HTTP or HTTPS
transmission.

4. The proxy closes the connection.

If step 1 or step 2 fails, the certificate is considered to
be unable to download and the subsequent steps will not
be executed. In this way, attackers can increase te by ei-
ther using a high-latency DNS server to slow down step 1
or using a high-latency web server to delay step 2. Since
we have already shown the attacks using high-latency DNS
server before, we will focus more on the attacks using
high-latency web server here. For example, if an attacker
knows that a website “hard-to-connect.com” is high-latency,
he can craft an attacking message pretending to be from
“hard-to-connect.com”, with its Identity-info field filled with
“http://www.hard-to-connect.com/test.cer”. An example of
the attack message is shown in Fig. 8. The highlighted part in
the message can result in the proxy to be blocked. Actually,
there is no such a file called test.cer existing on this website.
However, when the victim proxy receives this request, it can
spend an enormous amount of time on connecting to “hard-
to-connect.com”. The procedure is illustrated in Fig. 9. Af-
ter waiting for a long time, the proxy will give up processing
this message because the certificate cannot be downloaded.
However, the attacker does not need the attacking message
processed, but only wants the proxy being blocked. In prac-

http://www.hard-to-connect.com/test.cer

68 G. Zhang et al.

Fig. 8 An example SIP attacking message using web server

Fig. 9 The victim proxy will be blocked as long as it tries to connect
to the high-latency web server

tice, the connection with a latency web server can cost up to
60 seconds according to our pretests.

5.3 Preliminary summary of blocking attacks

As it is heavily depending on existing Internet infrastruc-
tures, a SIP proxy has to interact with external servers to
fetch REI for processing SIP messages. We define this type
of processing as external processing. For instance, when a
proxy receives a message targeting other SIP domains, the
proxy has to contact DNS servers to resolve the domain
name. Similarly, when a proxy receives a message origi-
nated from another SIP domain, the proxy needs to down-
load a certificate from such a domain for authentication.
Thus, a sophisticated attacker can craft attacking messages
which deliberately make a proxy to contact external high-
latency servers. After receiving these messages, a SIP proxy
will spend a long time on them and is unable to process fur-
ther legal messages during that time interval.

6 Experiments

In order to investigate the effectiveness of the blocking at-
tacks in the real world, we firstly investigate the distribu-
tion of latency between hosts in the Internet. Next, we setup
a testbed to perform a series of experiments, including the

Fig. 10 Cumulative distribution of hosts delays according to the MIT
king dataset (logarithmic scale)

blocking attacks by exploiting high-latency DNS server and
web server, respectively.

6.1 Measurements of latency in the real world

To launch the blocking attacks in the real world, attackers
have to collect a list of high-latency DNS servers or web
servers in the Internet. The latency between the servers and
the victim SIP proxy should be high enough to cause a large
te. But are these high-latency servers easy to find? And, how
much latency can these servers achieve? To answer these
questions, we used the MIT King dataset [23] as our mea-
surement dataset. King [24] is a method to estimate the la-
tency between two hosts in the Internet, by issuing recursive
requests through their DNS servers. The MIT King dataset
contains measurement of the latency between nearly 2000
randomly selected DNS servers including 97 million results.
Then we took 1 ms as the interval and calculate the cumu-
lative distribution based on the dataset, which is shown in
Fig. 10. The result demonstrates that values for latencies are
distributed from 100 milliseconds to 1 second in most cases.
However, there is still 10% probability for a latency to be
higher than 1 second and 2% probability for a latency to be
higher than 10 seconds. As can be seen, it is possible to find
high-latency servers in the Internet without much overhead.
Therefore, in the following experiments, we will investigate
the attacking impact by scaling the latency time from 1 sec-
ond to 14 seconds.

6.2 Test bed

The testbed consists of five components.

1. A SIP domain called Victim: A Victim domain includes a
SIP UA, a SIP proxy and a DNS server. The UA is used to
generate SIP messages to simulate the legal users’ traffic
behavior. All SIP traffic to and from the UA is relayed

Blocking attacks on SIP VoIP proxies caused by external processing 69

Fig. 11 The test bed for the
attack using a high-latency DNS
server

by the SIP proxy. This SIP proxy, the attacking target, is
implemented according to RFC 3261 and RFC 4474. We
configured the victim proxy to be quipped with n (n = 4
or n = 16) parallel process. These two configurations are
most frequently used in practice.

2. A SIP domain called Partner: The Partner domain in-
cludes a SIP UA and a SIP proxy. It constantly receives
SIP messages from the victim domain and sends replies.
The partner domain is used to cooperate with the victim
domain to build or tear down calls. The SIP proxy and
UA in the partner domain will not be under attack during
the test.

3. An attacking tool: The attacking tool constantly sends at-
tacking SIP requests to the victim SIP proxy. The attack-
ing tool can be configured to send messages with variable
attacking rate r (INVITEs/s).

4. A DNS server: The SIP proxy in the victim domain can
contact the DNS server for DNS request. The DNS server
can be specially configured to delay some requests for
ddns seconds. The purpose of such a delay is to simu-
late the time consumption on recursive DNS requests to
a high-latency DNS server. The measurement in Sect. 5.3
shows that the latency varies from 10 milliseconds to
more than 10 seconds. In the following test, we select
ddns to range from 1 second to 14 seconds.

5. A web server: The SIP proxy in the victim domain can
download certificates from this web server. Similar to the
DNS server, this web server can be also configured to de-
lay each response for dweb seconds. It is used to simulate
the time consumption on network latency. The range of
dweb is selected accordingly to ddns.

The experiment variables are listed in Table 1.

Software The attacking tool, victim UA and partner UA
are implemented using SIPp [25], an open source SIP traffic
generation tool. The SIP proxies are realized by using SIP
Express Router (SER) [26]. The web server is implemented
based on mini_ httpd [27]. The DNS server is based on a
modified dnsmasq [28].

Hardware The testbed of the victim domain with the DNS
server is established on a Pentium 4 machine with 512 MB
RAM running the Linux Ubuntu operating system, with fast

Table 1 Experiment variables

Variable description Variable Unit

The number of parallel processes n null

of the victim proxy

The attacking rate of r INVITEs/s

the attacking tool

The delay time on a DNS request ddns s

for an attacking message

The delay time on a connection dweb s

to the web server for an

attacking message

Internet access. The partner domain and the attacking tool
with the web server are running on other two machines with
the same configurations, respectively.

Legal user behavior We made the UA in the victim do-
main and the UA in the partner domain simulating legal SIP
users by constantly building up and tearing down calls ac-
cording to the 14 steps in Fig. 1. We define that one call has
been successfully accomplished if all of these 14 steps were
accomplished. In a pretest, we found that our test bed can
work steadily at a rate of 50 calls/s without attacks. Then,
we tried to accomplish 500 calls between the two UAs with
a relatively slow rate: 10 calls/s, but under attack. We took
500 calls as the benchmark and observed how many calls
can be accomplished when the victim proxy is under attack.
The number of accomplished calls is used to indicate the
throughput rate of the victim proxy.

6.3 Attack tests using a high-latency DNS server

In this scenario, we use four components based on the in-
troduced test bed: the victim domain, the partner domain,
the attacking tool and the DNS server. The configuration
of this test bed is shown in Fig. 11. The attacker pre-
tends to be a roaming user who constantly sends attack-
ing messages to the victim proxy at a rate r . The mes-
sages indicate that the attacker wants to talk with a user lo-
cated in a domain called “hard-to-resolve.com”. Thus, the
proxy will contact the DNS server to resolve the “hard-to-

70 G. Zhang et al.

Fig. 12 The result of blocking attacks using a high-latency DNS server: throughput rate is reduced as the attacking parameters ddns and r increase

Fig. 13 The test bed for the
attack using a high-latency web
server

resolve.com” domain. The DNS server is configured to de-
lay the response for ddns on purpose when it receives DNS
requests of “hard-to-resolve.com”. The purpose of delay is
to simulate the time needed for recursive DNS requests. The
DNS server does not delay other requests except “hard-to-
resolve.com”. Meanwhile, the two legal UAs communicate
with each other. We observed how many calls can be ac-
complished between them when the victim proxy is under
attack.

The results are illustrated in Figs. 12(a) and (b). The
pictures show that the number of accomplished calls are
reduced as the attacking parameters ddns and r increase.
Therefore, it is easy for an attacker to mount DoS attacks.
For example, setting parameter r = 2 and ddns = 4, the at-
tacker can basically reduce performance of the victim by
half of its initial performance. The same attacking parame-
ter configuration does not work with the victim proxy with
n = 16. However, if the attacker just simply speeds up r to
10, still 50% of all calls can not be accomplished. The exper-
iments show that the blocking attack can be easily realized
by using a high-latency DNS server.

6.4 Attack tests using a high-latency Web server

In this scenario, we employ all five components of the intro-
duced test bed: the victim domain, the partner domain, the

attacking tool, the DNS server and the web server. Since the
feasibility of the attack using high latency DNS servers has
already been proved in our previous tests, we configure the
delay time of the DNS server ddns ≡ 0 in this test. Hence,
readers should bear in mind that the DNS server in this test
does not delay any request any more. The configuration of
the testbed for this test is shown in Fig. 13. The attacker
pretends to be a SIP proxy relaying inter-domain SIP mes-
sages to contact the victim proxy. The messages are actually
attacking messages which indicate their certificates can be
downloaded from the web server. The victim proxy needs
to authenticate these messages and thus has to communicate
with the web server for downloading the certificates. The
web server has already been configured to delay every down-
loading request for dweb seconds. The purpose is to simulate
the time needed for network latency on connections. Other-
wise the setup is similar to the previous experiment.

The test results are shown in Figs. 14(a) and (b). The
pictures show that the number of accomplished calls are
reduced as the attacking parameters dweb and r increase.
Therefore, it is also possible to mount DoS attacks by using
high-latency web servers. However, the impact of these at-
tacks are lower compared to the impact of the previously dis-
cussed attacks in Sect. 5.2. The reason is that for the attacks
exploiting high-latency DNS servers, the victim proxy con-

Blocking attacks on SIP VoIP proxies caused by external processing 71

Fig. 14 The result of blocking attacks using a high-latency web server: the throughput rate is reduced as the attacking parameters dweb and r

increase

tacts the DNS server twice for each attacking message (the
first time for a SRV request, and since no result is received,
the proxy will continuously issue another A request,2 so it
will be delayed twice for each attacking message. But for the
attack exploiting high-latency web servers, the proxy con-
tacts the web server only once for each message. Neverthe-
less, the result still shows the impact of the attack using web
server is large enough to launch DoS attacks on SIP proxies.

7 Defence solutions

In this section, we present and discuss several defence so-
lutions against blocking attacks. The solutions are classified
in two categories: (1) Proxy-based; (2) Cache-based.

7.1 Proxy-based solutions

Proxy-based solutions aim at minimizing the impact of
blocking attacks by increasing the CPU utilization of the
victim proxies. The solutions include increasing n, restrict-
ing te and adopting asynchronous processing.

Solution 1: increase n Observed from the experiments,
blocking attacks work most effectively if the proxy utilizes
few parallel processes. For example, as shown in Fig. 12(a)
and (b), when n = 4, the attack with parameter r = 6 and
ddns = 3 can almost achieve a full DoS. When n = 16, the

2A SIP domain may own several proxies which support different trans-
portation protocols. For DNS resolving, a SIP proxy will issue a SRV
request to find out the corresponding transportation protocol supported
by the target domain, and then issue an A request for the selected proxy.
However, if the SRV request fails, the proxy will issue the A request of
the target domain directly [18].

same attack can only reduce the performance of the proxy
by around 40%. This shows that an increase of n is help-
ful to enhance the performance during attacks. However,
we also can observe from the experiments that the attacks
will still work as long as the attacker increases the attack-
ing rate r , which can be easily achieved by a Distributed
Denial of Service (DDoS). On the other hand, n should be
confined within a reasonable range, as each process of the
proxy consumes CPU and memory resources. Configured
with too many processes, the proxy will take the risk to be
overloaded or even crash.

Solution 2: setup a limitation on te It has been shown that
the more time spent on external processing te, the more per-
formance of SIP proxies is reduced during attacks. In this
way, the system administrator can arbitrary set a timeout of
te for SIP proxies, (e.g., 5 seconds). Thus, for a message
whose external processing has already taken 5 seconds and
is still going on, the proxy stops waiting and cancels the
processing for this message. However, the proxy can still
be blocked at least for the timeout during attacks. Another
problem is that many messages from legal users might take
a long te as well. Simply setting up a timeout for te does not
solve the problem completely and may cause a high false
positive rate annoying legal users.

Solution 3: asynchronous processing The easiest way to
implement external processing is to use some provided li-
brary functions (e.g., gethostbyname() for DNS re-
quests and curl_ easy_perform() for downloading
certificates). However, these functions were designed with-
out taking blocking attacks into account. As a result, the SIP
proxy cannot do anything besides waiting during external
processing. A solution is to re-implement these functions

72 G. Zhang et al.

using an asynchronous processing model: after issuing an
external processing request, the proxy would not wait until
an answer for this request is received. Instead, it puts the
request into an event queue, saves the transaction data, sets
current external processing on hold and continues handling
subsequent requests. When a reply for a previous external
processing arrives, the suspending transaction is scheduled
to continue. In this way, the external processing will not
be blocked. Unfortunately, however, since all the states and
SIP messages of unfinished external processing have to be
saved, the implementation complexity and memory require-
ments increase considerably. In previous tests [4], we found
that asynchronous processing easily leads to the depletion of
memory of SIP proxies during attacks.

7.2 Cache-based solutions

As mentioned before, the purpose of external processing is
to get REI for a message. Generally speaking, the same REI
(e.g., DNS mapping or certificate) can be reused for mes-
sages coming from or targeting the same domain. To avoid
wasting time on external processing, a SIP proxy can cache
fetched REI locally. Thus, there is no need to interact with
external servers all the time if its REI can be found locally.
The philosophy behind cache-based solutions is to transfer
tasks from external processing to internal processing. All the
following proposed solutions are based on cache. To explain
this section better, we firstly define four kinds of SIP mes-
sages from a proxy’s point of view. Then, the cache-based
solutions are represented.

1. α message: An α message originates from a legal user.
The proxy has successfully fetched the REI of this mes-
sage before. This may has happened because the proxy
previously processed another message with the same REI
that is needed. For example, consider two messages tar-
geting at two different callees located in the same do-
main, the REI (DNS mapping) for these two messages
are the same. Furthermore, for α messages, their REI is
still saved in the local cache on proxy.

2. β message: A β message originates from a legal user as
well. The proxy has also fetched the REI of this message
before. However, contrary to an α message, the REI is
not saved in the local cache. This may be due to two rea-
sons: Firstly, there is a maximum limitation on the size
of a cache. So some cached items will be erased to make
room for new items when the size limitation is reached.
Secondly, cached REI (both the DNS records and certifi-
cates) is assigned with a Time-To-Live (TTL) timer by
their owner. Cached information will be removed from
the cache when the TTL is expired. The cache refresh-
ing is necessary in order to not only keep the proxy with
updated information of remote hosts, but also to prevent
cache poisoning attacks [29].

Table 2 A taxonomy of SIP messages from a proxy’s perspective

Type Sender Its REI has been Its REI is cached

fetched before

α legal user Yes Yes

β legal user Yes No

γ legal user No No

δ attacker No No

Fig. 15 State transitions between α, β and γ messages

3. γ message: A γ message is sent from a legal user. The
proxy has not fetched the REI of this message before. As
a result, its REI is not cached, either.

4. δ message: A δ message is generated by an attacker. To
maximize the impact of attack, an attacker can randomize
domain names or URLs in the message with automation
tools to bypass the caching (e.g., adding random hosts
names to the left side of a domain). Thus, for each δ mes-
sage, it is unlikely that the REI has already been fetched
for another previous message. In consequence, its REI is
not cached as well.

A summary of these four message types is shown in Ta-
ble 2. Furthermore, the same legal message can be classified
as α, β or γ message at different times. The state transitions
are shown in Fig. 15. If a proxy does external processing for
a γ message, the REI of this γ message is cached. Then,
if the proxy receives the same message another time, it be-
comes an α message. After its cached information has ex-
pired, the same message will be a β message. Certainly the
message can become an α message again if the proxy re-
issues the external process. An ideal solution would process
all messages from legal users including α, β , and γ mes-
sages and, while δ messages would be filtered by the proxy.

Solution 4: simple deployed caches The local cache con-
sists of both a positive cache (for such a domain with
fetched valid information) and a negative cache (indicates
that it is unlikely to get a result for such a domain). Deploy-
ing a cache can accelerate processing for the messages with
their REI cached. However, given that an attacker generates

Blocking attacks on SIP VoIP proxies caused by external processing 73

Input: n: the number of parallel working processes
if number_of _blocked_processes < n − 1 then

if CheckCache()= NoResult then
number_of _blocked_processes + +;
ExternalProcessing();
number_of _blocked_processes − −;
UpdateCache();

end
else

GetFromCache();
end

end
else if number_of _blocked_processes ≥ n − 1 then

if CheckCache()= NoResult then
Reply(System Busy);

end
else

GetFromCache();
end

end

Algorithm 1: Unblocking cache

randomized attack messages (δ message), it is unlikely for
a proxy to find the REI from local cache. A victim proxy
can still be blocked by δ messages. Thus, simply deploying
caches cannot eliminate the impact of blocking attacks.

Solution 5: unblocking cache This solution uses the cache
based on an unblocking mechanism, so called unblocking
cache. We implemented an unblocking cache as a coun-
termeasure against DNS blocking attack in our previous
work [4]. Given a proxy with n parallel working processes,
we define one of them as an emergency process. As long
as n − 1 processes are blocked by external processing, the
emergency process will refuse to do external processing any
more. Instead, it will only check the result in its local cache
and reply with an error message (e.g., 5xx server error) if
its external information cannot be found in the cache. The
algorithm of the unblocking cache is shown in Algorithm 1.
The benefit of using an unblocking cache is two-fold: firstly,
when a proxy is under attack, the emergency process can at
least handle α messages without being blocked. Moreover,
since the emergency process refuses to do external process-
ing at all when the proxy is under attack, the throughput rate
of it should not be much reduced. As a result, it is helpful
to clear up the message buffer in time and then accept more
fresh messages into the message buffer.

The result of our past experiments showed that this solu-
tion is more effective than previous ones to counteract block-
ing attacks. However, the proxy still cannot process β mes-
sages during attacks even with the unblocking cache solu-
tion. The reason is that this solution refuses to do external

process at all as long as n − 1 processes are blocked. This
may cause problem in practice: for a long lasting blocking
attack, all cached information in a proxy may be removed as
soon as their TTL expires. Thus, the emergency process will
refuse to process any message as the local cache becomes
empty. In this way, the impact of denial of service still exists.
To address this problem, we have to improve the unblocking
cache so it can process β messages during attacks as well.

Solution 6: priority mechanism The priority mechanism is
an improvement of the unblocking cache. The purpose of the
priority mechanism is to enable processing of both α and β

messages during an attack. The priority mechanism works
in a similar manner to the unblocking cache. The difference
between them is that the priority mechanism employs a pri-
ority list instead of the content of cache to decide whether
a message can be processed. The priority list includes a list
of domain names or URLs, from which the proxy has pre-
viously successfully fetched REI. It only contains domain
names or URLs without their detailed external information.
Further, it is constantly updated after each successful ex-
ternal processing. Since the priority list only contains do-
main names or URLs, it does not consume much memory
resources and it is not vulnerable to cache poisoning. There-
fore, more entities can be managed with a priority list than
with a local cache. The algorithm of the unblocking cache is
shown in Algorithm 2. When n − 1 processes are blocked,
the emergency process enables to handle both α messages
and β messages in this way: After receiving a message, the
emergency process first checks the local cache to determine
whether it is an α message. If it is an α message, the emer-
gency process gets REI from cache and processes this mes-
sage. If it is not an α message, the emergency process will
check the priority list to find out whether it is a β message.
If it is a β message, the proxy will do external processing
for this message and cache the result. Otherwise, for other
message types (γ message and δ message), the emergency
process will give up processing. In this way, this solution
increases the trusted circle and enables the proxy to do ex-
ternal processing for β messages.

One may argue that it may take some time for an emer-
gency process to do external processing for a β mes-
sage. However, since a β message has been successfully
processed before, we assume that the message can be trusted
and the external processing of it will not take too long. Fur-
thermore, its REI can be cached locally again after success-
ful external processing. This means that the same external
processing will not be repeated continuously. Therefore, we
assume that this drawback is acceptable.

7.3 Solution comparison

We conducted an experiment to compare the proposed so-
lutions. Since we already proved that proxy-based solutions

74 G. Zhang et al.

are insufficient [4], we only apply the cache-based solution
prototypes on a victim proxy to observe and compare the
effectiveness of the three solutions. The setup of our test
bed for these experiments is shown in Fig. 16. The attack-
ing tool generates δ messages to the victim proxy and the
DNS server will delay the requests for δ messages. Chang-
ing from previous test beds, the partner domain is no longer
used in this test. Instead, we selected 15 SIP providers from
the real world. Each SIP provider has its own domain. The

Input: n: the number of parallel working processes
if number_of _blocked_processes < n − 1 then

if CheckCache()= NoResult then
number_of _blocked_processes + +;
ExternalProcessing();
number_of _blocked_processes − −;
UpdatePriorityList();
UpdateCache();

end
else

GetFromCache();
end

end
else if number_of _blocked_processes ≥ n − 1 then

if CheckCache()= NoResult then
if CheckPriorityList()= NoResult
then

Reply(System Busy);
end
else

number_of _blocked_processes + +;
ExternalProcessing();
number_of _blocked_processes − −;
UpdatePriorityList();
UpdateCache();

end
end
else

GetFromCache();
end

end

Algorithm 2: Priority mechanism

reason why we change the test bed elements is that we need
different domain names in the real world to test deployed
caches. To simplify the test, the legal UA in this experi-
ment does not build calls as in previous tests. Instead, our
SIP UA only sends OPTIONS3 messages to these 15 SIP
providers through the victim proxy. The total amount of sent
OPTIONS messages is 500. We have tested that the UA will
receive all 500 “200 OK” message replies for OPTIONS
messages if there is no attack. We further observe how many
“200 OK” messages will be received by the UA when the
victim proxy is applying the different solutions and is under
attack. We start the UA first followed by the attacking tool
in order to let the priority list and the local cache get the in-
formation of these domains of SIP providers. Each repeated
experiment lasts for 1000 seconds.

Figure 17 plots the testing result: one point for every tenth
received “200 OK” messages over elapsed time. In this test,
the best performance is achieved by the priority mechanism:
the UA received all 500 “200 OK” messages. Next, after de-
ploying the unblocking cache solution, nearly 420 “200 OK”
messages were received by the UA. During the first 300 sec-
onds, the unblocking cache gives the same performance as
the priority mechanism. However its throughput is slightly
reduced 300 seconds later as the distances between each
points increase. This is caused by the refreshing of some
cache entries with expired TTL. Since some REI is not in
cache any more and the emergency process refuses to do
external processing, some messages can not be processed
any more. That is why the proxy missed some legal mes-
sages. Nevertheless, the deployed priority mechanism can
process all the messages, since the emergency process is al-
lowed to do external processing for β messages, despite of
whether their REI are still in cache or not. The experiment
also proved that simply applying a basic cache is insufficient
for defending against the attacks: the proxy only worked for
the first 180 seconds and less than 20% “200 OK” messages
were replied.

3The SIP OPTIONS method allows a UA to query the capabilities of
a SIP proxy. The proxy should then reply with a “200 OK” message
containing corresponding information.

Fig. 16 Test bed used to
compare the effectiveness of
different solutions

Blocking attacks on SIP VoIP proxies caused by external processing 75

Fig. 17 Test results of the cache-based solutions comparison: Each
point in the figure indicates every tenth received “200 OK” message
over time

8 Conclusion

Since SIP proxies have to frequently contact external servers
to fetch related information for processing, the time con-
sumption on interactions with external servers is beyond
the control of SIP proxies. This vulnerability increase extra
processing time and can be exploited by attackers to reduce
the throughput of SIP proxies for mounting a DoS attack
on SIP proxies. We define this attack as a blocking attack.
Our experiments have proved that the blocking attack can
be launched with a low attacking rate by taking advantage
of high-latency DNS and web servers. It can be predicted
that more Internet-based infrastructures can be deployed for
such blocking attacks in the future with increasing SIP ap-
plications. Hence SIP designers and implementors should
carefully take this vulnerability into account. Finally, we
compared several defending solutions and proposed a prior-
ity mechanism to enhance the performance of service during
the attack.

References

1. Voice over IP Security Alliance (VOIPSA). http://www.
voipsa.org/. Accessed at 16 September 2008.

2. Geneiatakis, D., Dagiuklas, T., Kambourakis, G., Lambri-
noudakis, C., Gritzalis, S., Ehlert, S., & Sisalem, D. (2006). Sur-
vey of security vulnerabilities in session initiation protocol. IEEE
Communications Surveys & Tutorials, 8(3), 68–81.

3. Rosenberg, J., Schulzrinne, H., Camarillo, G., Johnston, A., Pe-
terson, J., Sparks, R., Handley, M., & Schooler, E. (2002). SIP:
Session initiation protocol. RFC 3261.

4. Zhang, G., Ehlert, S., Magedanz, T., & Sisalem, D. (2007). Denial
of service attack and prevention on SIP VoIP infrastructures using
DNS flooding. In IPTComm ’07: Proceedings of the 1st interna-
tional conference on principles, systems and applications of IP
telecommunications (pp. 57–66). New York, NY, USA, July 2007.
ACM.

5. Fielding, R., Gettys, J., Mogul, J., Frystyk, H., Masinter, L.,
Leach, P., & Berners-Lee, T. (1999). Hypertext transfer protocol—
HTTP/1.1. RFC 2616.

6. Handley, M., & Jacobson, V. (1998). SDP: Session description
protocol. RFC 2327.

7. Sisalem, D., Kuthan, J., & Ehlert, S. (2006). Denial of service at-
tacks targeting a SIP VoIP infrastructure: attack scenarios and pre-
vention mechanisms. IEEE Network, 20(5), 26–31.

8. Sengar, H., Wijesekera, D., Wang, H., & Jajodia, S. (2006). Fast
detection of denial of service attacks on IP telephone. In 14th IEEE
international workshop on quality of service, New Haven, USA,
June 2006. IEEE.

9. Chen, E. Y. (2006). Detecting DoS attacks on SIP system. In 1st
IEEE workshop on VoIP management and security, Vancouver,
Canada, April 2006. IEEE.

10. Sengar, H., Wijesekera, D., Wang, H., & Jajodia, S. (2006). VoIP
intrusion detection through interacting protocol state machines. In
DSN ’06: the international conference on dependable systems and
networks, June.

11. Ehlert, S., Wang, C., Magedanz, T., & Sisalem, D. (2008).
Specification-based denial-of-service detection for SIP voice-
over-IP networks. In 3rd international conference on Internet
monitoring and protection, Bucharest, Hungary, July 2008. IEEE.

12. Conner, W., & Nahrstedt, K. (2008). Protecting SIP proxy servers
from ringing-based denial-of-service attacks. In The tenth IEEE
international symposium on multimedia (ISM), Berkeley, USA,
December 2008. IEEE.

13. Geneiatakis, D., Kambourakis, G., Lambrinoudakis, C., Dagiuk-
las, T., & Gritzalis, S. (2007). A framework for protecting a SIP-
based infrastructure against malformed message attacks. Com-
puter Networks, 51(10), 2580–2593.

14. Fei, A., Pei, G., Liu, R., & Zhang, L. (1998). Measurements on
delay and hop-count of the Internet. In IEEE GLOBECOM’98—
Internet mini-conference, Sydney, Australia, November 1998.
IEEE.

15. Mockapetris, P. V. (1987). Domain names—implementation and
specification. RFC 1035.

16. Berners-Lee, T., Fielding, R., & Masinter, L. (2005). Uniform re-
source identifier (URI): Generic syntax. RFC 3986.

17. Faltstrom, P., & Mealling, M. (2004). The e.164 to uniform re-
source identifiers (URI) dynamic delegation discovery system
(DDDS) application (ENUM). RFC 3761.

18. Rosenberg, J., & Schulzrinne, H. (2002). Session initiation proto-
col (SIP): locating SIP servers. RFC 3263.

19. Nassar, M., State, R., & Festor, O. (2007). VoIP honeypot archi-
tecture. In IEEE international symposium on integrated network
management, Munich, Germany, May 2007. IEEE.

20. Peterson, J., & Jennings, C. (2006). Enhancements for authenti-
cated identity management in the session initiation protocol (SIP).
RFC 4474.

21. Berners-Lee, T., Masinter, L., & McCahill, M. (1994). Uniform
resource locators (URL). RFC 1738.

22. Rosenberg, J., & Jennings, C. (2008). The session initiation pro-
tocol (SIP) and spam. RFC 5039.

23. The MIT “king” dataset: http://pdos.csail.mit.edu/p2psim/
kingdata/. Accessed 16 January 2009.

24. Gummadi, K. P., Saroiu, S., & Gribble, S. D. (2002). King: esti-
mating latency between arbitrary Internet end hosts. In IMW’02:
proceedings of the 2nd ACM SIGCOMM workshop on Internet
measurement (pp. 5–18). New York, NY, USA. ACM.

25. SIPp: http://sipp.sourceforge.net/. Accessed 16 September 2008.
26. Express Router, S. I. P. (SER): http://www.iptel.org. Accessed 16

September 2008.
27. Minihttpd: http://www.acme.com/software/mini_httpd/. Accessed

16 September 2008.
28. Dnsmasq: http://www.thekelleys.org.uk/dnsmasq/doc.html. Ac-

cessed 16 September 2008.

http://www.voipsa.org/
http://www.voipsa.org/
http://pdos.csail.mit.edu/p2psim/kingdata/
http://pdos.csail.mit.edu/p2psim/kingdata/
http://sipp.sourceforge.net/
http://www.iptel.org
http://www.acme.com/software/mini_httpd/
http://www.thekelleys.org.uk/dnsmasq/doc.html

76 G. Zhang et al.

29. Stewart, J. (2003). DNS cache poisoning—the next generation
(Technical report). http://www.lurhq.com/dnscache.pdf. Accessed
4 November 2008.

Ge Zhang received the B.S. de-
gree in computer science from An-
hui University of Technology, China
in 2003 and the M.S. degree in com-
puter science from Blekinge Insti-
tute of Technology, Sweden in 2007
respectively. He also did internship
as a research student at Fraunhofer
Institute FOKUS, Germany from
2006 to 2007. Currently, he is pur-
suing his Ph.D. degree at Karlstad
University, Sweden. His research
interests focus on VoIP applications,
IMS, network security and privacy.

Simone Fischer-Hübner has been
a Full Professor at the Computer
Science Department of Karlstad
University, Sweden, since June
2000, where she is the head of
the PriSec (Privacy & Security) re-
search group. She received her Doc-
toral (1992) and Habilitation (1999)
Degrees in Computer Science from
Hamburg University/Germany. Her
research interests include IT-security
and privacy-enhancing technolo-
gies. She was a research assis-
tant/assistant professor at Hamburg
University (1988–2000) and a Guest

Professor at the Copenhagen Business School (1994–1995) and at
Stockholm University/Royal Institute of Technology (1998–1999). She
is the vice chairperson of IFIP (International Federation for Informa-
tion Processing) Working Group 11.6 on “Identity Management” and
coordinator of the Swedish IT Secure Network for Ph.D. students.

Sven Ehlert is a senior researcher
at Fraunhofer Institute FOKUS in
Germany. His research interests are
SIP and VoIP/NGN communica-
tion networks, security applications,
and Intrusion Detection Systems.
He has lead several multinational
VoIP/NGN security-related research
projects including denial-of-service
detection and VoIP spam detection.
He graduated from Technische Uni-
versität Berlin with his major in
communication protocols in com-
puter science.

http://www.lurhq.com/dnscache.pdf

	Blocking attacks on SIP VoIP proxies caused by external processing
	Abstract
	Introduction
	SIP-based VoIP
	Related work
	Blocking attacks
	Two attacking examples
	Blocking attack using high-latency DNS servers
	DNS usage in SIP
	Attacking method

	Blocking attack using high-latency Web servers
	Inter-domain authentication
	Attacking method

	Preliminary summary of blocking attacks

	Experiments
	Measurements of latency in the real world
	Test bed
	Software
	Hardware
	Legal user behavior

	Attack tests using a high-latency DNS server
	Attack tests using a high-latency Web server

	Defence solutions
	Proxy-based solutions
	Solution 1: increase n
	Solution 2: setup a limitation on te
	Solution 3: asynchronous processing

	Cache-based solutions
	Solution 4: simple deployed caches
	Solution 5: unblocking cache
	Solution 6: priority mechanism

	Solution comparison

	Conclusion
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 1.30
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 10
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 10
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 1.30
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 10
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 10
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 600
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e5c4f5e55663e793a3001901a8fc775355b5090ae4ef653d190014ee553ca901a8fc756e072797f5153d15e03300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc87a25e55986f793a3001901a904e96fb5b5090f54ef650b390014ee553ca57287db2969b7db28def4e0a767c5e03300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c00200073006b00e60072006d007600690073006e0069006e0067002c00200065002d006d00610069006c0020006f006700200069006e007400650072006e00650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e00200065006e002000700061006e00740061006c006c0061002c00200063006f007200720065006f00200065006c006500630074007200f3006e00690063006f0020006500200049006e007400650072006e00650074002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000640065007300740069006e00e90073002000e000200049006e007400650072006e00650074002c002000e0002000ea007400720065002000610066006600690063006800e90073002000e00020006c002700e9006300720061006e002000650074002000e0002000ea00740072006500200065006e0076006f007900e9007300200070006100720020006d006500730073006100670065007200690065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f9002000610064006100740074006900200070006500720020006c0061002000760069007300750061006c0069007a007a0061007a0069006f006e0065002000730075002000730063006800650072006d006f002c0020006c006100200070006f00730074006100200065006c0065007400740072006f006e0069006300610020006500200049006e007400650072006e00650074002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF753b97624e0a3067306e8868793a3001307e305f306f96fb5b5030e130fc30eb308430a430f330bf30fc30cd30c330c87d4c7531306790014fe13059308b305f3081306e002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b9069305730663044307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c306a308f305a300130d530a130a430eb30b530a430ba306f67005c0f9650306b306a308a307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020d654ba740020d45cc2dc002c0020c804c7900020ba54c77c002c0020c778d130b137c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor weergave op een beeldscherm, e-mail en internet. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f007200200073006b006a00650072006d007600690073006e0069006e0067002c00200065002d0070006f007300740020006f006700200049006e007400650072006e006500740074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200065007800690062006900e700e3006f0020006e0061002000740065006c0061002c0020007000610072006100200065002d006d00610069006c007300200065002000700061007200610020006100200049006e007400650072006e00650074002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e40020006e00e40079007400f60073007400e40020006c0075006b0065006d0069007300650065006e002c0020007300e40068006b00f60070006f0073007400690069006e0020006a006100200049006e007400650072006e0065007400690069006e0020007400610072006b006f006900740065007400740075006a0061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f6007200200061007400740020007600690073006100730020007000e500200073006b00e40072006d002c0020006900200065002d0070006f007300740020006f006300680020007000e500200049006e007400650072006e00650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for on-screen display, e-mail, and the Internet. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 /DEU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200037000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300031003000200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020>
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToRGB
 /DestinationProfileName (sRGB IEC61966-2.1)
 /DestinationProfileSelector /UseName
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles true
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /NA
 /PreserveEditing false
 /UntaggedCMYKHandling /UseDocumentProfile
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

