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Abstract The paper presents a structure-preserving method
of sampling self-similar traffic with an application to net-
work monitoring and resource provisioning. Based on the
observation of the self-similarity of Internet traffic, we pro-
pose a new sampling technique (so-called the maximum-
based sampling). We show that the resulting data suits per-
fectly for predicting the bandwidth required by upcoming
traffic so that the resource provisioning can be done effi-
ciently and intelligently especially for the context of IP over
WDM networks.

Hence, we prove mathematically that the proposed tech-
nique preserves the self-similarity of the traffic. Besides, ex-
perimental results using real Internet traffic show that unlike
other sampling techniques (systematic sampling and strati-
fied random sampling), the maximum-based sampling cap-
ture faithfully the traffic self-similarity. In order to assess
the effect of the sampling technique impact on the perfor-
mance of the traffic prediction,we undertake a series of pre-
diction experiments using sampled traffic with the proposed
technique and the other sampling techniques. A neurofuzzy
model (α_SNF), the AutoRegressive Integrated Moving Av-
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erage model (ARIMA) and the Linear Minimum Mean
Square Error (LMMSE) are considered in this study for
bandwidth prediction. Our experiments results show that the
maximum-based sampled traffic—used for the identification
of the prediction model—is the most suitable for predicting
the traffic for different time scales.
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1 Introduction

A large number of researches was devoted to the design
of Internet traffic models [3, 19] in LAN and WAN net-
works. However, it is still not clear what models or pertinent
metrics to use when characterizing Internet traffic. Three
main factors amplified this phenomena (i) the overstated re-
ports on Internet traffic exponential growth, (ii) the com-
plexity of Internet traffic measurements (iii) and the inabil-
ity to find the exact applicability—resulted from the lack of
understanding—of those recently discovered peculiar traf-
fic phenomena such as self-similarity. In this context a lot
of work has investigated techniques able to improve the un-
derstanding and the exploitation of the Internet traffic. Thus,
traffic sampling and prediction techniques have constituted
an important research topics.

The foremost and fundamental question regarding sam-
pling is its accuracy. In other words sampled traffic must
reflect faithfully the characteristics of the original Internet
traffic. This is especially pertinent due to the existence of
concentrated periods of hight activities (peaks) and low ac-
tivities i.e. burstiness. The self-similarity nature of the traf-
fic is also widely accepted since the Bellcore studies [19].
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Fig. 1 Interaction between IP
layer and WDM layer

Hence, inaccurate sampling can lead to wrong analysis and
interpretation of the traffic. Consequently, it could involve
wrong decisions by the network operators.

Several research efforts have been made to investigate
the effectiveness of sampling techniques in measuring net-
work traffic [5, 10, 13, 21, 25, 27]. Three commonly used
sampling techniques, i.e., static systematic, stratified ran-
dom and simple random, have been studied by Claffy et
al. [5]. In a latest work, He and Hou [10] have shown that
while all of these three sampling techniques can capture the
Hurst parameter (second order statistics) of Internet traffic
they fail to capture the mean (first order statistics) faith-
fully. Based on the observation of the traffic—especially
its self-similarity—they have also proposed a new variation
of static sampling called biased systematic sampling (BSS).
The authors showed that their technique gives better perfor-
mance in terms of efficiency compared to other sampling
techniques. Unfortunately, they didn’t use BSS results for
real applications such as traffic prediction. In fact, we be-
lieve that this sampling technique generates new parameters
which are not obvious to identify such as threshold, num-
ber of samples. . . etc. Besides, the resulting samples will be
spaced of various time interval. Thus, the application of pre-
diction models on such sampled process is not straightfor-
ward.

On the other hand, Traffic prediction has been more in-
vestigated since the acceptance of the self-similar and the
long-range dependence nature of networks traffic [1, 15,
18, 19]. While this peculiar characteristic causes dramatic
effects on network performance in terms of loss and delay,
several studies have shown that the self-similarity can be ex-
ploited to characterize or to predict the traffic in order to
control network resources [2, 9, 11, 12, 17]. A lot of pre-
diction models has been used like the AutoRegressive Inte-
grated Moving Average family models (AR, MA, ARMA,
ARIMA), the Linear Minimum Mean Square Error model
(LMMSE) and the Neurofuzzy models like the α_SNF [9,
11, 12, 17].

Traffic sampling and prediction may be useful for de-
veloping new techniques able to improve resources utiliza-
tion in a more flexible and dynamic way. This could be in-
teresting in the context of wavelength division multiplex-
ing (WDM). Accordingly, a crucial issue for new genera-
tion optical backbone networks is the achievement of traf-
fic engineering strategies that support different types of traf-
fic with dynamic demands. Traffic engineering should select
routes for new-established connexions and may redirect traf-
fic flows toward less congested paths, taking into account the
different traffic loads and the network state (Fig. 1). Instead
of today’s static service delivery with manual provisioning
and long-term bandwidth allocation, service providers may
use intelligent capacity planning to optimize bandwidth pro-
visioning [6].

End-to-end measurements performed on a network in-
frastructure is a widely used technique for resource manage-
ment protocols design as well as for traffic behavior analy-
sis. Those measurement results can be used for better re-
source control [4, 8, 16, 17, 23].

In this paper, we focus on traffic sampling and prediction
at IP level to make decisions for resource provisioning at the
optical level. In other words, the target is to propose a mech-
anism of traffic engineering able to dynamically cope with
the traffic variation and assign the exact amount of band-
width (lightpaths) required to handle it.

To achieve this purpose, we derive a new structure-
preserving method of sampling. We prove its efficiency
for preserving traffic characteristics. We then propose a
prediction-based method to detect upcoming high traffic
loads using the sampled data. We also focus on finding ade-
quate prediction model by comparing the α_SNF model, the
ARIMA model and the LMMSE model.

We note that experiments were done with real traces con-
sisting of the aggregated traffic of a single link. However,
the proposed scheme can be applied to the load placed on
one lambda channel in the case of an IP/WDM network.

The remaining of the paper is organized as follows. Sec-
tion 2 introduces the self-similarity in the network traffic.
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It describes sampling techniques and the prediction models
considered in this work. Section 3 presents the structure pre-
serving sampling method as well as the mathematical proofs
demonstrating the self-similarity of the sampled traffic. Our
proposal is validated in Sect. 4 by a comparison with other
sampling techniques and by prediction experiments. Sec-
tion 5 concludes with a summary of the obtained results.
It also provides a look to the possible applications of the
derived technique.

2 Background

In this section, we introduce self-similar processes, the com-
monly used sampling techniques as well as the prediction
models used in this work. We also discuss the criteria that
we must take into account to choose the suitable sampling
scheme.

2.1 Self-similarity

Last decade’s studies on network traffic argue convincingly
that LAN and WAN traffic is much better modeled using
self-similar processes [15, 19]. The strength of self-similar
models is that they are able to incorporate Long-Range De-
pendence (LRD), which informally means significant corre-
lations across arbitrarily large time scales. The self-similar
traffic can have serious adverse impact on network perfor-
mance [18]. While throughput declines gradually as self-
similarity increases, queuing delay increases more drasti-
cally. In addition, when the traffic is highly self-similar, the
queuing delay grows nearly proportionally to the buffer ca-
pacity present in the system. However, the non-trivial cor-
relation structure present in LRD traffic at large time scales
can be judiciously exploited for accurate traffic prediction.

We present now the most important formulas to our
purpose in order to characterize self-similar processes.
Given a zero-mean, stationary time series X = (Xt ; t =
1,2,3, . . .), we define the m-aggregated series X(m) =
(X

(m)
k ; t = 1,2,3, . . .) by summing the original series X

over non-overlapping blocks of size m.

Xm(k) = 1

m

km∑

i=(k−1)m+1

X(i). (1)

Then we say that X is H -self-similar if for all positive m,
Xmhas the same distribution as X rescaled by mH . That is:

Xt
∼= m−H

tm∑

i=(t−1)m+1

Xi for all m ∈ N. (2)

If X is H -self-similar, it has the same autocorrelation
function

r(k) = E[(Xt − μ)(Xt+k − μ)]/σ 2 as the series X(m)for
all m.

As result, self-similar processes can show long-range de-
pendence. A process with long-range dependence has an au-
tocorrelation function r(k) ∼ k−β as k → ∞, where 0 <

β < 1. Thus the autocorrelation function of such process
follows a power law. Since β < 1, the sum of the autocorre-
lation values of such series approaches infinity.

This mathematical characteristic has a number of impli-
cations. First, the variance of the mean of n samples from
such series does not decrease proportionally to n−β . Second,
the power spectrum of such a series is hyperbolic, rising to
infinity at frequency zero-reflecting the “infinite” influence
of long-range dependence in data.

One of the attractive features of using self-similar mod-
els for network traffic, is that the degree of self-similarity of
such series is expressed using only a single parameter. This
parameter expresses the speed of decay of the autocorrela-
tion function, and it is called Hurst parameter H = 1 − β

2 .
Thus, for self-similar series with long-range dependence,
1
2 < H < 1. As H → 1, the degree of both self-similarity
and long-range dependence increases.

2.2 Sampling techniques

Three categories of sampling techniques have been com-
monly used in measuring Internet traffic [5, 10]: systematic
sampling, stratified random sampling, and simple random
sampling (Fig. 2).

– In systematic sampling, every Cth element of the parent
process is deterministically selected for sampling, starting
from sampling point.

– In stratified random sampling, the time axis is divided
into intervals of length C, and one sample is randomly
selected each interval.

– In sample random sampling, N packets are randomly se-
lected from the entire population.

Once we have selected our sampling scheme, it would seem
to be a rather straightforward exercise to take some measure-
ments, calculate some statistics and draw conclusions. There
are, however, many things which can go wrong along the
way that can be avoided with careful planning and knowing
what to watch for. Thus sampling technique must take into
account various criteria:

– Preserving Self-similarity: as mentioned in the previous
section the Hurst parameter reflects the degree of both
self-similarity and long-range dependence. Thus, sam-
pling should preserve the Hurst parameter of the original
data.

– Preserving Burstiness: Burstiness behavior in actual traf-
fic creates difficulties for many conventional measures of
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Fig. 2 An illustration of the
three sampling techniques [10]

“burstiness”. In some previous works the Hurst parame-
ter H was considered as a metric for measuring traffic
burstiness and seemed to capture the intuitive notion of
burstiness. This consideration was justified by visual as-
sessment and the assumption that the traffic behaves like
fractional Gaussian noise [14]. Therefore we use another
criterion for “burstiness” assessment. Three commonly
used definitions are the ratio of peak bandwidth to mean
bandwidth, the coefficient of variation, and the index of
dispersion for counts (IDC) [15]. In this paper, we con-
sider the Peak-to-Mean (PM) as a metric to measure traf-
fic burstiness expressed by the following equation:

PM = E

[ maxi=km
i=(k−1)m+1(Xi)

∑j=km

j=(k−1)m+1 Xj/m

]
. (3)

– Precision of the prediction: since we aim to predict traf-
fic for better resource control, sampling technique should
help to have an accurate prediction.

In this paper, the proposed sampling technique takes into
account all these constraints. It doesn’t have to preserve the
average or the variance over the data since the final aim is
to predict burstiness. We prove that it preserves the self-
similarity, the burstiness and the high variability of the traf-
fic. It also allows better prediction performance as compared
to the other sampling techniques.

2.3 Prediction models

In what follows, we introduce prediction models considered
in this study. The first model is the α_SNF which is a neuro-
fuzzy model. It combines fuzzy logic and neural networks.
This model has given better performance and more accurate
results than linear predictors [22, 28, 29]. The second model
is the Autoregressive Moving Integrated Average which is a
linear model. This model was widely used in literature [17,
20]. The third model is the Linear Minimum Square Er-
ror which was also used in previous works [9, 11, 12]. We
also note that ARIMA and α_SNF are models which need a

training phase. The training phase is a phase for the identi-
fication of the model parameters. However, LMMSE needs
only the N last observations to predict the next value.

The criteria used to evaluate the predictability and to
compare the efficiency of used models is the Average Rela-
tive Variance:

ARV =
∑n

i=1[xt − x̂t ]2
∑n

i=1[xt − μ]2
, (4)

where xt is the real output, x̂t is the calculated output, μ is
the estimated average over the used data. The advantage of
the ARV is that it doest depend on the used scale or the size
of data unlike the mean square error (MSE). If the ARV is
less than 1, it means that the predictor is doing better than
using the average. Thus when the ratio is getting smaller
than 1, it is more advantageous to use the predictor.

2.3.1 The neurofuzzy system (α_SNF)

The first model is a neurofuzzy model called α_SNF [22, 28,
29]. The fuzzy system is described as a non-linear relation
between inputs x1, . . . , xn and an output Y = f (x1, . . . , xn),
where n is the number of inputs xi . This relation is described
by a collection of fuzzy rules. Let c be the number of rules in
the fuzzy system. We note Rk the kth rule where 1 ≤ k ≤ c.
A fuzzy rule Rk is given as the following:

Rk : if (x1, . . . , xn) is Ak then yk is bk, (5)

where Ak is called a cluster and yk is the output of the rule
calculated using a real noted bk .

In fuzzy logic, every point x belongs to a cluster A with
a membership degree that has a value between 0 and 1 given
by a membership function μA(x). Thus, each rule Rk eval-
uates the membership of each element (x1, . . . , xn) to each
cluster Ak noted μAk

(x1, . . . , xn). Then yk is calculated as:

yk = μAk
(x1, . . . , xn).bk. (6)

The rule Rk can be written as:

x1 is Ak1 and xj is Akj , . . . , xn is Akn then yk is bk, (7)
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Fig. 3 Example of equivalent neural network α_SNF (2 inputs,
3 rules)

where the cluster Aki is the projection of Ak in the ith di-
mension. We note μAik

(xi) the membership function of xi

to the cluster Aki . Then μAk
(x1, . . . , xn) is given by:

μAk
(x1, . . . , xn) =

n∏

i=1

μAik
(xi). (8)

We used membership function:

μAik
(xi) = exp

(−|wgikxi + wcik|lik
)
, (9)

where wgik , wcik and lik parameters are used to adjust the
general form of the function.

The output of the system Y is given by:

Y =
∑c

k=1 yk∑c
k=1 μAk

(x1, . . . , xn)
. (10)

The parameters wgik , wcik and lik are initialized using a
method called “semi-α-cut density” [22]. The fuzzy model
is then incorporated into an equivalent neural network. Fig-
ure 3 shows the α_SNF using 3 rules and 2 inputs. Each
node Aik calculates the membership function μAik

(xi) us-
ing (9) and each node Ak calculates yk using (6). The output
node calculates Y using (10).

The α_SNF model is trained using the back-propagation
algorithm [22]. Training the neural network aims at chang-
ing the parameters wgik , wcik and lik in order to reduce the
error between the calculated output and the real output. The
input variables xi can be either a lag y(t − i) or another
variable measured at time t − 1. For selecting the number of
rules, we found via experiments that using more than 3 rules
does not improve the prediction performance. We found that
using more than 3 rules does not improve the prediction per-
formance.

2.3.2 The autoregressive integrated moving average model
(ARIMA)

The most well-known linear forecasting models are the Au-
toregressive (AR), Moving Average (MA) and the the Au-
toRegressive Moving Average (ARMA). A time series y(t)

is an ARMA(p,q) process if it is stationary and if for every
t :

y(t) = φ1y(t − 1) + · · · + φpy(t − p)

+ ε(t) + θ1ε(t − 1) + · · · + θqε(t − q), (11)

where φi and θj are the parameters of the model, and ε(t)

are error terms. The error terms ε(t)are assumed indepen-
dant, identically distributed sampled from a normal distrib-
ution with zero mean and finite variance σ 2.

The equation can also be written in a more concise form
as:

y(t) =
p∑

i=1

φiL
iy(t) + (1 +

q∑

i=1

θiL
i)ε(t), (12)

where L is the backward shift operator defined as follows:
Liy(t) = y(t − i). We notice that AR and MA are special
cases when q = 0 or p = 0.

The ARMA model fitting procedure assumes the data to
be stationary. If the time series exhibits variations that vi-
olate the stationary assumption, then there are specific ap-
proaches to make the time series stationary. The most com-
mon one is what is often called the “differencing opera-
tion”. It is defined by (1 − L)y(t) = y(t) − y(t − 1). It can
be shown that a polynomial trend of degree k is reduced
to a constant by differencing k times, that is, by applying
the operator (1 − L)ky(t). We could therefore proceed by
differencing repeatedly until the resulting series can plausi-
bly be modeled as a realization of a stationary process. An
ARIMA(p,d, q) model is an ARMA(p,q) model that has
been differenced d times. Thus, the ARIMA(p,d, q) can be
given by:

(
1 −

p∑

i=1

φiL
i

)
(1 − L)dy(t) =

(
1 +

q∑

i=1

θiL
i

)
ε(t). (13)

For training the ARMA model, Powell’s function minimiza-
tion routine is used to choose the coefficients to minimize
the sum of squared prediction errors [26].

In order to estimate parameter p and q , there is no au-
tomatic technique. In fact we need to examine sample auto-
correlation function (ACF) and partial auto-correlation func-
tion (PACF) to get an idea of potential p and q values. Con-
sequently, we specified parameters as used usually in litera-
ture [20] thus p = 4, d = 1 and q = 4.

2.3.3 Linear minimum square error (LMMSE)

LMMSE Predictor consists of predicting the aggregate se-
ries sample, y(t + 1), in the next interval as a weighted sum
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of the past n average samples:

y(t + 1) = [a1 a2 · · · an]

⎡

⎢⎢⎢⎣

y(t)

. . .

y(t − n + 1)

y(t − n)

⎤

⎥⎥⎥⎦ , (14)

where a1 a2 · · ·an are the LMMSE coefficients. Those coef-
ficients can be expressed as:

[a1 a2 · · · an]

= [R(1) · · · R(n − 1) R(n)]

×

⎡

⎢⎢⎢⎣

R(0) R(1) · · · R(n − 1)

R(1) R(0) · · · R(n − 2)

. . .

R(n − 1) R(n − 2) · · · R(0)

⎤

⎥⎥⎥⎦

−1

, (15)

where R(i) is the covariance function of the time series, and
can be estimated as:

R(i) = 1

n

n∑

t=i+1

y(t)y(t − i), 0 ≤ i ≤ n − 1, (16)

where n is the number of aggregate series samples kept and
it is a tunable parameter. We consider n = 10 for the simu-
lation.

3 A structure preserving method of traffic sampling

3.1 Maximum-based sampling

Traffic measurement consists of collecting data from the net-
work. To achieve this task, two main approaches are used.

The first one consists of examining every single packet
traversing a given router (measurement spot). It is obvious
that this approach is infeasible since the required process-
ing resource and the storage cost grow exponentially as the
throughput increases.

The second approach employs sampling at the packet
level to control the consumption of resources in mea-
surement networks infrastructure. Many routers that are
equipped with traffic measurement tools provide statistics
from a sampled streams because of the limitations on the
memory size and the processing resource of the collected
data. Hence, the main advantage of this traffic measurement
approach is the reduction of storage and processing at the
collector equipment. In this work, we use the throughput of
the traffic (Mbps) which can be obtained easily using any
traffic measurement tool. The throughput is defined as the
incoming input rate in Megabit per second.

Several studies in the literature have analysed the net-
work traffic [17, 24]. The observations from the collected
time series lead to three main findings:

1. There are strong periodicities in the data.
2. The time series exhibit evident self-similarity and long-

range dependence, i.e. non-stationary behavior.
3. The traffic have a heavy-tailed distribution which leads to

is that it exhibits extreme variability. Practically speak-
ing, a heavy-tailed distribution gives rise to very large
values with nonnegligible probability so that sampling
from such distribution results in the bulk of values being
“small” but a few samples having “very” large values.
Not surprisingly, heavy-tailedness impacts sampling by
slowing down the convergence rate of the sample mean
to the population mean, dilating it as the tail index ap-
proaches 1.

Such findings can be exploited in the forecasting process.
In fact, periodicity and long-range dependence imply that
the time series behavior from one interval to the next can be
predicted.

Consequently our objective is to consider the traffic pa-
rameters during cycle n (the peak rate in our study), we aim
to design a method to predict the required bandwidth by the
next cycles (n,n + 1, . . .). Hence, the resource provisioning
can be done efficiently and intelligently, especially in the
context of IP over WDM.

For instance, intelligent and efficient provisioning at the
optical layer requires adding lightpaths in a specific areas
of the network according to Internet layer dynamics. There-
fore, we propose to perform traffic forecast at peak level
of traffic instead of the original traffic. In other words, we
aim to predict successive traffic peaks that represent poten-
tial link congestion causes. By accurately predicting upcom-
ing high traffic loads, the network controller can provision
optical resources accordingly.

In order to achieve this aim, we propose a periodic
sampling method (so-called maximum-based sampling) that
picks one measurement during a sampling interval of size
τ . This measurement represents the maximum value calcu-
lated over the sampling interval i.e. the peak rate. The on-
line traffic monitoring approach consists of the subsequent
tasks (Fig. 4):

1. Set the sampling interval size equal to τ .
2. Determine corresponding maximums (Mi ) in interval

(Ii)i=1,...,N .
3. Apply the prediction method on the newly constructed

process (Mi)i=1,...,N .

Elbiaze et al. [7] have observed that the peak rates calcu-
lated over non-overlapping intervals varies from one inter-
val to the next keeping the same behavior as the original
traffic, i.e., incorporating correlation. On the other hand, the



A new structure-preserving method of sampling for predicting self-similar traffic 271

Fig. 4 An illustration of the max-based sampling technique

family of peak rates behaves in the same way in different
lengths, i.e. in many time scales. Intuitively, that means the
presence of self-similarity property in the sequence of peak
rates. Based on this constatation, we try to prove mathemat-
ically the self-similarity of such sampled data.

3.2 Mathematical proofs for the self-similarity preservation

The most useful definition of self-similar for our purpose is
the following: A process X(t) − ∞ < t < ∞ is self-similar
with parameter H if X(at) and aH X(t) have identical finite
dimensional distributions for all a. This is equivalent to say
that for any positive a and for any finite integer m

P(X(at1) ≤ x1, . . . ,X(atm) ≤ xm)

= P(aH X(t1) ≤ x1, . . . , a
H X(tm) ≤ xm). (17)

Theorem 1 Let X(t) be a continuous self-similar (S.S) with
parameter H and let P be a partition of [0,∞) into disjoint
half-open intervals [t0, t1), [t1, t2), . . . , [tn, tn+1) with t0 = 0
such that

∞⋃

i=0

[ti , ti+1) = [0,∞).

Define

Y(ti) = max
t∈[ti ,ti+1)

Xt .

Then {Y(ti)}∞i=1 is self-similar with the same parameter H .

Proof of Theorem 1 We will first consider a sequences of
closed disjoint intervals Ii,n = [ti , ti+1 − 1/n] and define

Y 	
t,n = max

t∈Ii,n

Xt

and then for each fixed n we will show that the {Y 	
t,n}∞i=1 is

S.S with parameter H .
By the continuity of the stochastic process Xt it follows

that if {Y 	
i,n}∞i=1 is S.S with parameter H then {Y(ti)}∞i=1 is

also.
Fix n and consider {Y 	

i,n}∞i=1 (for convenience we drop
the subscript n and write simply Y 	

i ).
We must show first that

P(Y 	(ati) ≤ x) = P(aH Y 	(ti) ≤ x). (18)

We must then show that Y 	(ati) and aH Y 	(ti) have the same
finite dimensional distributions. This is equivalent to show-
ing for disjoint intervals [ti1, ti1+1 − 1/n) · · · [tim, tim+1 −
1/n)

P (Y 	(ati1) ≤ x1, . . . , Y
	(atim) ≤ xm)

= P(aH Y 	(ti1) ≤ x1, . . . , a
H Y 	(tim) ≤ xm). (19)

�

Proof of (18) We know that ∀t ∈ Ii,n

P (X(at) ≤ x) = P(aH X(t) ≤ x) (20)

it follows

P
(

max
t∈Ii,n

X(at) ≤ x
)

≤ P
(

max
t∈Ii,n

(aH X(t)) ≤ x
)

∀t ∈ Ii,n.

Which is equivalent to

P(Y 	(ati) ≤ x) ≤ P(aH Y 	(ti) ≤ x). (21)

It also follows from (20) that

P
(

max
t∈Ii,n

aH X(t) ≤ x
)

≤ P
(

max
t∈Ii,n

X(at) ≤ x
)

∀t ∈ Ii,n.

Which is equivalent to

P(aH Y 	(ti) ≤ x) ≤ P(Y 	(ati) ≤ x). (22)

The inequality (21) and the reverse (22) are true and thus
the equality 18 is true. �

Proof of (19) We know by property (17) which defines the
self-similarity of X that for each t1 ∈ I1,n, . . . , tm ∈ Im,n

P (X(at1) ≤ x1, . . . ,X(atm) ≤ xm)

= P(aH X(t1) ≤ x1, . . . , a
H X(tm) ≤ xm). (23)

By repeating the process we used to show that (20) ⇒
(18) in a nested fashion, we can show that (3.2) ⇒ (19).
Thus (19) is true. �
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Proof of Self-similarity By continuity of the stochastic
process since limn→∞(ti+1 − 1/n) = ti+1 and using (19)

P(Y 	(ati1) ≤ x1, . . . , Y
	(atim) ≤ xm)

= P(aH Y 	(ti1) ≤ x1, . . . , a
H Y 	(tim) ≤ xm)

⇒ P(Y (at1) ≤ x1, . . . , Y (atm) ≤ xm)

= P(aH Y(t1) ≤ x1, . . . , a
H Y (tm) ≤ xm) (24)

and this proves the self-similarity of Y . �

4 Experimental results

The first part of the simulation experiments was conducted
to investigate a comparison between the max-based sam-
pling, the systematic sampling, the stratified sampling and
the aggregated data. It aims to show which sampling tech-
nique preserves the traffic characteristics using some statisti-
cal parameters. Thus we evaluate the sampled mean (the av-
erage of sampled data), the sampled variance (the variance
of the sampled data), the self-similarity and the burstiness
of the sampled data. The second part investigates a compar-
ison of the prediction performance of the introduced mod-
els α_SNF, ARIMA and LMMSE using the sampled data
(with the max-based, the systematic and the stratified tech-
niques for various time scales). This comparison aims to
show which sampling technique allows more accurate pre-
diction.

4.1 Traces and preprocessing

The used trace is the Auckland-VIII data set. The trace con-
tains a two weeks GPS-synchronized IP header trace cap-
tured with an Endace DAG3.5E tap Ethernet network mea-
surement card in December 2003 by NLANR.1 In order to
reduce processing time, we used 30 minutes of the data in
experiments. For models which require training phase, we
divide data into two sets of 15 minutes. The first set is used
to estimate the model parameters (the training phase); the
second set is used for the evaluation of the performance
of the selected model. We extracted the throughput of the
data every 10 ms. We performed max-based sampling on
the throughput using various interval size τ = 100 ms to
1000 ms. We also aggregated the traffic using (2) to obtain
throughput for the various granularities in order to compare
aggregated traffic to the sampled one.

1National Laboratory for Applied Network Research, http://pma.nlanr.
net/Special/auck8.html.

Fig. 5 Average of sampled data

4.2 Comparing the max-based technique with the existing
sampling techniques

As mentioned before, the sampling technique has to show
the self-similarity and the burstiness of the traffic. The aim
is to find the suitable sampling technique able to improve
the prediction performance. Unlike previous work [10], the
preservation of the mean or the variance of the data isn’t
really necessary since the sampling here aims to prepare data
for the prediction. In fact, the resource provisioning for the
next interval time doesn’t need the prediction of the average
peak rate but it needs the maximum peak rate.

However, we performed some comparisons between
sampling techniques based on some statistical parameters.
Several experiments are performed using various sampling
interval (form 100 ms to 1000 ms).

Figure 5 shows the average of the obtained sampled data
compared to real traffic average. The stratified sampling
scheme in most cases underestimates the average whereas
the systematic sampling overestimates it. Only aggregation
of the traffic preserves its average. However, we didn’t draw
the average of the max-based sampled data because its ob-
viously higher than for the other techniques.

Figure 6 depicts the variance of the sampled traffic com-
pared to that of the real traffic. It shows that aggregating the
data clearly reduces the variance of the data.

This result can be easily proved mathematically. Recall
that the variance of the sample mean var(Z̄) of a random
variable Z satisfies var(Z̄) = σ 2

Z/m where m is the sam-
ple size. From (2) it follows that var(X(m)) = σ 2m2H−2;
this means that when aggregating, variance of the data is de-
caying in function of m and H . This could be inadequate
for the prediction of peaks and bursts because the predic-
tion model won’t detect the variability lost when aggregat-
ing. The comparison between the aggregated data and the

http://pma.nlanr.net/Special/auck8.html
http://pma.nlanr.net/Special/auck8.html
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Fig. 6 Variance of sampled data

Fig. 7 Comparison of aggregated data and max-based sampled data

max-based sampled data (Fig. 7) shows that the aggregated
data has lost its variability which is important for predicting
the traffic.

Figure 6 shows also that the variance of the signal is al-
most preserved for the systematic and the stratified sampling
techniques.

Figure 8 depicts the burstiness (PM) versus the granu-
larity for the aggregated traffic, the sampled traffic with the
three sampling techniques. It shows also that burstiness of
systematic and stratified sampled data are very important.
Whereas aggregated traffic and max-based sampled data are
less bursty. Intuitively, low burstiness makes the data more
“predictible” i.e. we will have better prediction performance
in terms of error. Consequently, according to Fig. 8, aggre-
gated data and max-based sampled data will improve the

Fig. 8 Measurement of burstiness (peak-to-mean)

quality of the prediction. This will be proved in prediction
experiments in the next paragraph.

On the other hand, the obtained Hurst parameter (Fig. 9)
differs for various sampling interval size and for the differ-
ent sampling techniques. We used the wavelet-based method
to estimate the Hurst parameter [1] with 95% confidence in-
terval.

It is clear that for the systematic and the stratified sam-
pling the Hurst parameter is decreased. It decreases under
0.5 (granularity 300 ms) which means that the data has lost
its self-similarity. The max-based sampling almost preserves
the same Hurst parameter for all granularities. However,
traffic aggregating remarkably increases the Hurst parameter
i.e. it increases the self-similarity and the long-range depen-
dence of the data. This could mean that aggregated data and
max-based sampled data will be more predictible.

We also notice that the obtained results show that Hurst
parameter (self-similarity) doesn’t always reflect burstiness.
In fact our burstiness metric shows that systematic and strat-
ified sampling techniques has led to a burstier traffic than the
aggregated or the max-based sampled data (Fig. 8). Whereas
the estimation of Hurst parameter shows that the data ob-
tained by systematic and stratified sampling are less self-
similar and long-range dependant than the data resulting
from the aggregation or the max-based sampling techniques
(Fig. 9). It means that high burstiness doesn’t reflect self-
similarity. This phenomena justifies the use of the PM as a
metric of burstiness instead of Hurst parameter (Sect. 2.2).
This observation is important for future analysis of the traf-
fic in the way that we must take into account that burstiness
doesn’t involve self-similarity and vice-versa.
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Fig. 9 Hurst parameter for
various granularities

4.3 Exploiting the sampling techniques for traffic
prediction

In this paragraph, we undertake several prediction experi-
ments using the sampled data obtained from the Auckland
data set. We use the three sampling techniques and the ag-
gregation for treating data before performing the predic-
tions. The aim is to compare the prediction performance ob-
tained when using each sampling technique.

Figure 10 depicts obtained prediction error (ARV) using
the LMMSE predictor with respect to the granularity. Each
curve represents the obtained ARV using a sampling tech-
nique for several granularities. The curves shows that the
prediction errors using systematic or the stratified sampling
are important for all granularities. The prediction using ag-
gregated data improves the performance compared to the
stratified and systematic sampling. For the max-based sam-
pling technique, the results are improved. The figure shows
that the achieved performance is steady. The prediction error
is often less than 1 for all granularities.

The results confirm our observations in the previous para-
graph. In fact, stratified and systematic sampling have pro-
vided a burstier data which has lost its self-similarity. Con-
sequently the data has became less “predictible” (important
prediction error). On the contrary, The aggregation and the
max-based sampling has provided a less bursty data which
has conserved the self-similarity and the long-range depen-
dence. Consequently, the resulting data has became more
“predictable”. We also note that even though aggregated
traffic provides good prediction performance in terms of er-
ror, data has lost its variance when aggregating. This means
that predicted data won’t show the variance of the data.
However the max-based sampling provides better prediction
performance while data preserves its high variance.

Figure 10 shows a comparison between the performance
found using the prediction models. We undertook experi-

Fig. 10 LMMSE-Prediction using data sampled with various tech-
niques

ments for several granularities. We used sampled data us-
ing the max-based technique. In experiments, the number
of input is 10 delays for the LMMSE model, 4 inputs for
the ARIMA model. The number of inputs for the α_SNF
model is determined before each prediction using the con-
cept of mutual information (Sect. 2.3.1). The number of
inputs for the α_SNF model is specified in the figure for
each prediction and for each granularity. Prediction mod-
els having a training phase (α_SNF and ARIMA) give bet-
ter performance (ARV ≺ 1) for all granularities (Fig. 11).
The LMMSE model gives higher prediction error especially
for small granularities. We can note a small improvement of
prediction performance for the ARIMA(4,1,4) model com-
pared the α_SNF. However, the α_SNF model uses less in-
put variables for all cases (less than 4 inputs). It gives almost
the same prediction performance of the ARIMA model.
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Table 1 Summary of the obtained results

Average Variance Self-similarity Burstiness Prediction

performance

Max-based Sampling Treats peaks High Preserved Preserved Good

Systematic Sampling Lost Preserved Lost Preserved Unreliable

Stratified Sampling Lost Preserved Lost Preserved Unreliable

Aggregating Preserved Lost Overestimated Lost Bad for bursts

Fig. 11 Comparison of the prediction models

We can also notice that for small granularities, the pre-
diction error is important (Figs. 10, 11). This can be ex-
plained by the high burstiness of the traffic for these gran-
ularities (Fig. 8). This validates our conjecture that bursty
traffic makes data less “predictible”. Consequently, using
high granularities reduces burstiness. Hence, it improves the
prediction performance.

Table 1 provides a summary of the obtained results. It
compares the sampling techniques with respect to the preser-
vation of the statistical parameters, the self-similarity, the
burstiness and the effect on the prediction performance.

5 Conclusions and future work

In this paper, we have investigated several important is-
sues in employing sampling techniques for measuring In-
ternet traffic. We have proposed a structure-preserving sam-
pling method to be used together with the LMMSE, ARIMA
or α_SNF prediction-based models. The whole technique
should be used to improve the resource provisioning mech-
anism (Fig. 1).

We showed here that in case of self-similar traffic, knowl-
edge of fundamental characteristics of the traffic can provide

new insight into data treatment toward traffic prediction.
Therefore, the sampling technique applied to the data has
an important impact on the performance of the prediction.
In this context, we showed the efficiency of the max-based
sampling as structure preserving method of Internet traffic
compared to common sampling and aggregating techniques
used in literature. We carried out experiments using real In-
ternet traces. We confirmed the effectiveness of the max-
based sampling to preserve traffic characteristics as well as
to improve the prediction performance compared to other
sampling and aggregating techniques.

We also undertook prediction experiments using the
sampled data for various time scales. Thus, we find that
the ARIMA and the α_SNF models—which need training
phase—give more accurate predictions in terms of error than
the LMMSE which gives bad prediction performance for
different time scales.

We believe that the proposed structure-preserving sam-
pling method can be judiciously exploited in multiple net-
working areas such as monitoring, alarms generation, re-
source provisioning. . . etc. Thus, our future work focuses
on building several simulation scenarios to exploit the per-
formance of the predictions using the structure preserving
method in a wide range networking areas:

Intelligent alarm generation We believe that the max-
imum-based traffic sampling together with ARIMA or
α_SNF prediction can help generating alarms in an effi-
cient manner. For instance, a threshold alarm can be gen-
erated when a parameter of interest (such as traffic on a link,
disk usage) exceeds a certain threshold. Hence, if the system
keeps track of the past alarms generated from a threshold ex-
cess, the arrival of the upcoming alarm can be predicted and
the operator can be prepared to take the necessary decisions
accordingly.

Traffic engineering and control It is necessary to make the
reservations a significant amount of time ahead of the ar-
rival of the traffic in order to allow for resource assignment
delays. This prediction-based method is vital for different
network contexts, especially for IP over WDM networks
where a major part of optical cross-connects still config-
ured manually. This necessitates the prediction of the future
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requirements of source-destination traffic flows Hence, we
will build a simulation-based model for a mesh optical net-
work to investigate the bandwidth allocation scheme using
our structure preserving sampling method. We study the per-
formance of this allocation technique and compare it with
other approaches.
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