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Abstract. It has been proved theoretically that a network with heterogeneous congestion control algorithms
that react to different congestion signals can have multiple equilibrium points. In this paper, we demonstrate
this experimentally using TCP Reno and Vegas/FAST. We also show that any desired inter-protocol fairness
is in principle achievable by an appropriate choice of Vegas/FAST parameter, and that intra-protocol fairness
among flows within each protocol is unaffected by the presence of the other protocol except for a reduction in
effective link capacities. Dummynet experiments and ns-2 simulations are presented to verify these results.

1. Introduction

The current TCP congestion control algorithms, TCP Reno and its variants, do not
scale as the bandwidth-delay product continues to grow, e.g., [5,13]. This has motivated
several recent proposals on new algorithms for high speed networks, including TCP
Westwood [2], HSTCP [3], STCP [8], FAST TCP [6, 22], and BIC TCP [23] (see [6]
for extensive references). To incrementally deploy these protocols, we must understand
networks running heterogeneous protocols. It has been shown in [11] that any TCP–
AQM can be interpreted as distributed primal-dual algorithms over a network to solve
a utility maximization problem defined in [7] and its Lagrangian dual [12]; see also,
e.g., [14,15,17,24], and [9]. Moreover, the utility functions that correspond to different
TCP algorithms proposed in the literature all turn out to be strictly concave increasing,
and hence the underlying maximization problem is a simple convex program. This
underlying concavity is responsible for the relatively simple behavior of existing TCP–
AQM models, both their equilibrium and dynamic properties. This interpretation holds,
however, only when all protocols in the network react to the same kind of congestion
signal (e.g., all react to loss or all to delay). When heterogeneous TCP algorithms that
use different congestion signals share the same network, the situation becomes much
more complicated. Even when equilibrium exists, it may no longer be the solution of a
convex program.

There is little study on networks with heterogeneous protocols and most of the
existing work has been limited to very simple topologies [10,11,16]. In [4], inter-protocol
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fairness is studied through experiments in multi-bottleneck scenarios. In particular, it is
showed that Vegas is not able to achieve a high bandwidth share when Reno is present.
Recently, a general model is introduced in [21] to systematically study the equilibrium
of such networks. It is proved there that equilibrium indeed exists under mild conditions,
it is generally non-unique, and virtually all networks have finite number of (isolated)
equilibrium points. The number of equilibrium points must be odd, and not all of them
can be locally stable unless the equilibrium is unique. This paper is motivated by two
followup questions.

First, although [21] provides examples that exhibit multiple equilibria, these exam-
ples are numerical based on a simple theoretical model and involve carefully designed
utility functions. Can this phenomenon happen with real protocols? In this paper, we
answer this unambiguously in the affirmative, using real implementations of TCP Reno
and Vegas/FAST. Second, how do heterogeneous protocols share bandwidth between
them (inter-protocol fairness), and how do flows within each protocol share among
themselves (intra-protocol fairness)? We show that any desired degree of fairness be-
tween TCP Reno and Vegas/FAST is in principle achievable in general networks by
an appropriate choice of Veags/FAST parameter, though it is an open problem how to
compute this parameter in practice dynamically using only local information. Within
each protocol, the flows would share the bandwidth among themselves as if they were
in a single-protocol network, except that the link capacities are reduced by the amount
consumed by the flows using the other protocol. In other words, intra-protocol fairness
is unaffected by the presence of other protocols.

The paper is organized as follows. In Section 2, we specialize the general model
introduced in [21] to the case of TCP Reno and Vegas/FAST. In Section 3, we present
a three-link network shared by these two protocols and derive a sufficient condition
for the existence of multiple equilibrium points. This condition forms the basis of our
experiments and simulations in later sections. In Section 4, we show that any desired
fairness between TCP Reno and Vegas/FAST is achievable in principle by appropriate
choice of Vegas/FAST parameter, and that the presence of the other protocol does not
affect the intra-protocol fairness among flows running the same protocol. In Section 5,
Dummynet experiments are reported to exhibit multiple equilibrium points in an emu-
lated network. In Section 6, extensive simulations are provided to quantitatively illustrate
our theoretical results on multiple equilibria, and on inter-protocol and intra-protocol
fairness. Finally we conclude in Section 7 with possible future directions to extend this
work.

2. Model

We use “multiple protocols” and “heterogeneous protocols” interchangeably to de-
note congestion control algorithms that react to different congestion prices. To make
our study concrete, we use two protocols that have been implemented. The first is
TCP Reno which is loss-based. The second is TCP Vegas or FAST both of which
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are delay-based. Since both Vegas and FAST have identical equilibrium structure, we
will often use FAST to generically refer to both FAST and Vegas. All networks in our
experiments have three (bottleneck) links, for two reasons. First, it is shown in [21]
that a network with a full-rank routing matrix (which guarantees a unique price vec-
tor associated with each equilibrium) must have at least three links to exhibit more
than one equilibrium. Hence a three-link network is the simplest set-up with full-
rank routing matrix to allow an interesting behavior. Second, although empirical study
shows that more than half of the paths in the Internet have at least one bottleneck
link [1], very few of them (about 3 percent) experience more than three bottleneck
links [19].

We now present a model for the equilibrium of a network shared by TCP Reno
(loss-based protocol) and TCP FAST (delay-based protocol).

2.1. Notations

A network consists of a set of L links, indexed by l with finite capacities cl > 0. It is
shared by Nr Reno flows with equilibrium rates xr = (xr

i , i = 1, . . . , Nr ), and N f FAST
flows with equilibrium rates x f = (x f

i , i = 1, . . . , N f ). The total number of flows is
N := Nr + N f . The packet loss probability is pr

l , and the queueing delay is p f
l at link

l. Throughout this paper, the superscripts r and f are associated with Reno and FAST,
respectively.

The routing matrix for Reno flows is defined as Rr , where Rr
li = 1 if Reno flow

i uses link l, and 0 otherwise. The routing matrix R f is similarly defined for the FAST
flows. The overall routing matrix can be expressed as R = [

Rr R f
]
. Finally, all

quantities are valued at equilibrium.
The end-to-end loss probability vector for Reno flows is defined as

qr = (Rr )T pr (1)

Similarly the end-to-end delay experienced by FAST flows is:

q f = (R f )T p f (2)

We assume that at each link l, the relation between loss probability and queueing
delay is described by a price mapping function ml :

pr
l = ml

(
p f

l

)
(3)

We assume that ml are continuous and increasing with ml(0) = 0 and ml(∞) = 1, their
inverses m−1

l exist, and both ml and m−1
l are nonnegative functions. The exact form of

ml depends on the AQM (Active Queue Management) algorithm used at the link; see
the mapping function for RED in Section 6.
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2.2. Equilibrium model of Reno and FAST

An equilibrium point (xr , pr ) ∈ �Nr +L
+ of Reno is characterized by [11]

qr
i = 2

2 + (
xr

i

)2
T 2

i

(4)

where the end-to-end loss probability qr
i is given by (1). Here, we assume that the

round-trip time Ti for Reno flow i is a constant.
As shown in [11], Reno’s rate solves the following problem

max
xr

i ≥0
Ur

i

(
xr

i

) − xr
i qr

i (5)

with the utility function

Ur
i

(
xr

i

) =
√

2

Ti
tan−1

(
xr

i Ti√
2

)
(6)

Both TCP Vegas and FAST have the same equation that characterizes their equi-
librium (x f , p f ) ∈ �N f +L

+ [6, 14]:

x f
i = α

f
i

q f
i

(7)

where α
f

i is a protocol parameter for FAST flow i and the end-to-end queueing delay
q f

i is given by (2). Similarly, FAST solves the following problem at equilibrium:

max
x f

i ≥0
U f

i

(
x f

i

) − x f
i q f

i (8)

with the utility function

U f
i

(
x f

i

) = α
f

i log
(
x f

i

)
(9)

We say that the network is at equilibrium, or the link prices and flow rates are in
equilibrium, when each flow maximizes its net benefit (utility minus bandwidth cost),
and the demand for and supply of bandwidth at each link are balanced. Formally, an
(N + 2L)-dimensional nonnegative vector (x, p) = (xr , x f , pr , p f ) is an equilibrium
if it satisfies (1)–(3), (4), (7), and

Rx − c ≤ 0, P(Rx − c) = 0 (10)

where P =diag(p f
l , l = 1, . . . , L). A set of links l that attains equality (10), i.e., links l

with
∑

i Rr
li x

r
i +∑

i R f
li x f

i = cl , is called an active constraint set. The links in the active
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constraint set are said to be saturated. Note that there can be equilibrium points that
have different active constraint sets. Indeed, in the example in this paper, the multiplicity
of equilibrium points originates from different active constraint sets in equilibrium, and
each constraint set admits a unique equilibrium.

If all flows react to the same congestion signal (i.e., Nr = 0 or N f = 0), the
equilibrium described above is the unique solution of the following utility maximization
problem defined in [7]:

max
x≥0

N∑

i=1

Ui (xi ) subject to Rx ≤ c

with all utility functions Ui given by (6) or all by (9). This utility maximization problem
provides a simple framework to study the properties of network equilibrium, e.g., the
strict concavity of Ui guarantees the uniqueness of the optimal solution. When het-
erogeneous protocols share the same network, (i.e., Nr > 0 and N f > 0), although
flows still do local optimization (5) and (8), they in general no longer optimize a social
welfare.

3. An example with multiple equilibria

In this section, we derive a simple sufficient condition for the network in figure 1 to
exhibit multiple equilibrium points when it is shared by both TCP Reno and FAST. It
forms the basis of Experiment 1 in Section 5.2 and simulations in Sections 6.1.

Consider the symmetric network in figure 1 with 3 links l with capacities cl . There
are FAST flows that use path 1 and path 2. They have a common utility function denoted
by U 1 and a common source rate denoted by x1. There is a Reno flow that uses path 3. Its
utility function is denoted by U 2 and its rate by x2. Their routing matrices are respectively

R1 =






1 0

1 1

0 1




 , R2 = (1, 1, 1)T

Links 1 and 3 both have capacity c1 and a price mapping function m1. Let p1 := p f
1

denote the queueing delay (price for FAST) at links 1 and 3, and let m1(p1) be the loss

Link1 Link2 Link3

Path3

Path1 Path2

Figure 1. Multiple equilibria scenario.
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probability (price for Reno) at these links. Link 2 has capacity c2 and a price mapping
function m2. Let p2 := p f

2 and m2(p2) be the queueing delay and loss probability at
link 2.

The following proposition provides a sufficient condition for multiple equilibria,
under the following assumption:

A1: Utility functions U j are strictly concave increasing, and twice continuously dif-
ferentiable in their domains. Price mapping functions ml are continuously differ-
entiable and strictly increasing in their domains.

The key idea is to design two scenarios with different active constraint sets, each of
which has a unique equilibrium. In the first equilibrium, only links 1 and 3 are saturated,
whereas in the second equilibrium, only link 2 is saturated. Note that the condition
applies more generally than just to (the utility functions of) FAST and Reno.

Proposition 1. Suppose assumption A1 holds. The network shown in figure 1 has two
equilibria provided:

1. c1 < c2 < 2c1;

2. for j = 1, 2, (U j )′(x j ) → p̄ j for some p̄ j possibly ∞, if and only if x j → 0;

3. for l = 1, 2, ml(pl) → p̄2 as pl → p̄1, and satisfy

2m1((U 1)′(c2 − c1)) < (U 2)′(2c1 − c2) < m2((U 1)′(c2 − c1))

Proof. We first claim that, if c1 < c2 and (U 2)′(2c1 − c2) > 2m2
1((U 1)′(c2 − c1)),

then there is an equilibrium point where only links 1 and 3 are saturated and link 2 is
not. In this case the equilibrium price for link 2 is p2 = 0 and, by symmetry, those for
links 1 and 3 are both p1. Such an equilibrium, if exists, is defined by the following
equations:

(U 1)′(x1) = p1 (U 2)′(x2) = 2m1(p1)

x1 + x2 = c1 2x1 + x2 < c2

Eliminating x2 and p1, the above equations are reduced to:

(U 2)′(c1 − x1) = 2m1((U 1)′(x1)) (11)

x1 < c2 − c1 (12)

An equilibrium exists if and only if (11)–(12) has a nonnegative solution for x1. We now
show that (11)–(12) indeed admits a unique solution x∗ > 0 under the hypothesis of the
proposition.

When x1 = 0, we have

(U 2)′(c1 − x1) = (U 2)′(c1) < p̄2 ≤ 2 p̄2 = 2m1((U 1)′(0))
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The inequality and the last equality have made multiple use of conditions 2 and 3 of
the proposition. On the other hand, when x1 = c2 − c1, we have U ′

2(2c1 − c2) >

2m1(U ′
1(c2 − c1)) by condition 3. Since all functions here are continuous, (U j )′ are

strictly decreasing, and ml are strictly increasing, there exists a unique 0 < x∗ < c2 −c1

such that (U 2)′(c1 − x∗) = 2m1((U 1)′(x∗)).
We next claim that, if c2 < 2c1 and (U 2)′(2c1 − c2) < m2((U 1)′(c2 − c1)), then

there is an equilibrium point where only link 2 is saturated and links 1 and 3 are not. In
this case p1 = 0, and the following equations determine such an equilibrium:

(U 1)′(x1) = p2 (U 2)′(x2) = m2(p2)

x1 + x2 < c1 2x1 + x2 = c2

Eliminating x2 and p2, the equilibrium is specified by

(U 2)′(c2 − 2x1) = m2((U 1)′(x1)) (13)

x1 > c2 − c1 (14)

When x1 = c2 − c1, we have

(U 2)′(c2 − 2x1) = (U 2)′(2c1 − c2) < m2((U 1)′(x1))

by condition 3. When x1 = c2/2 > c2 − c1 by condition 3

(U 2)′(c2 − 2x1) = (U 2)′(0) = p̄2 > m2((U 1)′(x1))

where we have used condition 2. Hence, again, there is a unique x∗ that satisfies (13–14).
Moreover, from (12) and (14), the two equilibria are distinct.

Remark. It can be checked that the utility functions of FAST and Reno satisfy A1
and condition 2 of the proposition, with p̄1 = ∞ and p̄2 = 1. Hence the key con-
dition in Proposition 3 is condition 3 on the price mapping functions m1 and m2. As
mentioned above, the key idea in realizing the equilibrium points is to make links 1
and 3 sustain large delay and small loss, and make link 2 sustain large loss and small
delay.

To be more specific, consider linear price mapping function at links ml(p) = kl pl

for pl ∈ [0, 1/kl]. This can be viewed as an approximate model for RED (see below).
The condition in the proposition then translates into the following two inequalities

k1 <
(U 2)′(2c1 − c2)

2(U 1)′(c2 − c1)
and k2 >

(U 2)′(2c1 − c2)

(U 1)′(c2 − c1)

This implies that k2/k1 > 2 is necessary for the (sufficient) condition in the proposition
to hold. This suggests that the AQM algorithms at various links need to be sufficiently
different for multiple equilibria. The intuition is made precise in [21].



424 TANG ET AL.

Although there is no analytical model for the price mapping function for Droptail
router, we can conceivably satisfy the requirement by using large buffers for link 1
and link 3 while using a small buffer for link 2. Indeed, this is how we demonstrate
the phenomenon of multiple equilibria using Dummynet testbed in Experiment 1 in
Section 5.

4. Inter and intra-protocol fairness

In this section, we study fairness in networks shared by TCP Reno and FAST. Two
questions we address are: how these two protocols share bandwidth in equilibrium, and
how the flows within each protocol share among themselves. We start with the second
question.

4.1. Intra-protocol fairness

As indicated above, when the network is shared only by TCP Reno flows or only by FAST
flows, the equilibrium flow rates are the unique optimal solution of a utility maximization
problem with corresponding utility functions (6) or (9) respectively. In other words,
the utility functions describe how the flows share bandwidth among themselves. For
instance, the log utility function of FAST implies that it achieves weighted proportional
fairness. When TCP Reno flows and FAST flows share the same network, it turns out that
this feature is preserved “locally” within each protocol, as we now show. In particular,
it implies that the intra-protocol fairness of FAST is still proportional fairness.

Proposition 2. Given an equilibrium (x̂ r , x̂ f , p̂r , p̂ f ) ≥ 0, let ĉ f := R f x̂ f be the total
bandwidth consumed by FAST flows at each link. The FAST flow rates x̂ f are the unique
solution of:

max
x≥0

N f∑

i=1

U f
i (xi ) subject to R f x ≤ ĉ f (15)

where U f
i (xi ) are given by (9). The Reno flow rates x̂ r are the unique solution of:

max
x≥0

Nr∑

i=1

Ur
i (xi ) subject to Rr x ≤ c − ĉ f

where Ur
i (xi ) are given by (6).

Proof. Since (x̂ r , x̂ f , p̂r , p̂ f ) ≥ 0 is an equilibrium, from (7) and (2), we have

α
f

i

x̂ f
i

=
∑

l

R f
li p̂ f

l for i = 1, ..., N f
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This, together with (from the definition of ĉ f )

∑

i

R f
li x̂ f

i ≤ ĉ f
l , p̂ f

l

(
∑

i

R f
li x̂ f

i − ĉ f
l

)

= 0, ∀l

form the necessary and sufficient condition for x̂ f and p̂ f to be optimal for (15) and its
dual respectively.

The proof for Reno rates x̂ r follows the same argument with loss probabilities
ml( p̂ f

l ) as the Lagrange multipliers.

Note that in Proposition 2, the “effective capacities” ĉ f and c − ĉ f for FAST and
Reno are not pre-assigned. They are the outcome of competition between FAST and
Reno and are related to inter-protocol fairness, which we now discuss.

4.2. Inter-protocol fairness

Even though TCP Reno and FAST individually solve a utility maximization problem to
determine their intra-protocol fairness, they in general do not jointly solve any convex
utility maximization problem. This makes the study of inter-protocol fairness hard.

The equilibrium rates x f and xr of FAST and Reno flows, respectively, depend on
FAST parameter α = (αi , i = 1, . . . , N f ) ≥ 0. Let x̄ f (α) be the unique FAST rates if
there were no Reno flows, and let x̄ r be the unique Reno rates if there were no FAST
flows. Let x f (α) be the unique FAST rates if network capacity is c − Rr x̄r . Let

X∗ := {x f | x f (α) ≤ x f ≤ x̄ f (α), α ≥ 0}
X∗ includes all possible FAST rates if FAST were given strict priority over Reno or if
Reno were given strict priority over FAST, and all rates in between. In this sense X∗

contains the entire spectrum of inter-protocol fairness between TCP Reno and FAST.
The next result says that every point in this spectrum is achievable by an appropriate
choice of FAST parameter α.

Let x f (α) denote the equilibrium rates of FAST flows sharing the same network
(R, c) with Reno flows when the protocol parameter is α. It is determined by (1)–(3),
(4), (7), and (10).

Proposition 3. Given any x∗ ∈ X∗, there exists an α∗ ≥ 0 such that x f (α∗) = x∗.

Proof. Given any x∗ ∈ X∗, the capacity for all Reno flows is c−R f x∗. Since x∗ ≤ x̄(α)
(for all coordinates), we have c − R f x∗ ≥ c − R f x̄(α), which is greater than or equal to
0 by the construction of x̄(α). Hence the following utility maximization problem solved
by TCP Reno is feasible:

max
x≥0

Nr∑

i=1

Ur
i (xi )

subject to Rr x ≤ c − R f x∗
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From Proposition 2. , the unique optimal solution is Reno flow rates in equilibrium. Let pr

be the associated Lagrange multiplier vector. Choose α∗ with α∗
i = x∗

i

∑
l R f

li m
−1
l (pr

l ).
It can be checked that all equilibrium equations are satisfied.

Remark. Proposition 3. implies that given any target fairness between TCP Reno and
FAST, in terms of a desirable rate allocation x∗ for FAST, there exists a protocol pa-
rameter vector α∗ that achieves it. It is however an open problem how to compute α∗ in
practice dynamically using only local information.

5. Experiments

5.1. Testbed setup

We set up a Dummynet testbed with seven Linux servers as senders and receivers
and three BSD servers to emulate software routers; see figure 2. The Linux senders
and receivers run TCP Reno or FAST. The three emulated routers run FreeBSD 5.2.1.
Each testbed machine has dual Xeon 2.66 GHz, 2GB of main memory, and dual on-
board Intel PRO/1000 Gigabit Ethernet interfaces. The test machines are interconnected
through a Cisco 3750 Gigabit switch. The network is fully configurable, and the link
delay and capacity can be modified on the emulated router. The queueing discipline is
Droptail. We have programmed the Dummynet router to capture various state variables
to compute queue trajectory, loss and utilization. The sender and receiver hosts have
been instrumented using kernel instrumentation tools to monitor different TCP state
variables. We use 2.4.22 modified FAST kernel and Linux kernel. In order to minimize

Figure 2. Dummynet setup for Experiments 1 and 2.
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host limitations and accommodate large bursts, we have increased the Linux transmission
queue length to 5000 and ring buffer to 4096. Iperf is used to generate TCP traffic for
each protocol.

We make the following remarks before presenting our results in detail:

• We modified FAST implementation so that it does not halve its window after a loss.
Therefore it only reacts to queueing delay, as in [21].

• Standard 1500-byte MTU (Maximum Transmission Unit) is used. Then, e.g., 100
Mbps = 8.33 pkts/ms.

• All the queue sizes reported below are exponential moving average of instantaneous
queue trajectories. Averaging does not affect the equilibrium value, which is our
primary interest. Note however that even though the averaged trajectory may not
reach buffer capacity, the instantaneous trajectory often does.

5.2. Experiment 1: multiple equilibria

The goal of this experiment is to demonstrate on our Dummynet testbed the two equi-
librium points guaranteed by Proposition 1. The topology of the network is shown in
figure 1. Links 1 and 3 (which correspond to the outgoing links of routers 1 and 3)
are each configured with 110 Mbps capacity, 50 ms one-way propagation delay and a
buffer of 800 packets. Link 2 (router 2) has a capacity of 150 Mbps with 10 ms one-way
propagation delay and buffer size of 150 packets. There are 8 Reno flows on path 3
utilizing all the three links, with one-way propagation delay of 110 ms. There are two
FAST flows on each of paths 1 and 2. Both of them have one-way propagation delay of
60 ms. All FAST flows use a common α = 50 packets.

Two sets of experiments have been carried out with different starting times for Reno
and FAST flows. The intuition is that if FAST flows start first, link 2 will be saturated
and links 1 and 3 will not. Since the buffer size for link 2 is small, when Reno flows
join, they will experience so many losses that links 1 and 3 will remain unsaturated. This
corresponds to an equilibrium with an active constraint set consisting of link 2 only. If
Reno start first, on the other hand, links 1 and 3 are saturated while link 2 is not because
link 2 has a higher capacity. Since the buffer size at links 1 and 3 are large, they can
generate enough queueing delay to squeeze FAST flows when they join and keep link 2
unsaturated. This corresponds to an equilibrium with an active constraint set consisting
of links 1 and 3. We repeat the experiments 30 times for both scenarios. Now we report
the results.

The average aggregate rates and the standard deviation over the 30 experiments
of all the flows on each of paths 1, 2, 3 are shown in Table 1 when FAST flows start
first and when Reno flows start first. Since the difference of the aggregate rates for
each path is far more than the standard deviation, it is clear that the network has
reached very different equilibria depending on which flows start first. This is further
confirmed by queue and throughput measurements shown in figure 3 for link 1 and in
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Table 1
Average aggregate rates and their standard deviations of all flows on paths 1, 2, 3.

Path 1 (FAST) Path 2 (FAST) Path 3 (Reno)

FAST start first (52.0, 2.0) Mbps (61.1, 3.3) Mbps (26.6, 4.8) Mbps
Reno start first (13.3, 0.8) Mbps (13.4, 0.8) Mbps (92.7, 0.7) Mbps
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Figure 3. Experiment 1: Queue size and aggregate throughput at link 1.

figure 4 for link 2 for one of the thirty experiments. The results for link 3 are sim-
ilar to those for link 1 and are omitted. These figures show that when FAST flows
start first, link 2 queue remains nonzero while link 1 (and hence link 3) queue re-
mains empty throughout the experiment, as expected. As a consequence, the aggre-
gate throughput at link 2 is close to capacity while that at link 1 remains low most of
the time. When Reno flows start first, the queue and throughput behaviors are exactly
opposite.

To make sure that the above behavior is indeed due to multi-protocol rather than
different flow arrival patterns, we repeated the experiment with the same network setup,
but using all Reno or all FAST flows. When we used FAST flows along the long path,
the α is set to 30. The average throughput results are summarized in the Tables 2 and
3. They confirm that the network admits a unique equilibrium when a single protocol is
used, regardless of flow arrival patterns.
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Table 2
Average aggregate rates and their standard deviations of all flows on paths 1, 2, 3 (All

flows are Reno).

Path 1 Path 2 Path 3

Short flows start first (47.7, 1.3) Mbps (70.1, 1.8) Mbps (13.4, 1.0) Mbps
Long flow starts first (40.7, 1.5) Mbps (64.9, 2.0) Mbps (21.4, 1.2) Mbps
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Figure 4. Experiment 1: Queue size and aggregate throughput at link 2.

5.3. Experiment 2: unique equilibrium

The linear network in figure 5 is proved in [21] to admit a unique equilibrium. Experiment
2 verifies this. Each Dummynet router is configured to have 40 ms one-way propagation
delay and 200-packet buffer. The link bandwidth is 100 Mbps for link 1, 150 Mbps for

Table 3
Average aggregate rates and their standard deviations of all flows on paths 1, 2, 3 (All

flows are FAST).

Path 1 Path 2 Path 3

Short flows start first (47.2, 1.1) Mbps (72.3, 1.6) Mbps (15.6, 1.2) Mbps
Long flow starts first (46.8, 1.3) Mbps (72.0, 1.7) Mbps (16.3, 1.0) Mbps
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Table 4
Average aggregate rates and their standard deviations of all flows on paths 1, 2, 3, 4.

Path 1 (FAST) Path 2 (FAST) Path 3 (FAST) Path 4 (Reno)

FAST start first (47.8, 2.7) Mbps (96.2, 2.8) Mbps (67.2, 2.8) Mbps (47.9, 2.7) Mbps
Reno start first (46.1, 0.8) Mbps (94.2, 0.8) Mbps (64.6, 3.7) Mbps (43.7, 1.9) Mbps

Path1 Path 2 Path 3

Path 4

Link 1 Link 2 Link 3

Figure 5. Experiment 2: Unique equilibrium.

link 2, and 120 Mbps for link 3. There are three FAST TCP flows using the paths 1, 2 and
3 with one flow on each path. There are eight Reno flows using path 4. 30 experiments
are done for each scenario.

The average aggregate flow rates and their standard deviations on each of paths
1, 2, 3, 4 are shown in Table 4. They suggest that the network has reached the same
equilibrium regardless of which flows start first. This is further confirmed by the queue
and throughput trajectories at links 1–3 in figures 6–8. At each link, the queue and
throughput behaviors are very similar whether FAST or Reno flows start first.

6. Simulations

The Dummynet experiments provide qualitative evidence of multiple equilibria with
practical protocols. We could not have verified the experimental results with quantitative
predictions because Droptail router does not admit an accurate mathematical model for
the price mapping function ml . In this section, we present simulation results using
ns-2 on multiple equilibria and fairness. The network simulator ns-2 allows us to use
RED router for which the price mapping function ml is known. We can thus compare
simulation measurements with our theoretical predictions. As there is not a mature ns-2
implementation of FAST yet, we use TCP Vegas for all the simulations. Since Vegas
has the same equilibrium structure as FAST, it does not affect our study of equilibrium
properties.

The network simulator ns-2 version 2.1b9a is used here. We use RED algorithm
and packet marking instead of dropping. The marking probability p(b) of RED is a
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Figure 6. Experiment 2: Queue size and aggregate throughput at link 1.
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Figure 7. Experiment 2: Queue size and aggregate throughput at link 2.
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Figure 8. Experiment 2: Queue size and aggregate throughput at link 3.

function of queue length b:

p(b) =






0 b ≤ b
1

K

b − b

b̄ − b
b ≤ b ≤ b̄

1

K
b ≥ b̄

(16)

where b, b̄ and K are RED parameters. The price mapping function ml in (3) which
relates loss and delay can now be explicitly expressed as:

pr
l = ml

(
p f

l

) =






0 p f
l ≤ b

cl

1

K

p f
l cl − b

b̄ − b
b
cl

≤ p f
l ≤ b̄

cl

1

K
p f

l ≥ b̄
cl

(17)

6.1. Multiple equilibria

The network topology is as shown in figure 1. The link capacities of link 1 and link 3
are set to be 100 M bps (8.33 pkts/ms) and the one way propagation delay to be 50 ms.
For link 2, the capacity is 150 Mbps (12.5 pkts/ms) and one way propagation delay is
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Figure 9. Experiment 3: Aggregate Reno throughput and link utilization at link 1.

5 ms. There are 10 Vegas flows on each of paths 1 and 2, and 20 Reno flows on path
3. As in ns simulations, αd is the number of packets the flow maintains along its path,
which is called α before by convention. Hence every flow tries to put 5.5 packets along
its path as we set α = 50.

Experiment 3: varying K2. We set (b1, b̄1, K1) to be (0, 1000, 10000) at link 1 and
link 3. Set (b2, b̄2) to be (100, 1500) at link 2, and vary the slope K2 at link 2 from 10 to
600. Figure 9 shows the aggregate throughput of all Reno flows and the link utilization
at link 1 for different values of K2. Theoretical predictions are calculated by solving
equations (1)–(2), (4), (7), (10), and the price mapping function (16) for RED.1 As can
be seen, the prediction matches the measured curve very well.

1 For a more accurate prediction, Ti in Reno utility function should include equilibrium queueing delay.
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From figure 9, the aggregate throughput and utilization at link 1 are independent
of K2 if Reno flows start first. This is because link 2 is not saturated in this scenario,
as explained earlier, and hence varying its parameter does not affect the equilibrium.
When Vegas flows start first, on the other hand, link 2 is the bottleneck link, and hence
as K2 increases, Reno achieves more and more bandwidth since the mapping function
penalizes Reno less and less.

As K2 increases, one may expect that the Reno throughput curve in figure 9 that
correspond to Vegas starting first will converge to the same value for the case when
Reno starts first. It is not possible to exhibit this beyond K2 = 600 at link 2. As shown
in figure 9, the utilization at link 1 is more than 95% when K2 = 600. Even though
link 1 is not saturated yet, it is so close to being saturated that random fluctuations in
the queue can readily shift the system from the current equilibrium where only link 2 is
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Figure 10. Experiment 4: Aggregate Reno throughput and link utilization at link 2.



EQUILIBRIUM AND FAIRNESS OF NETWORKS SHARED BY TCP RENO AND VEGAS/FAST 435

saturated to the other equilibrium where links 1 and 3 are saturated (while link 2 is not).
See a clear demonstration of this phenomenon in Experiment 5.

Experiment 4: varying K1. In this experiment, we fix K2 = 100 at link 2 and vary K1

at link 1 and link 3 simultaneously from 5,000 to 11,000. The results are summarized
in figure 10. When Vegas flows start first, the bottleneck link is link 2 and therefore
both the aggregate Reno throughput and the utilization at link 2 are independent of
K1. When Reno flows start first, on the other hand, links 1 and 3 become saturated
and varying K1 affect both the aggregate Reno throughput and link 2’s utilization. The
theoretical predictions track the measured data, but are generally larger than the data.
The main reason is that Vegas flows overestimated base RTT when Reno flows start first
and maintain a nonzero queue. Then Vegas flows become more aggressive and suppress
Reno flows more than they should; see [14] for more discussion on the effect of error in
base RTT estimation.

As K1 decreases at links 1 and 3, Reno flows see more losses and the system may
shift to the other equilibrium where only link 2 is saturated. For instance, from figure
10, the utilization at link 2 is close to 95% when K1 = 5000.

Experiment 5: shifting equilibria. This experiment shows that the system can shift
back and forth between the two equilibria when the utilization of the unsaturated link(s)
is sufficiently close to 100% so that the system can readily jump between two disjoint
active constraint sets due to random fluctuation. The slopes K1 = 3500 at link 1 and
link 3 and K2 = 500 at link 2. The simulation duration is 1000 sec. The queues at link

Figure 11. Experiment 5: Queue sizes at link 1 and link 2. The system shifts between the two equilibria
with disjoint active constraint sets.
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Figure 12. Experiment 6: Network topology. There are 5 flows on each path.

1 and link 2 are shown in figure 11. This result unambiguously exhibits that there are
two equilibria and they are both achieved.

6.2. Experiment 6: Intra and inter-protocol fairness

In this subsection, we present simulation results to illustrate Propositions 4.1 and 4.2.
In all of the following simulations, we set RED parameters (b, b̄, K ) to be (20, 220, 20)
at all links. The network topology is shown in figure 12. The capacities for links 1, 2,
and 3 are 3000 pkts/sec, 4000 pkts/sec, and 2000 pkts/sec respectively. All links have
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Figure 13. Experiment 6: Bandwidth allocation among 3 Vegas flows (intra-protocol fairness)



EQUILIBRIUM AND FAIRNESS OF NETWORKS SHARED BY TCP RENO AND VEGAS/FAST 437

0 10 20 30 40 50 60
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

α value

B
a
n
d
w

id
th

 S
h
a
re

Simulation Vegas Share
Simulation Reno Share
Model Vegas Share
Model Reno Share

Figure 14. Experiment 6: Bandwidth allocation between Reno and Vegas at link 2 (inter-protocol fairness.)

identical round-trip propagation delay of 60 ms. There are five flows on each path and
they are labelled as a group in the figure. We vary the parameter value α2 of Vegas flow3
and maintain the parameter value α1 of Vegas flow1 and flow2 to be 1.5 times that of α2.

The rate allocation among the three Vegas flows is shown in figure 13 and agrees
well with the prediction from Proposition 4.1. Similar results hold for bandwidth allo-
cation among Reno flows and are omitted.

We now take link 2 as an example to show the bandwidth partition between Reno
and Vegas and compare them with solutions from the model. The aggregate throughput
of all the 15 Vegas flows and that of 5 Reno flows at link 2 are shown in figure 14 as α2

is varied. The calculated values agree well with the data and therefore verify the model
and Proposition 3. It also shows that we can achieve any inter-protocol fairness by using
proper α.

7. Conclusion

In this paper we have demonstrated experimentally the existence of multiple equilibria
in networks shared by TCP Reno and FAST, as predicted theoretically in [21]. It is
worthwhile to note that exhibition of multiple equilibria in this paper requires deliber-
ate choices of buffer sizes or RED parameters, corresponding to careful design of the
price mapping function. In [20], it is proved that if the price mapping functions do not
differ too much, global uniqueness is guaranteed. For instance if all links have their
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RED slopes inversely proportional to their capacities, then equilibrium is unique. We
have also shown that any target inter-protocol fairness between Reno and FAST can
be achieved in principle by an appropriate choice of FAST parameter, though it is un-
clear how to compute this parameter value in practice. Within each protocol, the flows
share bandwidth among themselves as if the flows of the other protocol are absent, i.e.,
intra-protocol fairness is unchanged by the presence of the other protocol except for a
reduction in effective link capacities.

This preliminary work can be extended in several ways. First, it would be inter-
esting to study the local dynamics of these equilibria. If an equilibrium is unstable, it
cannot be reached in a real network. Second, we have exhibited example networks with
unique or multiple equilibria. A necessary and sufficient condition for the uniqueness
of equilibrium is still missing. Third, consider the aggregate utility of flows within each
protocol. Can one equilibrium point dominate in that the aggregate utilities are higher for
all protocols at that equilibrium than at any other equilibrium? Finally, can routers help
the network reach a unique and stable equilibrium by modifying their price mapping
functions in a distributed manner? If so, how to set up the right incentives for routers
(or ISP) to do so?
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