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THE EXTENDED ZN-TODA HIERARCHY

Chuanzhong Li∗ and Jingsong He∗

We construct the extended flow equations of a new ZN -Toda hierarchy taking values in a commutative

subalgebra ZN of gl(N, C). We give the Hirota bilinear equations and tau function of this new extended

ZN -Toda hierarchy. Taking the presence of logarithmic terms into account, we construct some extended

vertex operators in generalized Hirota bilinear equations, which might be useful in topological field theory

and the Gromov–Witten theory. We present the Darboux transformations and bi-Hamiltonian structure

of this hierarchy. Using Hamiltonian tau-symmetry, we obtain another tau function of this hierarchy with

some unknown mysterious relation to the tau function derived using the Sato theory.

Keywords: extended ZN -Toda hierarchy, Hirota quadratic equation, Darboux transformation, bi-Ham-
iltonian structure

1. Introduction

Being completely integrable systems. the Kadomtsev–Petviashvili (KP) hierarchy and the Toda lat-
tice hierarchy have many important applications in mathematics and physics including the theory of Lie
algebra representations, orthogonal polynomials, and random matrix models [1]–[5]. The KP and Toda
systems have many kinds of reductions or extensions: the BKP and CKP hierarchies, the extended Toda
hierarchy (ETH) [6], [7], the bigraded Toda hierarchy (BTH) [8]–[14], and so on. There are generalizations
of another kind, the so-called multicomponent KP system [15], [16] or multicomponent Toda system, which
attract more and more attention because they are widely used in many fields such as multiple orthogonal
polynomials and nonintersecting Brownian motions.

The multicomponent KP hierarchy was discussed with application to representation theory and the
random matrix model in [15], [16]. It was noted in [3] that the tau functions of a 2N -multicomponent KP
generate solutions of the N -multicomponent two-dimensional Toda hierarchy. The multicomponent two-
dimensional Toda hierarchy was considered from the standpoint of the Gauss–Borel factorization problem,
theory of multiple matrix orthogonal polynomials, nonintersecting Brownian motions, and matrix Riemann–
Hilbert problem [17]–[20]. In fact, the multicomponent two-dimensional Toda hierarchy in [18] is a periodic
reduction of a bi-infinite matrix-formed two-dimensional Toda hierarchy. The coefficients (or dynamic vari-
ables) of the multicomponent two-dimensional Toda hierarchy take values in a complex finite-dimensional
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matrix. The multicomponent two-dimensional Toda hierarchy contains the matrix-formed Toda equation
as the first flow equation.

Adding additional logarithmic flows to the Toda lattice hierarchy, we obtain the extended Toda hier-
archy [6] defined on a Lax operator

L = Λ + u + evΛ−1, u, v ∈ C, (1.1)

which governs the Gromov–Witten invariant of CP
1. The Gromov–Witten potential of CP

1 is actually a
tau function of the extended Toda hierarchy, i.e., the Gromov–Witten potential τ of CP

1 generates the
expression

dλ

λ
(Γδ# ⊗ Γδ)(Γα ⊗ Γ−α − Γ−α ⊗ Γα)(τ ⊗ τ), (1.2)

involved in the Hirota quadratic equations [7] of the ETH, regular in λ computed at q0 − q′0 = lε for
each l ∈ Z. The extended BTH (EBTH) is an extension of the BTH that includes additional logarithmic
flows [8], [10]. Here, we show that Hirota quadratic equations (1.2) can be derived as a reduction on the
Lie algebra from the Hirota bilinear equation of the extended ZN -Toda hierarchy (EZTH). Therefore, the
application of our Hirota bilinear equation of the EZTH in the Gromov–Witten theory is an important
motivation for our study. The Hirota bilinear equation of the EBTH was equivalently constructed previously
in [9] and very recently in [21] because the t1,N and t0,N flows of the EBTH are equivalent. Meanwhile,
it was proved that it determines the Gromov–Witten invariant of the total descendent potential of P

1

orbifolds [21]. A natural question concerns the corresponding extended multicomponent Toda hierarchy (as
a matrix-formed generalization of the ETH [6]) and the extended multicomponent BTH. There is a class
of orbifolds that should be governed by some logarithmic hierarchies. We therefore think this new kind of
logarithmic hierarchy might be useful in the theory of Gromov–Witten invariants governed by these two new
hierarchies. With this motivation, our paper [22] was devoted to constructing a kind of Hirota quadratic
equation taking values in a differential matrix algebra set. This kind of Hirota bilinear equation might be
useful in Gromov–Witten theory. In [23], a new hierarchy called the Zm-KP hierarchy taking values in
a maximal commutative subalgebra of gl(m, C) was constructed, and the relation between the Frobenius
manifold and the dispersionless reduced Zm-KP hierarchy was discussed. This inspired us here to consider
the Hirota quadratic equation of the commutative version of the extended multicomponent Toda hierarchy,
which might be useful in the Frobenius manifold theory.

This paper is structured as follows. In Sec. 2, we recall the factorization problem and construct the
logarithmic matrix operators that we use to define the extended flow of the multicomponent ZN -Toda
hierarchy. In Sec. 3, we give the Lax equations of the EZTH and introduce the multicomponent ZN -Toda
equations and the extended equations into this hierarchy. In Sec. 4, we use the Sato equations to prove the
Hirota bilinear equations of the EZTH. In Sec. 5, we define the tau function of the EZTH, which leads to
the formalism of generalized matrix vertex operators and Hirota quadratic equations in Sec. 6. In Sec. 7,
we construct multifold transformations of the EZTH using a determinant technique [24]. In Sec. 8, to prove
the integrability of this new hierarchy, we construct the bi-Hamiltonian structure and tau-symmetry of the
EZTH. Section 9 is devoted to a brief conclusion and discussion.

2. Factorization and logarithm operators

Let ˜G be a group containing linear invertible elements of complex N×N matrices, and let g̃ denote
its Lie algebra of complex N×N matrices MN (C). We now consider the linear space of functions g : R →
MN (C) with the shift operator Λ acting on these functions as (Λg)(x) := g(x + ε). Left multiplication by
X : R → MN (C) has the form XΛj, (XΛj)(g)(x) := X(x) ◦ g(x + jε) defining the product

(X(x)Λi) ◦ (Y (x)Λj) := X(x)Y (x + iε)Λi+j .
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The set g of Laurent series in Λ as an associative algebra is then a Lie algebra under the standard commu-
tator.

This Lie algebra has the important splitting

g = g+ ⊕ g−, (2.1)

where

g+ =
{

∑

j≥0

Xj(x)Λj , Xj(x) ∈ MN (C)
}

, g− =
{

∑

j<0

Xj(x)Λj , Xj(x) ∈ MN(C)
}

.

Splitting (2.1) leads us to consider the factorization of g ∈ G

g = g−1
− ◦ g+, g± ∈ G±, (2.2)

where G± have g± as their Lie algebras, G+ is the set of invertible linear operators of the form
∑

j≥0 gj(x)Λj ,
and G− is the set of invertible linear operators of the form 1 +

∑

j<0 gj(x)Λj . This algebra has a maximal
commutative subalgebra ZN = C[Γ]/(ΓN ), and Γ = (δi,j+1)ij ∈ gl(N, C). We set ZN(Λ) := gc. We then
have the splitting

gc = gc+ ⊕ gc−, (2.3)

where

gc+ =
{

∑

j≥0

Xj(x)Λj , Xj(x) ∈ ZN

}

, gc− =
{

∑

j<0

Xj(x)Λj , Xj(x) ∈ ZN

}

.

Splitting (2.3) leads us to consider the factorization of gc ∈ Gc

gc = g−1
c− ◦ gc+, gc± ∈ Gc±, (2.4)

where Gc± have gc± as their Lie algebras, Gc+ is the set of invertible linear operators of the form
∑

j≥0 gj(x)Λj , and Gc− is the set of invertible linear operators of the form 1 +
∑

j<0 gj(x)Λj .
We now introduce the free operators W0, W 0 ∈ Gc,

W0 := exp
[ ∞
∑

j=0

tj
Λj

εj!
+ sj

Λj

εj!
(ε∂ − cj)

]

, ∂ =
∂

∂x
,

W 0 := exp
[ ∞
∑

j=0

tj
Λ−j

εj!
+ sj

Λ−j

εj!
(ε∂ − cj)

]

, cj =
j

∑

i=1

1
i
,

(2.5)

where tj , sj ∈ C plays the role of continuous time.
We define the dressing operators W and W as

W := S ◦ W0, W := S̄ ◦ W 0, S ∈ Gc−, S̄ ∈ Gc+. (2.6)

Given an element g ∈ Gc, we set t = (tj) and s = (sj), j ∈ N, and consider the factorization problem in Gc

similarly to the consideration in [18],
W ◦ g = W, (2.7)

i.e., the factorization problem
S(t, s) ◦ W0 ◦ g = S̄(t, s) ◦ W 0. (2.8)
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We note that S and S̄ have the expansions

S = IN + ω1(x)Λ−1 + ω2(x)Λ−2 + · · · ∈ Gc−,

S̄ = ω0(x) + ω1(x)Λ + ω2(x)Λ2 + · · · ∈ Gc+.
(2.9)

We also define the symbols of S and S̄ as S and S̄:

S = IN + ω1(x)λ−1 + ω2(x)λ−2 + . . . ,

S̄ = ω0(x) + ω1(x)λ + ω2(x)λ2 + . . . .
(2.10)

The operators S−1 and S̄−1 inverse to S and S̄ have the expansions

S−1 = IN + ω′
1(x)Λ−1 + ω′

2(x)Λ−2 + · · · ∈ Gc−,

S̄−1 = ω′
0(x) + ω′

1(x)Λ + ω′
2(x)Λ2 + · · · ∈ Gc+.

(2.11)

We also define the symbols of S−1 and S̄−1 as S−1 and S̄−1

S
−1 = IN + ω′

1(x)λ−1 + ω′
2(x)λ−2 + . . . ,

S̄
−1 = ω′

0(x) + ω′
1(x)λ + ω′

2(x)λ2 + . . . .
(2.12)

The Lax operators L ∈ Gc are defined by

L := W ◦ Λ ◦ W−1 = W ◦ Λ−1 ◦ W
−1

(2.13)

and have the expansions
L = Λ + u1(x) + u2(x)Λ−1. (2.14)

In fact, the Lax operators L ∈ Gc can also be equivalently defined by

L := S ◦ Λ ◦ S−1 = S̄ ◦ Λ−1 ◦ S̄−1. (2.15)

These definitions are a continuous interpolated version of the multicomponent commutative Toda hierarchy,
i.e., a continuous spatial parameter x is brought into this hierarchy. With this meaning, the continuous
flow ∂/∂x is missing. To complete these flows, we define the logarithm matrix

log+ L = W ◦ ε∂ ◦ W−1 = S ◦ ε∂ ◦ S−1,

log− L = −W ◦ ε∂ ◦ W
−1

= −S̄ ◦ ε∂ ◦ S̄−1,

(2.16)

where ∂ is the derivative with respect to the spatial variable x.
Combining the above logarithm operators together, we can derive the important logarithm matrix

logL :=
1
2
(log+ L + log− L) =

1
2
(S ◦ ε∂ ◦ S−1 − S̄ ◦ ε∂ ◦ S̄−1) :=

+∞
∑

i=−∞
WiΛi ∈ Gc, (2.17)

which generates a series of flow equations containing the spatial flow in Lax equations defined below.
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3. Lax equations of EZTH

In this section, we use factorization problem (2.7) to derive Lax equations. We first introduce some
convenient notation.

Definition 1. The matrix operators Bj and Dj are defined as

Bj :=
Lj+1

(j + 1)!
, Dj :=

2Lj

j!
(logL − cj), cj =

j
∑

i=1

1
i
, j ≥ 0. (3.1)

Definition 2. The EZTH is a hierarchy in which the dressing operators S and S̄ satisfy the Sato
equations

ε ∂tj S = −(Bj)−S, ε ∂tj S̄ = (Bj)+S̄,

ε ∂sj S = −(Dj)−S, ε ∂sj S̄ = (Dj)+S̄.
(3.2)

We can then easily obtain the following proposition.

Proposition 1. The dressing operators W and W satisfy the Sato equations

ε ∂tj W = (Bj)+W, ε ∂tj W = (Bj)+W,

ε ∂sj W =
(

Lj

j!
(log+ L − cj) − (Dj)−

)

W,

ε ∂sj W =
(

−Lj

j!
(log− L− cj) + (Dj)+

)

W.

(3.3)

From Proposition 1, we derive the following Lax equations for the Lax operators.

Proposition 2. The Lax equations of the EZTH are

ε ∂tjL = [(Bj)+,L], ε ∂sjL = [(Dj)+,L], ε ∂tj logL = [(Bj)+, logL],

ε(logL)sj = [−(Dj)−, log+ L] + [(Dj)+, log− L].
(3.4)

To see this kind of hierarchy more clearly, we give the ZN -Toda equations as t0 flow equations.

3.1. The extended ZN -Toda equations. As a consequence of factorization problem (2.7) and
the Sato equations, taking S ∈ Gc− and S̄ ∈ Gc+ into account, we obtain the t0 flow of L in the form
L = Λ + U + V Λ−1:

ε ∂t0L = [Λ + U, V Λ−1], (3.5)

which leads to the matrix Toda equation

ε ∂t0U = V (x + ε) − V (x),

ε ∂t0V = U(x)V (x) − V (x)U(x − ε).
(3.6)

Of course, we can switch the order of the matrices because ZN is commutative. We set

U =

[

u0 0

u1 u0

]

, V =

[

v0 0

v1 v0

]

. (3.7)
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The specific coupled Toda equation is then

ε ∂t0u0 = v0(x + ε) − v0(x),

ε ∂t0u1 = v1(x + ε) − v1(x),

ε ∂t0v0 = u0(x)v0(x) − v0(x)v0(x − ε),

ε ∂t0v1 = (u1(x) − u1(x − ε))v0(x) − v1(x)(u0(x) − u0(x − ε)).

(3.8)

To obtain the standard matrix Toda equation, we must use the alternative expressions

U := ω1(x) − ω1(x + ε) = ε ∂t1φ(x),

V := eφ(x)e−φ(x−ε) = −ε ∂t1ω1(x).
(3.9)

From the Sato equation, we deduce the set of nonlinear partial differential-difference equations

ω1(x) − ω1(x + ε) = ε ∂t1(e
φ(x))e−φ(x),

ε ∂t1ω1(x) = −eφ(x)e−φ(x−ε).
(3.10)

We note that if we combine the two first equations, then we obtain

ε2 ∂2
t1φ(x) = eφ(x+ε)e−φ(x) − eφ(x)e−φ(x−ε),

which is an N×N matrix-valued extension of the Toda equation, whence the original Toda equation follows
for N = 1. For N = 2, the equation for φ =

[

φ0 0
φ1 φ0

]

is the coupled Toda system

ε2 ∂2
t1φ0(x) = eφ0(x+ε)−φ0(x) − eφ0(x)−φ0(x−ε),

ε2 ∂2
t1φ1(x) = (φ1(x + ε) − φ1(x))eφ0(x+ε)−φ0(x) − (φ1(x) − φ1(x − ε))eφ0(x)−φ0(x−ε).

In the calculation, we use the identity

exp

(

φ0 0

φ1 φ0

)

=

[

eφ0 0

φ1e
φ0 eφ0

]

.

In addition to the ZN -Toda equations above, together with logarithmic flows, the EZTH also contains
some extended flow equations (see Sec. 4 below). Here, we consider the extended flow equations in the
simplest case, i.e., the s0 flow for L = Λ + u0 + u1Λ−1,

ε ∂s0L = [(Sε ∂xS−1)+,L] = [ε ∂xS S−1,L] = εLx, (3.11)

which leads to the specific equation

∂s0U = Ux, ∂s0V = Vx. (3.12)

To see the extended equations clearly, we must rewrite the extended flows in the Lax equations of the
EZTH as in the following lemma.
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Lemma 1. The extended flows in the Lax formulation of the EZTH can be given equivalently by

ε
∂L
∂sj

= [Dj ,L],

Dj =
(

Lj

j!
(log+ L − cj)

)

+

−
(

Lj

j!
(log− L − cj)

)

−
,

(3.13)

which can also be rewritten in the form

ε
∂L
∂sn

= [Dn,L],

Dj =
Lj

j!
ε∂ +

[

Lj

j!

(

∑

k<0

Wk(x)Λk − cj

)]

+

−
[

Lj

j!

(

∑

k≥0

Wk(x)Λk − cj

)]

−
.

(3.14)

We can then derive the s1 flow equation of the EZTH as

εUs1 = (1 − Λ)(V (Λ−1 − 1)−1ε(log V )x) − 2(Λ − 1)V +
ε

2
U2

x + εVx,

εVs1 = ((Λ−1 − 1)−1εVxV −1 + 2)(U(x − ε) − U(x))V +

+ εVxU(x − ε) + ε(Ux(x − ε) + Ux(x))V,

where U = U(x) and V = V (x). To give a linear description of the EZTH, we introduce the matrix wave
functions ψ and ψ defined by

ψ = W · χ, ψ̄ = W · χ̄, (3.15)

where
χ(z) := zx/ε

IN , χ̄(z) := z−x/ε
IN , (3.16)

and the dot denotes the action of an operator on a function. We note that Λ · χ = zχ, and we can define
the asymptotic expansions

ψ = zx/ε(IN + ω1(x)z−1 + · · · )ψ0(z),

ψ0 := exp
[ ∞
∑

j=1

tj
zj

εj!
+ sj

zj

εj!
(log z − cj)

]

, z → ∞,

ψ̄ = z−x/ε(ω0(x) + ω1(x)z + · · · )ψ̄0(z),

ψ̄0 := exp
[ ∞
∑

j=0

tj
z−j

εj!
+ sj

z−j

εj!
(log z − cj)

]

, z → 0.

(3.17)

We obtain linear equations in the following proposition.

Proposition 3. The matrix wave functions ψ and ψ̄ satisfy the Sato equations

L · ψ = zψ, L · ψ̄ = zψ̄,

ε ∂tj ψ = (Bj)+ · ψ, ε ∂tj ψ̄ = (Bj)+ · ψ̄,

ε ∂sj ψ =
(

Lj

εj!
(log+ L − cj) − (Dj)−

)

· ψ,

ε ∂sj ψ̄ =
(

−Lj

εj!
(log−L − cj) + (Dj)+

)

· ψ̄.

(3.18)
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4. Hirota bilinear equations

From Lax equations, we can find that the s0 flow is equivalent to the spatial flow ∂x. Based on this
fact, we derive Hirota bilinear equations, which are equivalent to the Lax equations of the EZTH, in the
following proposition.

Proposition 4. The operators W and W are matrix-valued wave operators of the EZTH if and only

if the Hirota bilinear equations

WΛrW−1 = WΛ−rW
−1

, r ∈ N, (4.1)

are satisfied.

Proof. Let
α = (α0, α1, α2, . . . ), β = (β1, β2, . . . ) (4.2)

be a multi-index and
∂α := ∂α0

t0 ∂α1
t0 ∂α2

t2 . . . , ∂β := ∂β1
s1

∂β2
s2

. . . . (4.3)

Also let ∂θ = ∂α∂β . We first prove that the formulated statement leads to the expression

W (x, t, Λ)ΛrW−1(x, t′, Λ) = W (x, t, Λ)Λ−rW
−1

(x, t′, Λ) (4.4)

for all integers r ≥ 0. Using the same method as in [7], [9], by induction on α, we prove that

W (x, t, Λ)Λr(∂θW−1(x, t, Λ)) = W (x, t, Λ)Λ−r(∂θW
−1

(x, t, Λ)). (4.5)

This is obviously true for θ = 0 by the definition of matrix-valued wave operators. Let Eq. (4.5) hold for
some θ 	= 0. We note that

ε ∂pj W :=

⎧

⎨

⎩

[(∂tj S)S−1 + SΛjS−1]W, pj = tj ,

[(∂sj S)S−1 + SΛj∂xS−1]W, pj = sj ,

and

ε ∂pj W :=

⎧

⎨

⎩

(∂tj S̄)S̄−1W, pj = tj ,

[(∂S̄j
S̄)S̄−1 + S̄Λ−j∂xS̄−1]W, pj = sj,

which further leads to

ε ∂pj W :=

⎧

⎪

⎨

⎪

⎩

(Bj)+W, pj = tj ,

[−(Dj)− +
Lj

εj!
(log+ L− cj)]W, pj = sj ,

and

ε ∂pj W :=

⎧

⎪

⎨

⎪

⎩

(Bj)+W, pj = tj ,

[(Dj)+ − Lj

εj!
(log− L − cj)]W, pj = sj .

This further implies
(∂pj W )Λr(∂θW−1) = (∂pj W )Λ−r(∂θW

−1
).
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Taking (4.5) into account, we obtain

WΛr(∂pj ∂
θW−1) = WΛ−r(∂pj ∂

θW
−1

).

Therefore, if we increase the power of ∂pj by 1, Eq. (4.5) is still satisfied. The proof by induction is
completed. Expanding both sides of Eq. (4.4) in Taylor series in t = t′ and s = s′, we can finish the proof
of Eq. (4.4).

Conversely, by separating the negative and the positive parts of the equation, we can prove that S and
S̄ are a pair of matrix-valued wave operators. �

For a description in terms of matrix-valued wave functions, we need the following symbolic definitions.
If the series have the forms

W (x, t, s, Λ) =
∑

i∈Z

ai(x, t, s, ∂x)Λi, W (x, t, s, Λ) =
∑

i∈Z

bi(x, t, s, ∂x)Λi,

W−1(x, t, s, Λ) =
∑

i∈Z

Λia′
i(x, t, s, ∂x), W

−1
(x, t, s, Λ) =

∑

j∈Z

Λjb′j(x, t, s, ∂x),

then we define their corresponding left symbols W and W and right symbols W−1 and W−1
as

W(x, t, s, λ) =
∑

i∈Z

ai(x, t, s, ∂x)λi, W−1(x, t, s, λ) =
∑

i∈Z

a′
i(x, t, s, ∂x)λi,

W(x, t, s, λ) =
∑

i∈Z

bi(x, t, s, ∂x)λi, W−1
(x, t, s, t̄, λ) =

∑

j∈Z

b′j(x, t, s, ∂x)λj .

We can now write the Hirota bilinear equation in another form (see Proposition 5 below), defining the
residue as

Resλ

∑

n∈Z

αnλn = α−1

using a proof similar to the proof in [3], [7], [9].

Proposition 5. Let s0 = s′0. The operators S and S̄ are matrix-valued wave operators of the ZN -Toda

hierarchy if and only if the Hirota bilinear identity

Resλ{λr+m−1W(x, t, s, ε∂x, λ)W−1(x − mε, t′, s′, ε∂x, λ)} =

= Resλ{λ−r+m−1W(x, t, s, ε∂x, λ)W−1
(x − mε, t′, s′, ε∂x, λ)} (4.6)

is satisfied for all m ∈ Z and r ∈ N.

Proof. Let m ∈ Z, r ∈ N, and s0 = s′0. We set

W (x, t, s, Λ) =
∑

i∈Z

ai(x, t, s, ∂x)Λi, W (x, t, s, Λ) =
∑

i∈Z

bi(x, t, s, ∂x)Λi,

W−1(x, t, s, Λ) =
∑

i∈Z

Λia′
i(x, t, s, ∂x), W

−1
(x, t, Λ) =

∑

j∈Z

Λjb′j(x, t, s, ∂x)

and compare the coefficients of Λ−m in Eq. (4.4):
∑

i+j=−m−r

ai(x, t, s, ∂x)a′
j(x − mε, t′, s′, ∂x) =

∑

i+j=−m+r

bi(x, t, s, ∂x)b′j(x − mε, t′, s′, ∂x).

This equality can be written also as Eq. (4.6). �

To express the Hirota quadratic function in terms of tau functions, we must first define the tau function
of the EZTH and prove that it exists, which we do in the next section.
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5. Tau functions of EZTH

We introduce the sequences

t − [λ] := (tj − ε(j − 1)!λj , 0 ≤ j ≤ ∞). (5.1)

A matrix-valued function τ ∈ ZN depending on only the dynamical variables t and ε is called a matrix

tau-function of the EZTH if it provides symbols related to matrix-valued wave operators as

S :=
τ(s0 + x − ε/2, tj − ε(j − 1)!/λj , s; ε)

τ(s0 + x − ε/2, t, s; ε)
,

S
−1 :=

τ(s0 + x + ε/2, tj + ε(j − 1)!/λj , s; ε)
τ(s0 + x + ε/2, t, s; ε)

,

S̄ :=
τ(s0 + x + ε/2, tj + ε(j − 1)!λj , s; ε)

τ(s0 + x − ε/2, t, s; ε)
,

S̄−1 :=
τ(s0 + x − ε/2, tj − ε(j − 1)!λj , s; ε)

τ(s0 + x + ε/2, t, s; ε)
.

(5.2)

Here, division means multiplication of the numerator matrix by the inverse of the denominator matrix. We
can obtain the solution U , V in terms of tau functions as

U = (log τ)xx, V = log
τ(x + ε)τ(x − ε)

τ2(x)
. (5.3)

For N = 2, we obtain

[

u0 0

u1 u0

]

=

⎡

⎢

⎣

(log τ0)xx 0
(

τ1

τ0

)

xx

(log τ0)xx

⎤

⎥

⎦
,

exp
(

[

v0 0

v1 v0

]

)

=

[

ev0 0

v1e
v0 ev0

]

=

=

2

6

6

4

τ0(x + ε)τ0(x − ε)

τ0
0

τ1(x + ε)τ0(x − ε) + τ0(x + ε)τ1(x − ε)

τ0
− τ0(x + ε)τ0(x − ε)τ1

τ 2
0

τ0(x + ε)τ0(x − ε)

τ0

3

7

7

5

.

This implies

u0 = (log τ0)xx, u1 =
(

τ1

τ0

)

xx

,

v0 = log
τ0(x + ε)τ0(x − ε)

τ0
, v1 = (Λ − 1 + Λ−1)

τ1(x)
τ0(x)

.

(5.4)

Using Proposition 5, we can prove the following lemma.
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Lemma 2. The equations

N
∑

k=1

S(x, t, λ1)ikS
−1(x + ε, t + [λ2], λ1)kj =

N
∑

k=1

S̄(x, t, λ2)ikS̄−1(x, t − [λ−1
1 ], λ2)kj ,

N
∑

k=1

S(x, t, λ1)ikS
−1(x, t − [λ−1

2 ], λ1)kj =
N

∑

k=1

S(x, t, λ2)ikS
−1(x, t − [λ−1

1 ], λ2)kj ,

N
∑

k=1

S̄(x, t, λ1)ikS̄−1(x + ε, t + [λ2], λ1)kj =
N

∑

k=1

S̄(x, t, λ2)ikS̄−1(x + ε, t + [λ1], λ2)kj

(5.5)

hold.

Using Lemma 2, we can prove the following important proposition, which asserts the existence of the
matrix-valued tau functions.

Proposition 6. For a given pair of wave operators S and S̄ of the EZTH, there exists a corresponding

matrix-valued invertible tau function τ ∈ ZN , and it is unique up to multiplication by a nonvanishing

function independent of tj , j ≥ 1.

Proof. Here, we note that the ZN -valued tau function τ(x, t) corresponding to the wave operators S

and S̄ is in fact τ(x − ε/2, t).
System (5.5) is equivalent to

log S =
(

exp
(

−ε

∞
∑

j=0

j!λ−(j+1) ∂tj

)

− 1
)

log τ,

log S̄ =
(

exp
(

ε∂x + ε

∞
∑

j=0

j!λj+1 ∂tj

)

− 1
)

log τ,

∂s0 log τ(x, t) = ∂x log τ(x, t).

Using Lemma 2, we can now prove the existence of the tau function of this hierarchy. �

Given the tau functions of the EZTH, the natural question arises about the expression for the Hirota
bilinear equation in terms of tau functions, and we answer this question in the next section using generalized
vertex operators.

6. Generalized matrix vertex operators and Hirota quadratic
equations

In this section, we continue to discuss the fundamental properties of the EZTH tau function, i.e., the
Hirota quadratic equations of the EZTH. We therefore introduce the vertex operators

Γ±a := exp
(

±1
ε

( ∞
∑

j=0

tj
λj+1

(j + 1)!
+ sj

λj

j!
(log λ − cj)

))

× exp
(

∓ ε

2
∂s0 ∓ [λ−1]∂

)

,

Γ±b := exp
(

±1
ε

( ∞
∑

j=0

tj
λ−j−1

(j + 1)!
− sj

λ−j

j!
(log λ − cj)

))

× exp
(

∓ ε

2
∂s0 ∓ [λ]∂

)

,
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where

[λ]∂ := ε

∞
∑

j=0

j!λj+1 ∂tj .

Because of the presence of the logarithm log λ, the vertex operators Γ±a ⊗ Γ∓a and Γ±b ⊗ Γ∓b are
multivalued functions. In passing between different branches around λ = ∞, monodromy factors appear:

Ma = exp
{

±2πi

ε

∑

j≥0

λj

j!
(sj ⊗ 1 − 1 ⊗ sj)

}

,

M b = exp
{

±2πi

ε

∑

j≥0

λ−j

j!
(sj ⊗ 1 − 1 ⊗ sj)

}

.

(6.1)

To compensate this difficulty, we generalize the concept of a vertex operator, which is already not scalar-
valued but takes values in a differential operator algebra in ZN . We therefore introduce the vertex operators

Γa = exp
(

−
∑

j>0

j!λj+1

ε
(ε∂x)sj

)

ex∂s0 ,

Γb = exp
(

−
∑

j>0

j!λ−(j+1)

ε
(ε∂x)sj

)

ex∂s0 ,

Γ#
a = ex∂s0 exp

(

∑

j>0

j!λj+1

ε
(ε∂x)sj

)

,

Γ#
b = ex∂s0 exp

(

∑

j>0

j!λ−(j+1)

ε
(ε∂x)sj

)

.

(6.2)

Then

Γ#
a ⊗ Γa = ex∂s0 exp

(

∑

j>0

j!λj+1

ε
(ε∂x)(sj − s′j)

)

e
x∂s′0 ,

Γ#
b ⊗ Γb = ex∂s0 exp

(

∑

j>0

j!λ−(j+1)

ε
(ε∂x)(sj − s′j)

)

e
x∂s′0 .

(6.3)

After some calculations, we obtain

(Γ#
a ⊗ Γa)Ma = exp

{

±2πi

ε

∑

j>0

λj

j!
(sj − s′j)

}

×

× exp
(

±2πi

ε

(

(s0 + x) −
(

s′0 + x +
∑

j>0

λj

j!
(sj − s′j)

)))

(Γ#
a ⊗ Γa) =

= exp
(

±2πi

ε
(s0 − s′0)

)

(Γ#
a ⊗ Γa),

(Γ#
b ⊗ Γb)M b = exp

{

±2πi

ε

∑

j>0

λ−j

j!
(sj − s′j)

}

×

× exp
(

±2πi

ε

(

(s0 + x) −
(

s′0 + x +
∑

j>0

λ−j

j!
(sj − s′j)

)))

(Γ#
b ⊗ Γb) =

= exp
(

±2πi

ε
(s0 − s′0)

)

(Γ#
b ⊗ Γb).
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Hence, if s0− s′0 ∈ Zε, then all (Γ#
a ⊗Γa)(Γa ⊗Γ−a) and (Γ#

b ⊗Γb)(Γ−b ⊗Γb) are single-valued near λ = ∞.
We note that the vertex operators introduced above take values in a ZN -valued differential operator

algebra,

C[∂, x, t, s, ε] :=
{

f(x, t, ε)
∣

∣

∣

∣

f(x, t, s, ε) =
∑

i≥0

N
∑

k≥0

cik(x, t, s, ε)Γk∂i

}

.

Theorem 1. The invertible ZN -valued matrix τ(t, s, ε) is a tau function of the EZTH if and only if

it satisfies the Hirota quadratic equation of the EZTH

Resλ λr−1(Γ#
a ⊗ Γa)(Γa ⊗ Γ−a)(τ ⊗ τ) = Resλ λ−r−1(Γ#

b ⊗ Γb)(Γ−b ⊗ Γb)(τ ⊗ τ), (6.4)

computed at s0 − s′0 = lε for all l ∈ Z and r ∈ N.

Proof. We need only prove that the Hirota bilinear equations are equivalent to the hypothesis of
Proposition 5. By direct calculation, we obtain the four identities

Γ#
a Γaτ = τ

(

s0 + x − ε

2
, t, s

)

λs0/εW(x, t, s, ε∂x, λ)λIN x/ε,

ΓaΓ−aτ = λ−(s0+x)/εW−1(x, t, s, ε∂x, λ)τ
(

x + s0 +
ε

2
, t, s

)

,

Γ#
b Γ−bτ = τ

(

x + s0 −
ε

2
, t, s

)

λs0/εW(x, t, s, ε∂x, λ)λxIN /ε,

ΓbΓbτ = λ−s0/ελ−xIN /εW−1
(x, t, s, ε∂x, λ)τ

(

x + s0 +
ε

2
, t, s

)

.

(6.5)

Equations (6.5) can be proved by a method similar to the method given in [7], [9]. Substituting Eqs. (6.5)
in Hirota bilinear equations (6.4), we obtain Eq. (4.6). �

Performing a transformation of the form λ → λ−1 on Eq. (6.4), we obtain

Resλ λr−1((Γ#
a ⊗ Γa)(Γa ⊗ Γ−a − Γ−a ⊗ Γa))(τ ⊗ τ) = 0, (6.6)

evaluated at s0 − s′0 = lε for all l ∈ Z and r ∈ N. This means that the expression

dλ

λ
((Γ#

a ⊗ Γa)(Γa ⊗ Γ−a − Γ−a ⊗ Γa))(τ ⊗ τ) (6.7)

is regular in λ at s0 − s′0 = lε for all l ∈ Z. For N = 1, expression (6.7) is exactly Hirota quadratic
equation (1.2) of the ETH obtained in [7]. As is known, the vertex operator in fact gives one special
Bäcklund transformation of the EZTH. To obtain more information about the relations between different
solutions of the EZTH, in the next section, we construct the Darboux transformation for the EZTH using
the determinant technique as in [24], [25].

7. Darboux transformation of the EZTH

In this section, we consider the action of the Darboux transformation for the EZTH on the Lax operator

L = Λ + U + V Λ−1, (7.1)
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i.e.,

L[1] = Λ + U [1] + V [1]Λ−1 = WLW−1, (7.2)

where W is the Darboux transformation operator. That means that after the Darboux transformation, the
spectral problem for the N×N matrix-valued function φ

Lφ = Λφ + Uφ + V Λ−1φ = λφ (7.3)

becomes

L[1]φ[1] = λφ[1]. (7.4)

To preserve the invariance of the Lax pair for the EZTH in Proposition 2, i.e., to satisfy the equalities

∂tjL[1] = [(B[1]
j )+,L[1]], ∂sjL[1] = [(D[1]

j )+,L[1]],

B
[1]
j := Bj(L[1]), D

[1]
j := Dj(L[1]),

∂tj logL[1] = [(B[1]
j )+, logL[1]],

(logL[1])sj = [−(D[1]
j )−, log+ L[1]] + [(D[1]

j )+, log− L[1]],

(7.5)

the dressing operator W must satisfy the dressing equation

Wtj = −W (Bj)+ + (WBjW
−1)+W, j ≥ 0, (7.6)

where Wtj denotes the derivative of W with respect to tj .
We now formulate an important theorem, which we use to obtain new solutions.

Theorem 2. If φ is the first wave function of the EZTH, then the Darboux transformation operator

for the EZTH

W (λ) = (1 − φ(φ(x − ε))−1Λ−1) = φ ◦ (1 − Λ−1) ◦ φ−1, (7.7)

generates new solutions U [1] and V [1] from seed solutions U and V :

U [1] = U + (Λ − 1)φ(φ(x − ε))−1,

V [1] = Λ−1V
φΛ−2φ

Λ−1φ2
.

(7.8)

We introduce the notation φi = φ
[0]
i := φ|λ=λi . We can then choose a specific one-time Darboux

transformation for the EZTH in the form

W1(λ1) = IN − φ1(φ1(x − ε))−1Λ−1. (7.9)

As the same time, we can obtain the action of the Darboux transformation on a wave function φ as

φ[1] = (IN − φ1(x)(φ1(x − ε))−1Λ−1)φ. (7.10)
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Iterating the Darboux transformation, we then write the action of the jth Darboux transformation on the
(j−1)th solution as

φ[j] =
(

IN −
φ

[j−1]
j

Λ−1φ
[j−1]
j

Λ−1

)

φ[j−1],

U [j] = U [j−1] + (Λ − 1)
φ

[j−1]
j

Λ−1φ
[j−1]
j

,

V [j] = (Λ−1V [j−1])
φ

[j−1]
j

Λ−1φ
[j−1]
j

Λ−2φ
[j−1]
j

Λ−1φ
[j−1]
j

,

(7.11)

where φ
[j−1]
i := φ[j−1]|λ=λi are the wave functions corresponding to different spectral parameter values and

the (j−1)th solutions U [j−1] and V [j−1]. It can be verified that φ
[j−1]
i = 0, i = 1, 2, . . . , j − 1.

After iterating the Darboux transformation, we can generalize it to an n-fold transformation.

Theorem 3. The n-fold Darboux transformation for the EZTH has the form

Wn = IN + t
[n]
1 Λ−1 + t

[n]
2 Λ−2 + · · · + t[n]

n Λ−n, (7.12)

where

Wn · φi|i≤n = 0. (7.13)

The Darboux transformation constructs a new solution from a seed solution:

U [n] = U + (Λ − 1)t[n]
1 ,

V [n] = t[n]
n (x)(Λ−nV )t[n]−1

n (x − ε),
(7.14)

where

(Wn)ij =
1

Δn

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

δij 0 · · · Λ−1 · · · 0
0 φ1,11(x − ε) · · · φ1,j1(x − ε) · · · φ1,N1(x − ε)
0 φ1,12(x − ε) · · · φ1,j2(x − ε) · · · φ1,N2(x − ε)

−φ1,ii(x) φ1,1i(x − ε) · · · φ1,ji(x − ε) · · · φ1,Ni(x − ε)
...

...
. . .

...
. . .

...

0 φ1,1N (x − ε) · · · φ1,jN (x − ε) · · · φ1,NN (x − ε)
0 φ2,11(x − ε) · · · φ2,j1(x − ε) · · · φ2,N1(x − ε)
0 φ2,12(x − ε) · · · φ2,j2(x − ε) · · · φ2,N2(x − ε)

−φ2,ii(x) φ2,1i(x − ε) · · · φ2,ji(x − ε) · · · φ2,Ni(x − ε)
...

...
. . .

...
. . .

...

0 φ2,1N (x − ε) · · · φ2,jN (x − ε) · · · φ2,NN (x − ε)
...

...
. . .

...
. . .

...

0 φn,11(x − ε) · · · φn,j1(x − ε) · · · φn,N1(x − ε)
0 φn,12(x − ε) · · · φn,j2(x − ε) · · · φn,N2(x − ε)

−φn,ii(x) φn,1i(x − ε) · · · φn,ji(x − ε) · · · φn,Ni(x − ε)
...

...
. . .

...
. . .

...

0 φn,1N (x − ε) · · · φn,jN (x − ε) · · · φn,NN (x − ε)

· · ·
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· · ·

0 · · · 0 · · · Λ−n · · · 0
φ1,11(x − 2ε) · · · φ1,N1(x − 2ε) · · · φ1,j1(x − nε) · · · φ1,N1(x − nε)
φ1,12(x − 2ε) · · · φ1,N2(x − 2ε) · · · φ1,j2(x − nε) · · · φ1,N2(x − nε)
φ1,1i(x − 2ε) · · · φ1,Ni(x − 2ε) · · · φ1,ji(x − nε) · · · φ1,Ni(x − nε)

...
. . .

...
. . .

...
. . .

...

φ1,1N (x − 2ε) · · · φ1,NN (x − 2ε) · · · φ1,jN (x − nε) · · · φ1,NN (x − nε)
φ2,21(x − 2ε) · · · φ2,N1(x − 2ε) · · · φ2,j1(x − nε) · · · φ2,N1(x − nε)
φ2,12(x − 2ε) · · · φ2,N2(x − 2ε) · · · φ2,j2(x − nε) · · · φ2,N2(x − nε)
φ2,1i(x − 2ε) · · · φ2,Ni(x − 2ε) · · · φ2,ji(x − nε) · · · φ2,Ni(x − nε)

...
. . .

...
. . .

...
. . .

...

φ2,1N (x − 2ε) · · · φ2,NN (x − 2ε) · · · φ2,jN (x − nε) · · · φ2,NN (x − nε)
...

. . .
...

. . .
...

. . .
...

φn,21(x − 2ε) · · · φn,N1(x − 2ε) · · · φn,j1(x − nε) · · · φn,N1(x − nε)
φn,12(x − 2ε) · · · φn,N2(x − 2ε) · · · φn,j2(x − nε) · · · φn,N2(x − nε)
φn,1i(x − 2ε) · · · φn,Ni(x − 2ε) · · · φn,ji(x − nε) · · · φn,Ni(x − nε)

...
. . .

...
. . .

...
. . .

...

φn,1N (x − 2ε) · · · φn,NN (x − 2ε) · · · φn,jN (x − nε) · · · φn,NN (x − nε)

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

,

Δn =

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

φ1(x − ε) φ1(x − 2ε) · · · φ1(x − nε)
φ2(x − ε) φ2(x − 2ε) · · · φ2(x − nε)

...
...

. . .
...

φn(x − ε) φn(x − 2ε) · · · φn(x − nε)

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

.

It can be easily verified that Wnφi = 0, i = 1, 2, . . . , n.
Taking a seed solution U = (0)N×N , V = IN and then using Theorem 3, we can obtain the nth new

solution of the EZTH as
U [n] = (1 − Λ−1) ∂t0 log W r(φ1, φ2, . . . , φn),

V [n] = e(1−Λ−1)(1−Λ−1) log W r(φ1,φ2,...,φn),

(7.15)

where W r(φ1, φ2, . . . , φn) is the Hankel function expressed in terms of Γ,

W r(φ1, φ2, . . . , φn) = det(Λ−j+1φn+1−i)1≤i,j≤n. (7.16)

In the definition of the Hankel function in terms of Γ, it is understood that in the calculation process, each
element φn+1−i is treated not in the matrix form but as a scalar polynomial in Γ. After obtaining the
values of U [n] and V [n] in terms of Γ, we rewrite the result in matrix form.

7.1. Soliton solutions. We investigated the first Darboux transformation for the EZTH above; we
now use it to obtain new solutions from trivial seed solutions. In particular, we find some matrix-valued
soliton solutions using the first Darboux transformation.

For N = 2, we take a seed solution of the form U = [ 0 0
0 0 ], V = [ 1 0

0 1 ]. The initial wave function φi then
satisfies

Λφ +

[

1 0

0 1

]

Λ−1φ =

[

λ1 0

λ2 λ1

]

φ, 1 ≤ i ≤ n.

φ = exp
(

x

ε
log

[

z1 0

z2 z1

]

)

, z1 	= 0,

(7.17)
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and moreover
z1 + z−1

1 = λ1, z2 + z−1
1 − z2

z2
1

= λ2.

S = E + ω1Λ−1 + v
x

ε
Λ−1 − x

ω 1
εΛ−2 + . . . , ω1 = const.

(7.18)

Under such an initial condition, the operator A1 in Lemma 1 becomes

A1 =
(

Λ +

[

1 0

0 1

]

Λ−1

)

ε∂ −
(

Λ −
[

1 0

0 1

]

Λ−1

)

,

∂φ

∂s1
=

[(

Λ +

[

1 0

0 1

]

Λ−1

)

ε∂ −
(

Λ −
[

1 0

0 1

]

Λ−1

)]

φ.

(7.19)

The solution φ expressed in terms of x and s1 can then be chosen in the form

φ = exp
(

x + λs1

ε
log Z +

s1

ε
(−Z + Z−1)

)

, Z =

[

z1 0

z2 z1

]

, λ =

[

λ1 0

λ2 λ1

]

, (7.20)

where

Z +

[

1 0

0 1

]

Z−1 =

[

z1 0

z2 z1

]

+

[

1 0

0 1

]

⎡

⎣

z−1
1 0

− z2

z2
1

z−1
1

⎤

⎦ = λ =

[

λ1 0

λ2 λ1

]

,

and

U [1] = (Λ − 1)
cosh(((x + λs1)/ε) logZ + (s1/ε)(−Z + Z−1))

cosh(((x + λs1)/ε) log Z + (s1/ε)(−Z + Z−1) − log Z)
,

V [1] = (1 − Λ−1)2 log
[

2 cosh
(

x + λs1

ε
log Z +

s1

ε
(−Z + Z−1)

)]

.

(7.21)

Using

log Z =

⎡

⎣

log z1 0
z2

z1
log z1

⎤

⎦ , cosh
(

[

a 0

b a

]

)

=

[

cosha 0

b cosha cosha

]

,

we can obtain the concrete elements of the new solutions U [1], V [1] in the form

u
[1]
0 = (Λ − 1)

cosh((x/ε) log z1 + (s1/ε)(λ1 − z1 + z−1
1 ))

cosh(((x − ε)/ε) log z1 + (s1/ε)(λ1 − z1 + z−1
1 ))

,

u
[1]
1 =

(

x

ε

z2

z1
+

s1

ε

(

λ2 − z2 −
z2

z2
1

))

×

× cosh((x/ε) log z1 + (s1/ε)(λ1 − z1 + z−1
1 ))

cosh(((x − ε)/ε) log z1 + (s1/ε)(λ1 − z1 + z−1
1 ))

−

−
(

x − ε

ε

z2

z1
+

s1

ε

(

λ2 − z2 −
z2

z2
1

))

×

× cosh((x/ε) log z1 + (s1/ε)(λ1 − z1 + z−1
1 ))

cosh2(((x − ε)/ε) log z1 + (s1/ε)(λ1 − z1 + z−1
1 ))

,

v
[1]
0 = (1 − Λ−1)2 log

[

2 cosh
(

x

ε
log z1 +

s1

ε
(λ1 − z1 + z−1

1 )
)]

,

v
[1]
1 = (1 − Λ−1)2 log

(

x

ε

z2

z1
+

s1

ε

(

λ2 − z2 −
z2

z2
1

))

.

(7.22)
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Taking z2 = λ2 = u
[1]
1 = v

[1]
1 = 0, we reduce these soliton solutions to soliton solutions of the scalar-

valued extended Toda chain [26].

8. Bi-Hamiltonian structure and tau symmetry

In this section, to describe the integrability of the EZTH, we construct the bi-Hamiltonian structure
and tau symmetry of the EZTH as in [23]. For a matrix A = (aij) =

∑N−1
i=0 aiΓi, the vector field ∂A over

EZTH is defined by

∂A =
N−1
∑

i=0

∑

k≥0

a
(k)
i

(

∂

∂u
(k)
i

+
∂

∂v
(k)
i

)

. (8.1)

For a function f̄ =
∫

f dx, we have

∂Af̄ =
∫ N−1

∑

i=0

∑

k≥0

a
(k)
i

(

∂f

∂u
(k)
i

+
∂f

∂v
(k)
i

)

dx =
∫

TrN

∑

k≥0

A(k)

(

δf

δu(k)
+

δf

δv(k)

)

dx, (8.2)

where
(

δ

δu

)

ij

=
δ

δuji
,

(

δ

δv

)

ij

=
δ

δvji
, (8.3)

and

TrN A = Tr

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

1
N

1
N − 1

· · · 1

0
1
N

· · · 1
2

...
...

. . .
...

0 0 · · · 1
N

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

A. (8.4)

In this section, we consider the EZTH using the Lax operator

L = Λ + u + evΛ−1, u, v ∈ ZN . (8.5)

We can then introduce the Hamiltonian brackets as

{f̄ , ḡ} =
∫

TrN

∑

w,w′

δf

δw
{w, w′} δg

δw′ dx,

w, w′ = ui or vj , 0 ≤ i, j ≤ N − 1.

(8.6)

For u(x) =
∑N−1

i=0 ui(x)Γi and v(x) =
∑N−1

i=0 vi(x)Γi, the bi-Hamiltonian structure for the EZTH can be
defined by two compatible Poisson brackets, which is a matrix generalization of the ETH in [6]:

{vi(x), vj(y)}1 = {ui(x), uj(y)}1 = 0,

{ui(x), vj(y)}1 =
1
ε
δij [eε∂x − 1]δ(x − y),

{ui(x), uj(y)}2 =
1
ε
δij [eε∂xev(x) − ev(x)e−ε∂x ]iδ(x − y),

{ui(x), vj(y)}2 =
1
ε
δijui(x)[eε∂x − 1]δ(x − y),

{vi(x), vj(y)}2 =
1
ε
δij [eε∂x − e−ε∂x ]δ(x − y).

(8.7)
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For any difference operator A =
∑

k AkΛk, we define the residue Res A = A0. In the following theorem, we
prove that the Poisson structure above can be regarded as the Hamiltonian structure for the EZTH.

Theorem 4. The flows of the EZTH are Hamiltonian systems of the form

∂ui

∂tk,j
= {ui, Hk,j}1,

∂vi

∂tk,j
= {vi, Hk,j}1, k = 0, 1, j ≥ 0, (8.8)

with t0,j = tj and t1,j = sj . They satisfy the bi-Hamiltonian recurrence relations

{ · , H1,n−1}2 = n{ · , H1,n}1 + 2{ · , H0,n−1}1, { · , H0,n−1}2 = (n + 1){ · , H0,n}1.

The Hamiltonians here have the form

Hk,j =
∫

hk,j(u, v; ux, vx; . . . ; ε) dx, k = 0, 1, j ≥ 0, (8.9)

where

h0,j =
1

(j + 1)!
TrN ResLj+1, h1,j =

2
j!

TrN Res[Lj(logL − cj)]. (8.10)

Proof. For β = 0, which corresponds to the original Toda hierarchy, the proof is the same as in [6].
Here, we prove that the flows ∂/∂t1,n are also Hamiltonian systems with respect to the first Poisson

bracket. The identity
TrN Res[Lnd(Sε∂xS−1)] ∼ TrN ResLn−1dL (8.11)

was proved in [6]. It shows the validity of the equivalence relation

TrN Res(Lnd log+ L) ∼ TrN Res(Ln−1dL). (8.12)

Here, the equivalence relation ∼ is up to an x-derivative of another 1-form.
By analogy with (8.11), we obtain the equivalence relation

TrN Res[Lnd(S̄ε∂xS̄−1)] ∼ −TrN ResLn−1dL, (8.13)

i.e.,
TrN Res(Lnd log− L) ∼ TrN Res(Ln−1dL). (8.14)

Combining (8.12) with (8.14), we obtain

TrN Res(Lnd logL) ∼ TrN Res(Ln−1dL). (8.15)

Let
Aα,n =

∑

k

aα,n+1;kΛk. (8.16)

From
∂L

∂tk,n
= [(Bk,n)+,L] = [−(Bk,n)−,L], B0,n = Bn, B1,n = Dn, (8.17)

we then derive the equation

ε
∂u

∂tβ,n
= aβ,n;1(x + ε) − aβ,n;1(x) ∈ ZN ,

ε
∂v

∂tβ,n
= aβ,n;0(x − ε)ev(x) − aβ,n;0(x)ev(x+ε) ∈ ZN , β = 0, 1.

(8.18)
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Equivalence relation (8.12) now easily follows from these two equations. Using (8.12), we obtain

dh̃n =
2
n!

d TrN Res[Ln(log+ L − cn)] ∼

∼ 2
(n − 1)!

TrN Res[Ln−1(log+ L− cn)dL] +
2
n!

TrN Res[Ln−1dL] =

=
2

(n − 1)!
TrN Res[Ln−1(log+ L− cn−1)dL] =

= TrN Res[a1,n;0(x) du + a1,n;1(x − ε)ev(x) dv]. (8.19)

This yields the identities

δH1,n

δu
= a1,n;0(x),

δH1,n

δv
= a1,n;1(x − ε)ev(x). (8.20)

These identities agree with the Lax equation

∂ui

∂t1,n
= {ui, H1,n}1 =

1
ε
[eε ∂x − 1]

δH1,n

δvi
=

1
ε
(a1,n;1(x + ε) − a1,n;1(x))i,

∂vi

∂t1,n
= {vi, H1,n}1 =

1
ε
[1 − eε ∂x ]

δH1,n

δui
=

=
1
ε
[a1,n;0(x − ε)ev(x) − a1,n;0(x)ev(x+ε)]i.

(8.21)

From the identities obtained above, we can see that the flows ∂/∂t1,n are Hamiltonian systems of
form (8.8). In the case β = 1, the recurrence relation follows from the trivial identities

n
2
n!
Ln(log± L − cn) = L 2

(n − 1)!
Ln−1(log± L− cn−1) − 2

1
n!
Ln =

=
2

(n − 1)!
Ln−1(log±L − cn−1)L − 2

1
n!
Ln.

For β = 1, we then obtain

na1,n+1;1(x) = a1,n;0(x + ε) + ua1,n;1(x) + eva1,n;2(x − ε) − 2a0,n+1;1(x) =

= a1,n;0(x) + u(x + ε)a1,n;1(x) + ev(x+2ε)a1,n;2(x) − 2a0,n+1;1(x).

This further leads to

{ui, H1,n−1}2 = {[Λev(x) − ev(x)Λ−1]a1,n;0(x) + u(x)[Λ − 1]a1,n;1(x − ε)ev(x)}i =

= n[a1,n+1;1(x)ev(x+ε) − a1,n+1;1(x − ε)ev(x)]i +

+ 2[a0,n+1;0(x)ev(x+ε) − a0,n+1;0(x − ε)ev(x)]i.

This is exactly the recurrence relation for flows in terms of u. The analogous recurrence relation for flows
in terms of v can be derived similarly. �

As in [6], the existence of the tau symmetry for the EZTH is proved in the following theorem.
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Theorem 5. The EZTH has the tau-symmetry property

∂hα,m

∂tβ,n
=

∂hβ,n

∂tα,m
, α, β = 0, 1, m, n ≥ 0. (8.22)

Proof. We prove the theorem for the case where α = 1 and β = 0:

∂h1,m

∂t0,n
=

2
m!(n + 1)!

TrN Res[−(Ln+1)−,Lm(log+ L− cm)] =

=
2

m!(n + 1)!
TrN Res[(Lm(log+ L − cm))+, (Ln+1)−] =

=
2

m!(n + 1)!
TrN Res[(Lm(log+ L − cm))+,Ln+1] =

∂h0,n

∂t1,m
. (8.23)

The theorem is proved similarly for the other cases. �

This property justifies the following alternative definition of another kind of tau function for the EZTH.

Definition 3. Another tau function in ZN for the EZTH can be defined using the expressions in terms
of the Hamiltonian densities

hβ,n = ε(Λ − 1)
∂ log τ̄

∂tβ,n
, β = 0, 1, n ≥ 0, (8.24)

where t0,j = tj and t1,j = sj .

Having two different definitions of tau functions for this hierarchy, we pose the question of some
mysterious relations between these two kinds of tau functions. One function arises from the Sato theory,
and the other arises from the tau symmetry of the Hamiltonian.

9. Conclusions and discussion

We have constructed a new hierarchy called the EZTH and extended the Sato theory to this hierarchy
including the Sato equations, matrix wave operators, Hirota quadratic equations, and existence of the tau
function. Similarly to the ETH and EBTH in the respective Gromov–Witten theory of CP

1 and orbifolds,
this hierarchy deserves further study in view of its potential applications in topological quantum fields and
the Gromov–Witten theory. Based on two different definitions of the tau functions for this hierarchy, it
would be interesting to discover mysterious deep relations between these two kinds of tau functions, of
which one is defined using the Sato theory and the other arises from the tau symmetry of the Hamiltonian.
This is not easy, and we plan to study this question in our future work.
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