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NOTION OF BLOWUP OF THE SOLUTION SET OF DIFFERENTIAL

EQUATIONS AND AVERAGING OF RANDOM SEMIGROUPS

L. S. Efremova∗ and V. Zh. Sakbaev†

We propose a unique approach to studying the violation of the well-posedness of initial boundary-value

problems for differential equations. The blowup of the set of solutions of a problem for a differential

equation is defined as a discontinuity of a multivalued map associating an initial boundary-value problem

with the set of solutions of this problem. We show that such a definition not only describes effects of

the solution destruction or its nonuniqueness but also permits prescribing a procedure for extending the

solution through the singularity origination instant by using an appropriate random process. Considering

the initial boundary-value problems whose solution sets admit singularities of the blowup type and a

neighborhood of these problems in the space of problems permits associating the initial problem with

the set of limit points of a sequence of solutions of the approximating problems. Endowing the space of

problems with the structure of a space with measure, we obtain a random semigroup generated by the

initial problem. We study the properties of the mathematical expectations (means) of a random semigroup

and their equivalence in the sense of Chernoff to semigroups with averaged generators.

Keywords: boundary-value problem, blowup, dynamical system, Ω-explosion, semigroup, random dy-
namical system, Chernoff’s theorem, averaging

1. Introduction

This paper is devoted to studying the phenomenon of blowup of a solution of an initial boundary-value
problem for a differential equation. From the conceptual standpoint, the proposed approach goes back to
the classical theory of dynamical systems, where the Ω-explosion phenomenon has been traditionally studied
since hyperbolic theory began developing in the 1960s (see, e.g., [1]–[7]). The Ω-explosion in a dynamical
system (with continuous or discrete time) is understood as the absence of upper semicontinuity of the
map between each point of the considered space of systems and the nonwandering set of the corresponding
dynamical system (see [4]).

In the theory of differential equations, the blowup phenomenon is primarily regarded as an unbounded
increase in the solution on a finite time interval [8]. The influence of the domain topology on the absence
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of a solution of a nonlinear boundary-value problem of elliptic type is also a phenomenon of the same
nature [9]. On the other hand, it is also natural to consider jumplike variations in the cardinality of the
solution set of a boundary-value problem as a blowup phenomenon in the theory of differential equations.

We assume that the Cauchy problem for a differential equation exhibits the blowup property if one of
the following effects occurs:

1. The interval of existence of the Cauchy problem solution is bounded.

2. The norm of the solution in the Banach space of values of the Cauchy problem solution increases
unboundedly on a bounded interval.

3. The integral curve of the Cauchy problem contains points of nonuniqueness of its solutions.

The blowup phenomenon or the peaking regime is traditionally understood as effect 2, but all three
effects, as we show below (see Examples 3 and 4 and also [10], [11]), can be exhibited in the same Cauchy
problem with different modifications of its statement. We define the phenomenon of blowup of a solution
of the Cauchy problem for a differential equation with effects 1–3 as the existence of a discontinuity of the
resolving map associating each point z in the topological space Z of Cauchy problems with a point G(z) in
the topological space 2Y of subsets of the Banach space Y of solutions of the Cauchy problems; the point
G(z) is the set of solutions of the Cauchy problem z (the rigorous definition of a resolving map is given in
Sec. 2.1 below).

We consider several examples showing how the definition introduced above describes peaking regimes
and points of the solution nonuniqueness on an integral curve. We classify the blowup phenomena accord-
ing to the type of the point of discontinuity of the resolving map: there are discontinuity points of the
removable type (if the resolving map has a limit), discontinuity points of the pole type (if for any sequence
of approximating problems, the sequence of norms of their solutions tends to infinity), and discontinuity
points of the essential type (these are all other cases, which necessarily contain different limit points of
the sequence of solutions of the approximating problems). The blowup phenomenon and its type depend
on the choice of norms in Banach spaces where the Cauchy problem is formulated as an abstract equation
(see [10]–[13]). Such a phenomenon is similar to the Ω-explosion phenomena in smooth dynamical systems.
For example, the spaces of smooth dynamical systems that admit the C0-Ω-explosion and do not admit the
C1-Ω-explosion were discussed in [6], [7].

In the framework of the obtained classification, we propose a procedure for extending the solution
through the singularity origination instant, i.e., we construct a unique extension in the case of a removable
blowup or extend the solution as a random map or the expectation value of a random map in the case of an
essential blowup. In the case of a pole-type blowup, it is rather difficult to extend the solution through the
blowup origination instant in terms of passing to the limit or averaging over the space of problems. The
fact that the blowup is of the pole type shows that there is a discrepancy between the choice of norms and
topologies in the statement of the problem and the process or the phenomenon described by this problem.
There are examples of how to change the topology in the problem statements such that the discontinuity
type of the solution set of the studied problem changes from polar to removable [12] or essential [11], [14].

Studying the problems that are points of essential discontinuity of the resolving map implies the
necessity to consider random variables ranging in the space of solutions of the considered problem. Because
the solutions of well-posed problems for evolution equations generate semigroups or one-parameter families
of maps, we must study random semigroups and random maps.
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We consider examples of random semigroups encountered when studying the Cauchy problem for
differential equations with singularities violating the problem well-posedness, i.e., violating the existence or
uniqueness of the solution. Along with the Cauchy problem, we consider a neighborhood of it in the space
of Cauchy problems, which is endowed with the structure of a measurable space with a measure. If the
measure is concentrated on a set of Cauchy problems generating a semigroup, then a random semigroup
arises. If the measure on the space of Cauchy problems is concentrated in an arbitrary deleted neighborhood
of the considered problem and this problem is well posed, then the values of the random semigroup are
concentrated in an arbitrary neighborhood of the semigroup generated by the Cauchy problem under study.
Otherwise, the initial Cauchy problem is associated not with the semigroup generated by this problem
(which does not exist) but with a random semigroup and, in particular, the expectation value of the
random semigroup and its iterations.

We note that another reason for studying random semigroups and random operators is the ambiguity
in choosing boundary conditions when linear differential equations are considered in a bounded domain [15].
The set of all boundary conditions that can be posed for a given differential equation in a given domain
is described in [15], [16]. Endowing this set with the structure of a measurable space with a measure
allows determining a random variable ranging in the space of operators representing the boundary-value
problems. In particular, this is possible when studying the evolution equations ranging in a set of one-
parameter semigroups.

A random semigroup is defined as a random variable ranging in the set of one-parameter semigroups
of transformations of Banach spaces. The expectation value F(t), t ≥ 0, of a random semigroup is defined
by the Pettice integral. The expectation value of a random semigroup is generally not a semigroup. Here,
we consider examples where the averaging of a random semigroup preserves the semigroup property.

Although the expectation value is not a semigroup, its iterations (i.e., the sequences {(F(t))n}) as
functions of the variable n ∈ {0} ∪ N form a semigroup. The relation between the random semigroups
introduced above and random dynamical systems (see [17], [18]) is that the iterations {(F(t))n}, n ∈ N,
are expectation values of a random dynamical system (see [18], [19]). In this case, there is a two-parameter
family of operators whose (real and natural) parameters play the role of time, and the operator function
G(t, n) = (F(t))n, t ≥ 0, n ∈ N, has the semigroup property with respect to the integer parameter and
generally does not have this property if the parameter is real.

Studying the iterations of the expectation value {(F(t/n))n} allows finding the conditions under which
they are equivalent in the Chernoff sense to a semigroup whose generator is the mean of the generator of
a random semigroup. The procedure thus introduced for averaging semigroup generators (see [20]) allows
introducing a procedure for summing unbounded operators, which is a generalization of the procedure for
summing the operators in the sense of quadratic forms. Studying the iterations in the Chernoff sense of
the expectation values of random semigroups shows that the two-parameter family of operators G(t, n)
becomes the averaged one-parameter semigroup of operators U in the special process of passing to the limit
as

U(τ) = lim
n→∞, t→0,

nt=τ

G(t, n).

Similar processes of passing to the limit along special curves in the space of parameters appear in statistical
and quantum statistical mechanics as the thermodynamic limit [21], stochastic limit [22], and the limits
of a small density and a weak coupling constant [22], [23]. It was shown in [22] (see Sec. 1.16) that the
stochastic limit in the problems of quantum statistical mechanics arises as a generalization of the functional
central limit theorem. At the same time, as noted in [24], the central limit theorem is one of the methods
for defining the Feynman pseudomeasures.
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2. Resolving map of the initial boundary-value problem

We regard the Cauchy problem for a differential equation as the abstract equation (see [11], [13], [25]–
[27])

Au = f, f ∈ X, u ∈ Y, A ∈ B(Y, X), (1)

where X and Y are Banach spaces and B(Y, X) is the Banach space of operators acting from the domain
D(A) ⊂ Y to the space X . Here, B(Y, X) is endowed with the norm ‖ · ‖B (or B(Y, X) is a topological
space of operators acting from the domain D(A) ⊂ Y to the space X and endowed with the topology τB

in this case).
Cauchy problem (1) determines the multivalued map

G : X × B(Y, X) → 2Y

defined on the set X × B(Y, X), ranging in the set 2Y of all subsets of Y , and defined by the formula

G(f,A) = Mf,A ≡ A−1(f).

We note that the map G is defined at any point of X × B(Y, X) and the value of G can be the empty set
at some points of this space.

Our goal here is to show that the well-known examples of initial boundary-value problems that admit
the blowup phenomena (peaking regime, blowup, violation of uniqueness) are examples of discontinuity
points of the multivalued map G regarded as a map of the topological space Z = X × B(Y, X) to the
topological space 2Y (the topologies introduced in Z and 2Y are described below), while the well-posed
initial boundary-value problems are points of continuity of the map G as a map of one topological space to
another topological space. Further, we use the map G to classify the blowup phenomena according to the
character of the discontinuity of G.

Supplementing the definition of the map G at discontinuity point (f0,A0) with the value of the up-
per topological limit Ls(f,A)→(f0,A0)G(f,A) of G as (f,A) → (f0,A0) defines an upper semicontinuous
multivalued map G (the upper semicontinuity of a map means that for any neighborhood U of a point
(G(f0,A0)) in the topological space 2Y , there is a neighborhood of (f0,A0) in the topological space Z

such that the value of G(f,A) is in U for any (f,A) in this neighborhood) and determines the procedure
for extending the dynamical transformation generated by the initial boundary-value problem through the
blowup origination instant by the expression G(f0,A0) = Ls(f,A)→(f0,A0)G(f,A).

Introducing a measure μ on the set of initial boundary-value problems Z allows completing the defini-
tion of the procedure for the dynamical transformation extension as a random process ξ such that the set
of its values is determined by the values of the map G on the deleted neighborhood of the point (f0,A0).
The Cauchy problem admitting a blowup phenomenon thus determines not a dynamical system (i.e., not
a semigroup of transformations of the space of initial data) but a random semigroup (i.e., a measurable
map of a space with a measure into the linear topological space of operator functions whose values are
semigroups of operators).

Here, we establish a relation between the extensions of the map G to the point (f0,A0) by using the
upper topological limit as (f,A) → (f0,A0) and a random process ξ.

Finally, for the problem posed above of extending the dynamical transformations generated by the
initial boundary-value problems through the blowup origination instant, it is convenient to represent the
dynamical transformations in terms of pseudomeasures on the space of maps of the time interval onto the
Banach space corresponding to the problem. In this problem statement, the dynamical transformation is
the conditional expectation of a pseudomeasure on the subalgebra generated by a special class of cylinder
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functionals. The well-posedness of the problem means that the conditional expectation can be represented
in the special form of atomic measures.

In conclusion, we note that the theory of partial differential equations studies the continuity of the
dependence on the parameter at the highest-order derivative not only on the characteristics of the dynamical
system generated by the Cauchy problem (such as the set of solutions) but also on characteristics such as
the attractor, nonwandering set, invariant set, and invariant measure. For example, sufficient conditions
for the continuity of a multivalued map A associating each Cauchy problem with its attractor in the space
of initial data were obtained in [28].

2.1. Definition of the blowup phenomenon and classification of blowups. If B(Y, X) is a
Banach space, then the set Z = X × B(Y, X) is a Banach space endowed with the norm ‖(f,A)‖ =
‖f‖X + ‖A‖B(Y,X). If B(Y, X) is a topological space, then the set Z = X × B(Y, X) is a topological space
endowed with the topology τZ of the direct product of two topological spaces. The Banach space Y is called
the space of solutions of the Cauchy problem, and the topological space Z is called the space of Cauchy
problems.

The set (2Y , τ) is a topological space with the topology τ generated by the pseudometric given on the
set 2Y by the expressions

rH(A, B) = max{sup
x∈A

ρY (x, B), sup
x∈B

ρY (x, A)} if A, B 	= ∅,

rH(A, ∅) = rH(∅, A) = +∞ if A 	= ∅, rH(∅, ∅) = 0.

The function rH is a pseudometric because it is nonnegative and symmetric and satisfies the triangle
inequality on 2Y × 2Y . But the equality ρ(A, B) = 0 does not imply that A = B (for example, in the case
where A is an open ball in Y and B is its closure). Therefore, the topology generated by the pseudometric
ρH is not a Hausdorff topology.

Lemma 1. The equality rH(A, B) = 0 holds for some A, B ∈ 2Y if and only if the closures of the sets

A and B in the space Y coincide.

To prove the lemma, it suffices to show that if a point M belongs to the set A but does not belong to
the set B, then it belongs to the closure of B. Indeed, it follows from rH(A, B) = 0 that ρY (M, B) = 0.
Therefore, if M /∈ B, then M is in the closure of the set B, which proves the lemma.

We note that the restriction of the function ρH to the set 2Y
c of closed subsets of the set 2Y is a

Hausdorff metric on 2Y
c .

We now consider the map G as a map of the topological space (Z, τZ) to the topological space (2Y , τ).

Definition 1. We say that Cauchy problem (1) exhibits the blowup property if the point (f,A) ∈ Z

is a point of discontinuity of the map G.

We draw the reader’s attention to the fact that the possibility (or the absence) of the Ω-explosion
depends significantly on the space of systems under study (see [6], [7]).

We assume that S is a subset of the topological space Z, the topology on S is induced from the space
Z, and the point (f,A) ∈ S is a limit point in S. If the map G is considered not on the entire space Z but
only on its part S, then the set S is called a topological space of Cauchy problems.

Definition 2. We say that Cauchy problem (1) exhibits the blowup property with respect to the

topological space of Cauchy problems S if the point (f,A) is a point of discontinuity of the map G : S → 2Y .
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Theorem 1. If a topological space B(Y, X) is a linearly connected subset in a normed linear space,

then a point (f,A) ∈ Z = X ×B(Y, X) is a discontinuity point of the map G : Z → 2Y if and only if there

is a curve Γ ⊂ Z such that (f,A) ∈ Γ and (f,A) is a discontinuity point of the map G|Γ.

Proof. If a point (f0,A0) ∈ Z is a continuity point of the map G : Z → 2Y (this means that for any
ε > 0, there exists a δ > 0 such that ‖f − f0‖X + ‖A − A0‖B < δ implies ρH(G(f,A), G(f0,A0)) < ε),
then it is necessarily a continuity point of the restriction of G to the curve Γ containing the point (f0,A0).

But if the point (f0,A0) ∈ Z is a discontinuity point of the map G : Z → 2Y , then there is a ε > 0 such
that for any δ > 0, there exists a (f,A) ∈ Oδ(f0,A0) such that ρH(G(f,A), G(f0,A0)) > ε. Therefore,
there is a sequence of points {Mk} = {(fk,Ak)} converging to the point M0 = (f0,A0) in the space Z

and satisfying the condition ρH(G(fk,Ak), G(f0,A0)) > ε for all k ∈ N. It then follows from the linear
connectivity of the set Z that there is a curve Γ ⊂ Z containing the points {M1, M2, . . . , Mk, . . . , M0} and
such that the restriction of G to this curve is discontinuous at the point M0. The theorem is proved.

The definition of the blowup of the solution set allows proposing the following classification of the
blowup phenomena for defining the procedure of completing the definition of the solution of the problem
in the cases where the absence of a solution or its nonuniqueness follow from the initial statement of the
problem. We note that the type of the equation under study has no importance in the proposed approach.

Definition 3. 1. A discontinuity point (f0,A0) ∈ Z of a map G is called a point of removable blowup

(with respect to the set S) of a solution of problem (1) if the limit lim(f,A)→(f0,A0) G(f,A) exists. Otherwise,
the discontinuity point (f0,A0) ∈ Z of G is called a point of nonremovable blowup (with respect to S) of

a solution of problem (1).
2. A point (f0,A0) ∈ Z of nonremovable blowup (with respect to S) of a solution of problem (1) is

called a point of pole-type blowup if the limit lim(f,A)→(f0,A0) infu∈G(f,A) ‖u‖Y = +∞ exists.
3. A point (f0,A0) ∈ Z of nonremovable blowup (with respect to S) of a solution of problem (1) is

called a point of essential blowup if it is not a point of pole-type blowup.

Remark 1. If the upper limit lim(f,A)→(f0,A0) supu∈G(f,A) ‖u‖Y < +∞ is finite and the upper topolog-
ical limit Ls(f,A)→(f0,A0)G(f,A) (i.e., the set M(f0,A0) = {y ∈ Y : ∃(fk,Ak) : (fk,Ak) → (f0,A)0), ∃yk ∈
G(fk,Ak) : limk→∞ yk = y}) consists of more than one point, then the point (f0,A0) is a point of essential
blowup.

We now define a multivalued map that associates each problem (f0,A0) ∈ Z with the set of limit points
in the space of solutions:

M(f0,A0) = Ls(f,A)→(f0,A0)G(f,A).

3. Examples of blowup phenomena for ordinary and partial
differential equations

3.1. Examples and classification of solution blowups. We illustrate Definitions 1–3 with exam-
ples of ill-posed Cauchy problems for differential equations all of whose solutions do not admit violation of
their existence or uniqueness on a finite interval.

Example 1 (Absence of blowup of the solution set). We consider the Cauchy problem for the ordinary
differential equation

y′ − f(y) = g(t), t ∈ (0, +∞), y(0) = y0, y0 ∈ R, g ∈ C([0, T ]), (2)
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whose solution on the interval [0, T ], T > 0, is a function y ∈ C1([0, T ]) satisfying the differential equation
and the initial condition. We assume that f0 ∈ C1(R) (where C1(R) is the Banach space of continuously
differentiable functions on the real line R endowed with the standard norm), y0 = y∗

0 ∈ R, and g ∈ C([0, T ]).
Then there exists a number σ > 0 such that Cauchy problem (2) has a unique solution in the linear space
C1([0, T ]) for any y0 ∈ Oσ(y∗

0), for any g ∈ [0, T ] and for any f ∈ Oσ(f0). In this case, if the sequence
(gn, y0n, fn) of elements of the Banach space C([0, T ])× R × C1(R) converges to an element (gn, y∗

n, fn) as
n → ∞ and if the function yn is a solution of problem (2) with the initial condition y0n, the right-hand
side gn, and the function fn for each value n ∈ N, then the sequence {yn} uniformly converges as n → ∞
on the interval [0, T ] to the solution y of problem (2) with the initial condition y∗

0 , the right-hand side g,
and the function f0.

Hence, if we set X = C([0, T ]) × R and Y = C1([0, T ]), then Cauchy problem (2) takes form (1)
for (g, y0) ∈ X and A(u) = D(u) − Ff (u), where D(u) = u′ and Ff (u)(t) = f(u(t)), t ∈ (0, T ), f ∈
C1(R). We then take the set S = {((g, y0),A) = ((g, y0),D − Ff ), (g, y0, f) ∈ C([0, T ]) × R × C1(R)},
introduce the topology on S generated by the norm of the Banach space C([0, T ]) × R × C1(R), and
consider the map G : S → 2C1([0,T ]) such that G(g, y0, f) = Mg,y0,f , where Mg,y0,f is the set of solutions of
Cauchy problem (2). Then according to the classical theorem on the existence, uniqueness, and continuous
dependence of the Cauchy problem solution on the problem data, Mg,y0,f is a one-point set, and G is a
continuous map of the topological space S to the topological space 2Y (to the Banach space Y because this
is a one-point map).

Example 2 (Blowup of the removable type). Let f0(y) = (y2)1/3 ∈ C(R), g ≡ 0, and y0 ≤ 0.
Then Cauchy problem (2) has a unique solution on the interval [0, T ) for T ≤ T∗ = 3|y0|1/3, but for each
T > T∗, this problem has a one-parameter continuous family of solutions, and the set of branch points
of the integral curves of the solutions is the interval {(t, y) = (t, 0): t ∈ [T∗, T )}. The time T∗ is the
instant of violation of the uniqueness of the Cauchy problem solution. For Cauchy problem (2) on the
half-line R+, the set of solutions is continuous and unbounded in the space C1(R). But this property of
the Cauchy problem is unstable under small perturbations (in the space C1(R)) of the function f0 in a
neighborhood of the function f0 ∈ C(R). For example, we consider a perturbation of f0 along the curve
γ = {fε = f0 + ε2/3, ε ∈ (−1, 1)} in the space C(R). For any function fε ∈ γ, ε 	= 0, Eq. (1) has a unique
solution yε ∈ C([0, +∞))∩C1(0, +∞), and the function yε(x), x ∈ R, is uniquely defined by the expression
y
1/3
ε − ε arctan(y1/3

ε /ε) = x/3+C(y0, ε). Therefore, the family yε uniformly converges on any interval [0, T ]
to the function u = (x/3 + y

1/3
0 )3 defined on the interval [0, +∞).

We set X = C(R) × R and Y = C([0, T )) ∩ C1((0, T )), and Cauchy problem (2) then takes form (1)
for (g, y0) = (0, 0) ∈ X and A(u) = D(u) − Ff (u), where D(u) = u′ and Ff (u)(t) = f(u(t)), t ∈ (0, T ),
f ∈ C(R). We consider the curve Γ = {((g, y0),Aε) = ((0, 0),D−Ffε), ε ∈ (−1, 1)} in the space of Cauchy
problems. The map G : Γ → 2Y associating the element fε ∈ γ with the set Mf of solutions of Cauchy
problem (2) then has a point of removable discontinuity f0 because the limit limε→0 Mfε = {u}, which does
not coincide with the continual set Mf0 , exists.

Example 3 (Pole-type blowup in one statement of the problem and a removable blowup in another
statement). The Cauchy problem for the Hopf equation has the form

u′
t − uu′

x = f, (t, x) ∈ (0, T ) × R, u|t=+0 = u0. (3)

Here, T ∈ (0, +∞), (f, u0) ∈ C((0, T ) × R) × C1(R) ≡ X , and the space C(G) is the Banach space of
continuous numerical functions defined on the domain of G in a finite-dimensional Euclidean space where
the norm of its elements is defined as ‖u‖C(G) = supx∈G |u(x)|. We set f = θ ≡ 0 and fix an operator

1588



Au = (u′
t − uu′

x, limt→+0 u) acting from a Banach space Y into a Banach space X . The properties of the
map G depend on the choice of the space Y .

A. If Y1 = C1((0, T ) × R) ∩ C([0, T ], C1(R)), then the set M(0,u0),A of solutions of Cauchy problem (3)
can be empty for some u0 ∈ C1(R) (see [10], [12]).

B. If Y2 = L1,loc((0, T ) × R), then M(0,u0),A is a continuous set for any u0 ∈ C1(R) (see O. A. Oleinik’s
examples in [10]).

In terms of the proposed classification, any problem in Example 1 does not exhibit the blowup prop-
erty, the problem considered in Example 2 exhibits the property of a blowup removable along the curve
(considered in the example) in the space of initial data, the Cauchy problem in Example 3 with the solution
space Y1 exhibits the property of a nonremovable pole-type blowup, and the Cauchy problem in Example 3
with the solution space Y2 exhibits the property of a blowup removable along the set of regularizations by
uniformly elliptic linear second-order differential operators.

To consider Example 3 in more detail, we fix a certain finite function u0 ∈ C1(R). In the space of
Cauchy problems, we choose a curve Γ = {((0, u0), Aε), ε ∈ [0, 1)}, where Aεu = u′

t −uu′
x − εu′′

xx. For each
ε ∈ (0, 1), the set M(0,u0),Aε

consists of one point uε = A−1
ε ((0, u0)) ∈ Y1 ∩ Y2. Then we have the following

assertions:

1. The point ((0, u0),A0) is a point of removable discontinuity for the map G : Γ → 2Y2 because the

sequence {uε}, ε ∈ (0, 1), ε → +0, has a limit in the space Y2 as ε → +0. Indeed, according to the
results obtained in [12], the sequence converges in the topological vector space L1,loc((0, T ) × R).

2. The point ((0, u0),A0) is a point of nonremovable pole-type discontinuity for the map G : Γ → 2Y1

(because the sequence {uε} diverges in the space Y1 and limε→0 ‖uε‖Y1 = +∞; see [10], [12]).

The effects of a nonremovable pole-type blowup of solutions of nonlinear partial differential equations,
similar to the effect considered in Example 3 in the space Y1, were studied in [12], [29]–[32] and in several
other works.

There are several examples of Cauchy problems for differential equations where solution destruction
(similar to the cases considered in Example 3A; see [11], [29], [32]) or a solution uniqueness violation (similar
to the cases considered in Examples 2 and 3B; see [11], [33], [34]) can occur, and these examples illustrate
the blowup phenomenon in the sense of Definition 1.

An efficient method for studying such problems is the vanishing viscosity method, as well as similar
approximation methods (see [11], [28], [32], [34]–[36]) based on the removability of a discontinuity point of
the restriction of G to a special set S (depending on the regularization method) in Definition 2.

3.2. Applications of the blowup phenomena classification to determining the solution
extension procedure. The classification of the blowup phenomena for the solution set of differential
equations permits determining the following three situations that arise in studying initial boundary-value
problems whose solutions admit a blowup.

1. If a problem z0 ∈ Z is a point of removable discontinuity of the map G, then G is defined at z0 by
continuity. In several problems, such a redefinition of G allows extending the solution uniquely through
the blowup origination instant (see Examples 1 and 3B), and this is the goal in the regularization
method (see [10], [12], [28], [34], [35]).

2. If a problem z0 ∈ Z is a point of essential discontinuity of the map G, then the extension of the solution
through the blowup origination instant is defined as a random process whose values are in the set of
limit values of G as z → z0. In this case, the dynamical transformation of the space of the initial
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data of the problem looses its uniqueness and invertibility properties and becomes a random map.
Such an approach demonstrates a relation between the phenomena of randomness, irreversibility, and
nonuniqueness.

3. If a problem z0 ∈ Z is a point of pole-type discontinuity of the map G, then G in some cases has
an infinitely remote point as a unique limit and hence can be extended uniquely through the blowup
origination instant as a function whose values can be infinite (see [37]). But the values of G in the
general case tend to infinity as z → z0 along different curves in the infinite-dimensional space Y ; it is
then also difficult to define the dynamical transformation as a random process because its values do not
belong to the spaces related to the problem statement. This indicates that it is expedient to enlarge
the functional spaces for extending the solutions through the blowup origination instant. In this case,
to extend the solution through the blowup origination instant, a method is proposed (see [10], [12])
in which the Banach spaces X and Y and the topological space B(Y, X) are chosen such that the
values of G remain bounded in a neighborhood of z0. In the case of such a choice of topologies and
norms, the pole-type point z0 can become a point of removable blowup (see [10], [12], [35]) or a point
of essential blowup (see [11], [14], [34]).

We further continue to study random dynamical transformations arising in the case of an essential
blowup of the set of solutions of initial boundary-value problems. The case of a removable blowup is a
rather regular case and is related to studying well-posed initial boundary-value problems. But the case of
pole-type blowup requires certain changes in the problem statement such that the character of the blowup
singularity becomes either removable or essential.

The following example shows how the blowup phenomenon in the Cauchy problems posed for the same
equation can exhibit any of the three types of blowup depending on the choice of the space Y of solutions.

Example 4 (Degenerate maximal symmetric operator). We assume that in the Hilbert space H =
L2(R), a degenerate second-order differential operator L is given by the differential expression

Lv(x) =
∂

∂x

(
g(x)

∂

∂x
v(x)

)
+

i

2

[
a(x)

∂

∂x
v(x) +

∂

∂x
(a(x)v(x))

]
, x ∈ R,

where the coefficients g = χ(−∞,0) and aχ(0,+∞ are indicator functions of half-lines. In this case, the
operator L defined by the differential expression on the domain

D(L) =
{

u ∈ W 1
2 (R) : u|(−∞,0) ∈ W 2

2 (−∞, 0), u′(−0) =
i

2
u(0)

}

is closed and maximal symmetric, while the adjoint operator has a wider domain

D(L∗) =
{

u ∈ L2(R) : u(0,+∞) ∈ W 1
2 (0, +∞),

u|(−∞,0) ∈ W 2
2 (−∞, 0), u′(−0) =

i

2
u(0)

}
.

The maximal symmetric operator L was considered in [11] as an example of the Schrödinger operator
degenerate on a half-line. Such an operator is not a generator of the semigroup e−itL, t ≥ 0, in the space
H , but its adjoint is a generator of the contracting semigroup e−itL∗

, t ≥ 0, in H (see [11]).
A regularization of such an operator L is a one-parameter family of self-adjoint operators given by the

differential expression

Lεv(x) =
∂

∂x

(
gε(x)

∂

∂x
v(x)

)
+

i

2

[
a(x)

∂

∂x
v(x) +

∂

∂x
(a(x)v(x))

]
,
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where gε(x) = g(x) + ε, x ∈ R, ε ∈ E = (0, 1], on the domain

D(L) =
{

u ∈ W 1
2 (R) : u|(−∞,0) ∈ W 2

2 (−∞, 0),

u|(0,+∞) ∈ W 2
2 (0, +∞), (1 + ε)u′(−0) = εu′(+0) +

i

2
u(0)

}
.

The self-adjoint operators Lε are generators of the unitary groups e−itLε , t ≥ 0, for ε ∈ (0, 1]. Then, as
shown in [11], [32], the Cauchy problem

i
d

dt
u(t) = Lu(t), t > 0,

u(+0) = u0,

(4)

admits a blowup phenomenon along the one-parameter family of Cauchy problems

i
d

dt
u(t) = Lεu(t), t > 0, ε ∈ [0, 1],

u(+0) = u0,

for all u0 in the infinite-dimensional subspace H1 =
⋃

t≥0 Ker(e−itL∗
) ⊂ L2(R).

We note that if as the solution space Y , we choose the space Cw([0, +∞), H) of weakly continuous maps
of the half-line [0, +∞) to the space H endowed with the topology of weak convergence in H and if this
convergence is uniform on each interval [0, T ], T > 0, then the Cauchy problem admits a removable blowup
phenomenon, and the generalized sequence {e−itLεu0, ε → +0} of solutions of the regularized problems
converges in Cw([0, +∞), H) to the function e−itL∗

u0, t ≥ 0.
If as the solution space Y , we choose the space C([0, +∞), H) of continuous maps of the half-line

[0, +∞) to the space H endowed with the topology of convergence in the space H and if this convergence is
uniform on each interval [0, T ], T > 0, then the Cauchy problem admits an essential blowup phenomenon,
and the generalized sequence {e−itLεu0, ε → +0} of solutions of the regularized problems does not contain
subsequences converging in C([0, +∞), H) but remains bounded in this Banach space.

If the condition u0 ∈ W 1
2 (R) is satisfied and if as the solution space Y , we choose the space C([0, +∞),

W 1
2 (R)) of continuous maps of the half-line [0, +∞) to the space W 1

2 (R) endowed with the topology of
convergence in the space W 1

2 (R) and if this convergence is uniform on each interval [0, T ], T > 0, then the
Cauchy problem admits a pole-type blowup phenomenon, and the generalized sequence {e−itLεu0, ε → +0}
of solutions of the regularized problems satisfies the condition

lim
ε→+0

‖e−itLεu0‖C([0,+∞),W 1
2 (R)) = +∞.

The Cauchy problems for differential equation (4) can hence exhibit all possible types of blowup of the
solutions depending on the choice of the space where the problem for (4) is posed.

Example 5 (Essential blowup and a multivalued map). In several cases, the Cauchy problem (f,A)
as a point in the domain of the resolving map G is an essential singular point of G with a set of partial
limits Ls(f,A)→(f0,A0)G(f, A) at this point (see [11], [34], [35]). In this case, the Cauchy problem (f,A) is
associated not with a single solution but with either the set Ls(f,A)→(f0,A0)G(f, A) or (if the set of partial
limits is endowed with the structure of a measurable space with a measure) a random variable whose range
coincides with the set M(f0,A0) = Ls(f,A)→(f0,A0)G(f, A).
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We now consider an example of a problem admitting an essential blowup phenomenon. We recall that
a set Γ ⊂ H × H is called a strong (or weak) graph limit of a sequence {Ln} ranging in the set Cl(H) of
closed linear operators in a Hilbert space H , (u, v) ∈ Γ, if and only if there is a sequence {un} of elements
of H such that un ∈ D(Ln) for each n ∈ N and ‖un − u‖ → 0, and ‖Lnun − v‖ → 0 as n → ∞ (or the
sequence {Lnun} weakly converges in H to a vector v as n → ∞).

For each closed operator A in the Hilbert space H , we define the function on the set Cl(H) of closed
operators

δA(L) = sup
u∈ΓA, ‖u‖=1

dist(u, ΓL),

where ΓA and ΓL are closed subspaces of H = H × H that are graphs of the operators A and L (see [38]).
For each ε > 0, we call the set of operators L ∈ Cl(H) such that δA(L) < ε an ε-neighborhood of A ∈ Cl(H).
We let τΓ denote the least topology in Cl(H) that contains all such neighborhoods.

The sequence {Ln} of self-adjoint operators in a Hilbert space H is called a self-adjoint regularization
of a symmetric operator L if the strong graph limit of this sequence contains the graph of the operator L
(each of such sequences converges to L in the topology τΓ).

Theorem 2. If an operator L is a symmetric operator in a Hilbert space H with finite indices

(n−, n+) : n− = n+ = n ∈ N, then for any self-adjoint regularization {Ln} of L in the topology τΓ,

the condition

G(u0,L) = LsLε→L(e−iLεtu0) =
⋃

Lσ∈Σ(L)

e−iLσtu0

is satisfied, where Σ(L) is the set of self-adjoint extensions of L.

The assertion of this theorem follows from Theorem 9.5 (also see Corollary 9.5) in [11]. Theorem 2
provides a sufficient condition for Cauchy problem (4) to be a discontinuity point of essential type for the
resolving map.

4. Averaging of approximating regularizations and extension of
the solution

The notion of a statistical solution was proposed (see [39], [40]) for problems for differential equations
such that the uniqueness of their solution was either absent or not established. In this case, instead of the
Cauchy problem for a function defined on an interval and ranging in a Banach space H of the problem,
it was proposed to consider the Cauchy problem for a function defined on an interval and ranging in the
space of measures on H or to consider a problem for the measure on the space of maps of an interval to H .
We use a different approach where the Cauchy problem itself is considered as a random variable ranging
in a space B(Y, X). In some cases, we can average random solutions and define the solution extension in
terms of their mean value. The method for averaging random variables that range a set of one-parameter
semigroups was developed in [20]. To apply this method to differential equations with an essential blowup
of their solutions, we first repeat necessary definitions and assertions given in that paper.

4.1. Random solutions and sets of solutions. Let E be a topological space and 2E be the algebra
of all subsets of E. For each point ε0 ∈ E, we let W (E, ε0) denote the set of all nonnegative normalized
finite-additive measures on a measurable space (E, 2E) that are concentrated in an arbitrary neighborhood
of ε0 in the sense that for any μ ∈ W (E, ε0), the equality μ(A) = 0 holds for any set A ⊂ E for which ε0 is
not a limit point and in addition μ({ε0}) = 0.

We generalize the definition of a random variable as follows. A random variable is a measurable map
of a space with a finite-additive nonnegative normalized measure (Ω,F , μ) into a measurable space (T,A)
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(i.e., the preimage of any element of the algebra A is an element of the algebra F , in which case A is not
a sigma-algebra and the measure μ is not sigma-additive). Speaking about a random variable ranging in a
topological space (T, τ), we assume that the space T is equipped with an algebra of subsets Aτ generated
by the topology τ and that this is the least algebra with the topology τ (i.e., contains all open sets of (T, τ),
in which case it is possible that not all Borel sets enter Aτ because it is not a sigma-algebra).

Let 2Z be the sigma-algebra of all subsets of the topological space of problems Z. Let W (Z) be the set
of nonnegative normalized finite-additive measures on the measurable space (Z, 2Z). For each z0 ∈ Z, we
let W (Z, z0) denote the set of measures μ ∈ W (Z) such that μ({z0}) = 0 and μ(A) = 0 for any set A ∈ 2Z

from which the point z0 is isolated in the topology τZ .
In the topological space (2Y , τH), we define the algebra AY as the least algebra containing all ε-

neighborhoods of all points of the space 2Y in the pseudometric ρH .

Definition 4. The random set of solutions of a problem z0 ∈ Z is a random variable G defined on the
measurable space with a measure (Z, 2Z , μ) such that μ ∈ W (Z, z0) and ranging in the measurable space
(2Y ,AY ).

This definition is a generalization of the traditional definition of the solution of problem (1) (as a partial
preimage of the vector f under the map A) in the following sense.

Theorem 3. If the map G is continuous at a point z0 ∈ Z and G(z0) = y0 ∈ Y , then

μ({z ∈ Z : ρH(G(z), {y0}) > ε}) = 0

for any μ ∈ W (Z, z0) and any ε > 0.

Proof. Because the map G is continuous at z0, the preimage of any ε-neighborhood of the point y0

in the space 2Y is in the topology τZ and contains z0 and a limit point in the topology τZ of the set
G−1(Oε({y0})). In this case, the preimage of any neighborhood Oε(A), ε > 0, A ∈ 2Y , in the space 2Y

is measurable in the space (Z, 2Z), and the measure of the preimage of any ε-neighborhood of the point
A ∈ 2Y is equal to unity if this neighborhood contains the point {y0} or to zero if this neighborhood is
isolated from y0. Therefore, by the definition of the set W (Z, z0), the measure of any such preimages of the
ε-neighborhood of {y0} ∈ 2Y is equal to unity. The theorem is proved.

Remark 2. Thus, a random variable G defined on a measurable space with a measure (Z, 2Z , μ) and
ranging in the measurable space (2Y ,AY ) takes values with probability one in an arbitrary ε-neighborhood
of the point y0. In this sense, the definition introduced above is a generalization of the notion of a solution
of the problem z0 ∈ Z.

But if the initial problem z0 ∈ Z has no solution (see Examples 3 and 4), then the role of the solution
is played by a random set of solutions with a measure chosen in the class W (Z, z0).

In what follows, we study random sets of solutions and their averaging in the following situation in
detail. Let z0 ∈ Z be a problem of the evolution equation and E ⊂ Z be a set of problems such that z0 ∈ E

and the problem z determines a strongly continuous semigroup of transformations of the Hilbert space H

for each z ∈ E \ z0 (see Example 4). In this case, if the support of the measure μ is in the set E, then the
random set of solutions G becomes a random solution, and it is meaningful to consider a random variable
ξ : E → C(R+, B(H)) ranging in the set of semigroups of bounded transformations of the space H (see
Example 4). The random semigroups and their expectation values are studied in Sec. 4.2.
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4.2. Random semigroups, their expectation values, and iterations. Let Y be a Banach space
and Λs = Cs(R+, B(Y )) be a topological vector space of strongly continuous operator-valued maps of
the half-line R+ = [0, +∞) to the Banach space B(Y ) of bounded linear operators defined everywhere in
Y . On the space Λs, we define a family of functionals acting on an arbitrary element z ∈ Λ by the rule
Φt,A,g(z) = sups∈[0,t] ‖z(t)A‖, t ∈ R+, A ∈ Y . On the space Λs, we also consider the topology τs generated
by the family of functionals Φt,A, t ∈ R+, A ∈ Y .

Definition 5. A random semigroup is a measurable map ξ of a space with a measure to a linear
topological space Cs(R+, B(Y )) whose values are one-parameter semigroups.

Definition 6. The expectation value of a random semigroup ξ is an operator-valued function of a
parameter of the semigroup whose value at each point t is equal to the Pettice integral over the measure μ

of the map E → B(Y ) acting by the rule ε → ξε(t), ε ∈ E:

Fμ(t) = M[ξ](t) ≡
∫

E

ξε(t) dμ. (5)

In the study of the Cauchy problem z0 for an evolution differential equation that can be represented
in form (1) and admits an essential blowup phenomenon, the role of the set E is played by a deleted
neighborhood in the topological space S of Cauchy problems for which the problem z0 is a point of the
closure and the Cauchy problem z has a unique solution Y for each z ∈ S \ z0. If the measure μ on the
measurable space (S, 2S) belongs to the set W (S, z0), then the random variable ξ : E → Y is an extension
of the solution of the problem z0 through the blowup origination instant in the sense of Definition 4.

As the set E, we take the set G(X) of all generators of strongly continuous semigroups acting in the
space X ; this set is endowed with the topology τs on the set of strongly continuous semigroups generated
by these generators (see Sec. 9 in [11]). We consider a random variable defined on the measurable space
(E, 2E , μ) with a measure μ ∈ W (E) and ranging in the space Λw = Cw(R+, B(X)) of weakly continuous
maps of the half-line R+ to the Banach space B(X) of bounded linear transformations of the Banach space
X dual to the X∗. On the space Λw, we introduce a family of functionals acting on an arbitrary element
z ∈ Λw by the rule ϕt,A,g(z) = 〈z(t)A, g〉, t ∈ R+, A ∈ X , g ∈ X∗, and define the topology τw generated by
the family of functionals ϕt,A,g, t ∈ R+, A ∈ X , g ∈ X∗. Then the space Λw endowed with the structure
of the minimal algebra Aw of subsets, which contains the topology τw, is a measurable space, and the map
ξ : E → Λw is a random variable. The expectation value of the random variable ξ : E → Λw is called the
Pettice integral, which is given by (5), i.e., an element Mξ ∈ Λw such that

〈Mξ(t)A, g〉 =
∫

E

〈ξε(t)A, g〉 dμ(ε) (6)

for any t ∈ R+, A ∈ X , g ∈ X∗. If the values of the map ξ are uniformly bounded in (ε, t) on the set E × R+,
then the integral is the Radon integral of a bounded numerical function over a finite-additive measure. In
this case, it is well defined, and relation (6) defines a bounded linear transformation Mξ(t) ∈ B(X) for
each t ∈ R+.

Theorem 4. If there is a linear subspace D dense in X and such that the family of maps ξε(t)A ∈
C(R+, X), ε ∈ E, is weakly (or strongly) uniformly Lipschitzian for each A ∈ D and the family of maps ξ

is uniformly bounded, then Mξ(t) ∈ Cw(R+, B(X)) (or Mξ(t) ∈ Cs(R+, B(X))).

The proof of Theorem 4 was published in [20].
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Remark 3. The expectation value of a random semigroup can be not a semigroup. A trivial example
is given by averaging of the set of two unitary semigroups e−it, t ≥ 0, and eit, t ≥ 0, acting in a one-
dimensional Hilbert space C. The half-sum of these two semigroups is a one-parameter family F (t), t ≥ 0,
of transformations of the space C acting as the operator of multiplication by the number cos t. But because
cos(t + s) 	= (cos t)(cos s), the family of averaged transformations F (t), t ≥ 0, is not a semigroup.

4.3. Averaging of random semigroups by Chernoff’s iterations. Following [41], we use the
equivalence relation for operator-valued functions on the space Π of strongly continuous operator-valued
functions F : [0, +∞) → B(X) such that F(0) = I.

Definition 7 [20]. We say that operator-valued functions F and G acting from a closed right half-
neighborhood of zero on the number axis into the Banach space B(X) of bounded linear operators acting
in a Banach space X are equivalent in the Chernoff sense if the condition

lim
n→∞

sup
t∈[0,T ]

∥∥∥∥
((

G
(

t

n

))n

−
(
F

(
t

n

))n)
u

∥∥∥∥ = 0

is satisfied for each T > 0 and each u ∈ X .

Theorem 5 [20]. Let {Ln} be a sequence of generators of strongly continuous contracting semigroups

in a Banach space X . Let {μn} be a sequence of nonnegative numbers such that the sum of the series

composed of these numbers is equal to unity. We assume that there is a linear subspace D ⊂ H that is

an essential domain of each of the operators Ln, n ∈ N, and satisfies the condition that the number series∑∞
n=1 μn‖Lnx‖ converges for any x ∈ D. Then, if the operator S defined on the space D by the expression

Sx =
∑∞

k=1 μkLkx can be closed and if its closure is a generator of the strongly continuous semigroup etS,

t ≥ 0, then the expectation value of the random semigroup Fμ(t) =
∑

n∈N
etLnμn, t ≥ 0, is equivalent in

the Chernoff sense to the semigroup etS, t ∈ R+.

Corollary 1 [20]. If {Lj} is a uniformly bounded sequence of operators in the space B(X), then

Theorem 5 holds.

Therefore, by Corollary 1, the operation of averaging of generators of semigroups, defined by Theorem 5,
is a generalization of the operation of averaging of bounded linear operators in the Banach space B(X).

Definition 8. We say that the generator of a strongly continuous semigroup L is the integral of
the function L(ε), ε ∈ E, ranging in the set of generators of strongly continuous semigroups, over a
nonnegative normalized measure μ on the algebra 2E in the exponential sense if the operator-valued function
G(t) =

∫
E

etL(ε) dμ(ε) (where the integral is understood in the Pettice sense), t ≥ 0, is equivalent in the
Chernoff sense to the semigroup etL.

We say that the generator of a strongly continuous semigroup L is the sum of generators of strongly
continuous semigroups p1L1 and p2L2 for arbitrary p1 ≥ 0, p2 ≥ 0, p1 + p2 = 1, in the exponential sense
if the operator-valued function G(t) = p1e

tL1 + p2e
tL2 , t ≥ 0, is equivalent in the Chernoff sense to the

semigroup etL.
The sum of operators is commutative, and the zero operator is the zero element. The associativity of

the operation of summation must be studied; Corollary 1 gives sufficient conditions for the associativity
p1L1 + (p2L2 + p3L3) = (p1L1 + p2L2) + p3L3.
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Corollary 2 [20]. If the sequence of iterations Gn(t) = [Fμ(t/n)]n, n ∈ N, converges to the expecta-

tion value Fμ of a random semigroup Uε, ε ∈ E, uniformly on each interval of the half-line R+, then the

expectation value of the random semigroup Fμ( · ) is equivalent in the Chernoff sense to the semigroup V( · )
whose generator is a generalized exponential average of the generators Lε, ε ∈ E, of the random semigroup.

4.4. Examples of applying random semigroup averaging to the approximation of initial
boundary-value problems admitting an essential blowup. Regarding a Cauchy problem as a point
z0 in the topological vector space Z and choosing a measure on the topological space Z allows associating
a Cauchy problem admitting an essential blowup of the solution set with the following objects:

1. a random transformation of the space of initial data,

2. an averaged transformation of the space of initial data,

3. the Feynman–Chernoff iterations of an averaged transformation, and

4. the limit (or set of limit points) of the Feynman–Chernoff iterations of an averaged transformation.

For example, the choice of a measure on the space of approximating operators in the class W (E, 0) (see
Sec. 4.1) associates the Cauchy problem for the Schrödinger equation with degeneration on one of the half-
lines (see Example 4) with a random solution such that its expectation value is a solution of the Cauchy
problem with the adjoint operator. The choice of a measure on the space of approximating operators in the
class W (E) associates the Cauchy problem for the Schrödinger equation on two half-lines with a random
solution whose expectation value is a solution of the Cauchy problem for the Schrödinger equation with a
generating operator coinciding with one of the self-adjoint extensions of the operator L.

A Cauchy problem admitting an essential blowup of solutions thus generates a random transformation
of the space of initial data that can be averaged according to Definition 6 and whose generating operator
can be averaged according to Definition 8, and the result of averaging can be illustrated by Example 6 given
below.

We consider a generalized sequence of Hamiltonians Lε, ε → +0, converging in the topology of
strong graph-convergence to the limit Hamiltonian L (such a sequence was considered in Example 4; also
see [11], [32]).

Example 6. Let L be the maximal symmetric operator in a Hilbert space H . We assume that a
nonnegative normalized pure finite-additive measure μ is chosen on the set N and a sequence of self-adjoint
operators {Ln} satisfies the condition that its strong graph limit Γ contains the graph ΓL of the operator
L (as in Example 4). In this case, if the indices (n−, n+) of the operator L satisfy the condition n+ = 0,
then the sequence of semigroups e−itLn , t ≥ 0, converges in the strong operator topology to an isometric
semigroup e−itL, t ≥ 0, uniformly on each interval. We then have

e−itL =
∫

N

e−itLn dμ(n), t ≥ 0.

And if n− = 0 (as in Example 4), then the sequence of semigroups e−itLn , t ≥ 0, converges in the weak
operator topology to a contracting semigroup e−itL∗

, t ≥ 0, uniformly on each interval. We then have

e−itL∗
=

∫
N

e−itLn dμ(n), t ≥ 0.

Therefore, for any choice of a nonnegative normalized pure finite-additive measure μ on the set N, the
equalities L =

∫
N
Ln dμ(n) if n+ = 0 and L∗ =

∫
N
Ln dμ(n) if n+ > 0 hold in the sense of Definition 8.
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Example 6 also shows that the type of the blowup of solutions of the Cauchy problem for Eq. (4)
depends on the spectral properties of the generating operator of the Cauchy problem L.

Remark 4. If a sequence of self-adjoint operators {Ln} satisfies the condition that its strong graph
limit Γ contains the graph ΓL of the maximal symmetric operator L or coincides with it, then this does not
mean that the common domain D =

⋂
n∈N

D(Ln) is dense in the space H and the manifold D can even be
trivial.
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