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PHASE SPACE OF A GRAVITATING PARTICLE AND DIMENSIONAL

REDUCTION AT THE PLANCK SCALE

A. N. Starodubtsev∗

Several approaches to quantizing general relativity suggest that quantum gravity at very short distances

behaves effectively as a two-dimensional theory. The mechanism of this dimensional reduction is not

yet understood. We attempt to explain it by studying the phase space of a test particle coupled to

a gravitational field. The general relativity constraints relate the particle energy–momentum to some

curvature invariants taking values in a group manifold. Some directions in the resulting momentum space

turn out to be compact, which leads to a kind of “inverse Kaluza–Klein reduction” at short distances.
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1. Introduction

Various approaches to quantum gravity indicate that space–time becomes effectively two-dimensional at
the Planck scale. These include “causal dynamical triangulations” [1], the “asymptotic safety scenario” [2],
and several others. We do not describe them in detail here and suggest [3] for a review. These approaches
were applied to (2+1)-, (3+1)-, and (sometimes) higher-dimensional gravity, and the number of microscopic
space–time dimensions has always reduced to two.

While evidence for dimensional reduction provided from several independent sources may seem con-
vincing, we still lack an intuitive picture of the mechanism behind this reduction. Approaches to quantum
gravity that rely on universality and/or numerical methods leave this mechanism obscured.

Attempting to visualize the disappearance of some space dimensions, we adopt the most intuitive
definition of dimension. We place a test particle in space. The dimension of the space is then the number
of degrees of freedom of the particle.

If general relativity and a test particle coupled to it are the only ingredients in our theory, how can a
change of space dimensionality possibly occur? An external gravitational field can wrap some of the space
dimensions in which the particle propagates. This is the well known Kaluza–Klein reduction, but it occurs
at large scales. The external gravitational field has no effect at small scales.

The only option that remains is to take the gravitational field created by the test particle itself into
account. This field is usually neglected, which is acceptable for most practical applications. It was first
noted by Bronstein in 1935 [4] that if we make a measurement at the Planck scale, then we cannot neglect
the gravitational field created by this measurement. This back reaction effect limits the scales at which a
measurement can possibly be made.

The main difficulty is that the above effect is not seen in the perturbation theory. Not surprisingly,
the approaches to quantum gravity listed in [3] that predict dimensional reduction at short distances are all
nonperturbative. It is therefore natural to start studying this effect in the framework of an exactly solvable
theory.
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In Sec. 2, we summarize the results in (2+1)-dimensional gravity coupled to point particles previously
obtained by several authors [5], [6]. The theory is exactly solvable, and the result of the back reaction of
the gravitational field on a particle is that such a particle has a curved momentum space. The momentum
space curvature is constant, its radius is determined by the Planck energy, and one of the three dimensions
in the momentum space is compact.

In Sec. 3, we extend some of these results to (3+1)-dimensional gravity coupled to a single point particle.
Although the whole theory is not exactly solvable, it suffices for our purposes to study one particular known
solution. The momentum space of the particle is again curved. It is again a space of constant curvature,
but its curvature radius now depends on the particle position in coordinate space, namely, on the distance
to the origin. For a fixed distance to the origin the curvature radius of the momentum space is the energy
scale such that this distance is the Schwarzschild radius. Only two of the four dimensions in this momentum
space are noncompact.

2. Momentum space of a particle coupled to 2+1 gravity

The 2+1 gravity is a Chern–Simons theory for the ISO(2, 1) group. Let 〈 · 〉 be a skew bilinear form that
mixes translational and Lorentzian parts of the iso(2, 1) algebra. Below, A is the ISO(2, 1) connection,
K is a fixed iso(2, 1) algebra element whose conjugacy class fixes the particle mass and spin, h is an
ISO(2, 1)-valued variable, and γ represents the particle worldline. The action of gravity coupled to the
particle is

S = κ

∫
M

〈
A ∧ dA +

2
3
A ∧ A ∧ A

〉
+

∫
γ

〈h−1 dAh K〉, (1)

where dA is the covariant external derivative with the connectivity A. From this, we can derive the constraint
equation

C = κF (A) − hKh−1δ2(x − xp) = 0.

Applying the non-Abelian Stokes theorem [7] to the last equation, we can relate the extrinsic charge K to
the value of the Wilson loop g around the particle worldline,

heK/κh−1 = g.

We can also obtain the effective action for the particle taking the gravitational back reaction into
account [6], [8]. For this, the solution of the constraints

A = γ(Kdφ + d)γ−1, γ(x0) = Id, γ(xp) = h,

is inserted into the action
S = κ

∫
M

〈AȦ〉 +
∫

γ

〈h−1ḣK〉 +
∫
¬M

〈A0Ȧ0〉,

where the last term is the boundary action in which A0 is the flat connection and ¬M is the completion of
M to the whole space. The result is

S = κ

∫
Tr(xu−1u̇),

where u is the Lorentzian part of g and x is the translational part of h. It can be seen that u plays the role
of momentum and is an element of SO(2, 1). It satisfies the mass-shell condition

Tru − cos
m

κ
= 0.

The SO(2, 1) group manifold has one compact dimension, which is a spatial rotation.
The constructions considered in this section have been studied in detail and generalized in the frame-

work called “doubly special relativity” [9].
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3. The (3+1)-gravity results

What obstacles could we expect in extending the above results to 3+1 gravity? First, 3+1 gravity
has infinitely many degrees of freedom, gravitational waves. But gravitational waves do not appear if we
consider a situation with one freely moving particle. In other words, we can consider a “minisuperspace”
model obtained from gravity by freezing all but a finite number of degrees of freedom. The degrees of
freedom remaining unfrozen are the particle position with respect to a chosen origin.

The second problem is that unlike in two spatial dimensions, a point particle in three-dimensional
space does not seem to select a topologically distinct Wilson loop that would contain information about
the particle momentum. Such a loop in fact exists, but we must manipulate the solution in order to see
this explicitly. This can be done most naturally in the framework of the pure gauge formulation of 3+1
gravity. This is MacDowell–Mansouri formulation [10], which is somewhat analogous to the Chern–Simons
formulation of 2+1 gravity, but it works only for a nonzero cosmological constant (for definiteness, we
choose it positive here).

Let AIJ be an SO(4, 1) connection, where capital indices I, J, . . . take the values 0, 1, 2, 3, 4, and vI be
a SO(4, 1) normalized 0-form vector. The particle is introduced into the theory analogously to 2+1 gravity
in (1), but h and K are now SO(4, 1), and we have the ordinary trace instead of the skew bilinear form 〈 · 〉.

The action for gravity coupled to the particle is then

S =
l2

8πG

∫
εIJKLMF IJ(A)vK ∧ FLM (A) + λ(vIvI − 1) +

∫
γ

Tr(h−1 dAhK), (2)

where F IJ(A) is the curvature 2-form of the connection A. The second term in (2) is the normalization
condition for vI , introduced with a Lagrangian multiplier. The last term is the particle action. In (2),
l = 1/

√
Λ is the cosmological length.

The first term in (2) reduces to the Cartan–Weil action for gravity with a cosmological constant plus
the Euler term by change of notation. We introduce a connection ωIJ with respect to which vI is covariantly
constant, dωvI = 0. Its curvature RIJ(ω) is an SO(3, 1) curvature in the subgroup that leaves vI stable
because RIJ(ω)vI = 0. We then introduce the tetrad

eI = l dAvI .

This is indeed a tetrad because eIvI = 0. The SO(4, 1) connection can then be decomposed as

AIJ = ωIJ − 1
l
(vIeJ − vJeI),

which leads to the curvature decomposition

F IJ = RIJ +
1
l2

eI ∧ eJ +
1
l
(vJ dωeI − vI dωeJ). (3)

Substituting this in (2), we see that the last term in (3), which contains the torsion, does not enter the
action. The first two terms produce the gravity action. In particular, the cross term is the Cartan–Weil
term.
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Varying this action with respect to the time component of A, we obtain the set of constraint equations

dA(εIJKLMvKFLM ) = (hKh−1)IJδ3(x − xp). (4)

Using these constraints, we can try to express the particle energy–momentum, which is the translational
part of the charge in the right-hand side of (4) in terms of some integral characteristics of the geometry.

In what follows, we sometimes use an index-free notation, for example, (εvF )IJ ≡ εIJKLMvKFLM .
We can take an arbitrary ball B containing our particle xp ∈ B, where the reference point is on its

boundary. We take γ(x) ∈ SO(4, 1) such that γ(xp) = h. The charge K can then be expressed as an
integral over the ball:

K =
∫

B

γ−1 dA(εvF )γ. (5)

To convert it to a boundary integral in the general case, we would need something like a “non-Abelian
Gauss theorem,” which unfortunately does not yet exist. But if F is a solution of constraints (4) with a
δ-function in the right-hand side, then there exists a γ such that

K =
∫

B

γ−1 dA(εvF )γ =
∫

∂B

γ−1(εvF )γ (6)

simply because the δ-function is the ordinary divergence of some vector field.
The last expression is reminiscent of the magnetic charge in the Yang–Mills theory [11], where v plays

the role of the Higgs field. But the analogy with the ’t Hooft–Polyakov solution is not complete. First, the
magnetic charge here is matrix-valued because the gauge group is larger than SO(3). We therefore need the
gauge transformation γ(x) in (5) and (6) to place the solution into an SO(3) subgroup of the gauge group.
The second difference is the radial dependence of the Higgs field, which tends to a constant at infinity in
the ’t Hooft–Polyakov solution while vI here has the meaning of the coordinate grid in the de Sitter space.
If we choose the static coordinate system, then it has the form

lv =
(√

l2 − r2 sinh
t

l
, rni,

√
l2 − r2 cosh

t

l

)
, (7)

where i = 1, 2, 3 and ni = xi/|r| is the “hedgehog.” In the particle rest frame, we can seek the solution in
the form

Aij = f(r)(nidnj − nj dni), Ai0 = sinh
t

l
g(r) dni, Ai4 = cosh

t

l
g(r) dni. (8)

Here, the solution is written in the gauge Ar = 0, and f(r) and g(r) are arbitrary functions of r to be
found. But these functions do not appear in the final result. By virtue of the known formula

εijk dni ∧ dnj ∧ dnk = 4πδ3(x), (9)

we must finally obtain the Brouwer degree in (6),

K =
∫

∂B

γ−1(εIJklmnk dnl ∧ dnm)γ, (10)

where γ can be taken constant on ∂B. To cancel the “Higgs field” growth as r in (7), the curvature must
now decrease as 1/r3. It is known that this is indeed the case in the Schwarzschild solution.

We can now use the fact that formula (9) is invariant under arbitrary continuous norm-preserving
transformations of the field ni. Expression (10) can be essentially simplified if we transform ni into a
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constant field on the sphere (“comb the hedgehog”) and move it outside the integral and apply the Stokes
theorem to what remains in the integrand. If this were possible, then the result in (10) would be zero
because the sphere has no boundary. But a transformation from a “hedgehog” to a constant field ni cannot
be made continuous on the whole sphere, because it changes the winding number from 1 to 0. But it can be
made continuous on any open subset of the sphere. We can therefore cut the sphere in half and “comb the
hedgehog” on each of the halves [12] or, alternatively, puncture the sphere and “comb the hedgehog” on the
punctured sphere [13]. The direction in which the constant ni points is the position of the origin (reference
point). We can then apply the Stokes theorem to the curvature integrand in (6) (vI is now constant). But
the integration region has now a boundary with a topologically nontrivial loop around it: the equator in
the first case above or the puncture in the second. Both cases yield the same value of the Wilson loop:

g = h exp
[
εabc02Gm

xc

x2

]
h−1. (11)

In the limit l → ∞, we have xa = (t, xi), g is an element of the SO(3, 1) subgroup, and K = lmT 04.
The momentum space curvature varies with the distance to the origin. For a fixed r =

√
x2, the

curvature radius of the momentum space is the energy for which r is the Schwarzschild radius. Loop (11)
belongs to the conjugacy class of a purely rotational element of the Cartan subgroup. This means that one
boost direction is absent and there are only two noncompact dimensions in the momentum space.

4. Conclusion

We can expect that the curvature of the momentum space will improve the ultraviolet behavior in the
quantum theory of gravity and will even render it renormalizable. This effect is nonperturbative and would
require an exact solution of the theory, which is hardly possible for four-dimensional gravity. An alternative
possibility is to modify the perturbation theory to take the momentum space curvature into account. Such
an approach for three-dimensional gravity coupled to a scalar field was used in [14]. It would be interesting
to extend these results to (3+1)-dimensional gravity.
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