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EXACT TWO-SOLITON SOLUTIONS AND TWO-PERIODIC
SOLUTIONS OF THE PERTURBED mKdV EQUATION WITH
VARIABLE COEFFICIENTS

Ying Huang* and Lin Liang*

We discuss the Darboux transformation method for a modified Korteweg—de Vries equation with variable
coefficients and perturbing terms in detail based on the general form of the Darboux transformations
for some nonlinear evolution equations solvable by the Ablowitz—Kaup—Newell-Segur inverse scattering

method. We use this method to generate families of two-soliton solutions and two-periodic solutions.

Keywords: Darboux transformation, perturbed mKdV equation, two-soliton solution, two-periodic solu-
tion

1. Introduction

It is commonly acknowledged that the most powerful perturbation technique is based on the inverse
scattering transformation (IST). This technique requires that the unperturbed equation be exactly solvable
by the IST, which restricts the range of applications but allows solving the most sophisticated dynamical
problems. Equations exactly integrable by the IST have many remarkable properties, such as the Darboux
transformation, the Painlevé property, and the Hirota bilinear form. Some of these properties, for example,
the Hirota bilinear form and the Darboux transformation [1], [2], have been used as bases for obtaining
exact multisoliton solutions.

The perturbed modified Korteweg—de Vries (mKdV) equation

Pt + 6p2pz + Przz = €f(p)a (1)

where € is a small perturbation coefficient, is encountered in the theory of quasi-one-dimensional solids and in
liquid-crystal hydrodynamics [3], [4]. Being a perturbation of the mKdV equation, the perturbation-induced
effects are interesting mainly because they represent physical phenomena that cannot be encompassed by
exactly integrable models.

Here, we consider a perturbed mKdV equation

Dt + a(szpm + Pazz) = €f1(p), (2)

where a = a(t), € = €(t), and fi1(p) = (Praza + 10p*pzz + 10pp2 + 6p°),. This equation is called the
perturbed mKdV equation with variable coefficients; the perturbing term €(¢) f1(p) with a time-dependent
e(t) of either sign is also physically meaningful [3]. Especially, if a = 1 and € is a common constant rather
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than a perturbing coefficient, then Eq. (2) is called the fifth-order mKdV equation. We note that many
exact solutions of the fifth-order KdV equation were constructed [5]-[11], and significant analytic results for
the perturbed KdV equation were obtained [12]-[16], but there has been very little research into the fifth-
order mKdV equation or the perturbed mKdV equation. Only series reduction solutions for the perturbed
mKdV equation with a weak fourth-order dispersion and weak dissipation have been derived [17].

2. Darboux transformation of the perturbed mKdV equation
with variable coefficients

Some Darboux transformations of the 2x2 Ablowitz—Kaup—Newell-Segur (AKNS) system were derived
in [18]. The researchers noted that a class of nonlinear evolution equations

1 Qo
— ’ dapp) =0 3
o 4((p>m+ap>w )
are the compatibility condition for the AKNS system
Ap
O, =UP = D, (4a)
—p =\
A B
O, =V = D, (4b)
c -A
where A is the spectral parameter, A, B, and C are scalar functions of a;, i = 0,1,...,n, and U and V'
must satisfy the equation
U —V,+[U,V]=0. (5)

If & = ®(x,t,\) = (g;) is the general solution of system (4), then the map

/ P1¥2
P =p+4\
o1 + ©3

(6)

A=A1

is called a Darboux transformation, and p’ is a new solution generated from the old solution p. Furthermore,

2 _ 2
1 A= M (p; + 903 —2A ;plfz 2 $1
(a1, )) = ( ) = G T oL, e ( ) (7)
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is the general solution of the AKNS system for p’, and
" / @1@2
pl=p +4X T (8)
71+ 23 o
becomes a new solution based on p'.
We can derive some relations from (5):
Ag = p(B + C),
Pt — Bw — 2pA + 2\B = 0, (9)

pt + Cyp + 2pA 4+ 2XC = 0.
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With (9), we further obtain
Az
B+C= 7,
p

(10)

B_co (B+Oa+apd

2\

If we set n =2 and A = E?:o a;jA5727 then from (10), we obtain

2
5 . i .
B = E J71/\5—2j 4 |:O[p—|— < J>E> :|)\4—23},
: 0{ 2p ! p ),

2
i = o Qg Y
o= 3= fon () ¥

J

where a , = da; /0. Substituting A, B, and C in (9) and setting the coefficients of 7, j = 0, 1,2 to zero,
we obtain the set of differential equations

Qp,x = 0, Q1,0 = QPP (11)

1 a1,z
= ’ 4 . 12
“ 44( P )IJF alpL 12)

Taking ap = 16¢ and a; = 8¢p? — 4a as a pair of particular solutions of (11) and substituting oy in (12),
we obtain

and

Q2.5 = Ap(Pras + 6ep*py — apy). (13)

This is a solvable ordinary differential equation, and its particular solution can be taken in the form
_ 2 4 2
o = 4eppg. — 2epy, + 6ep™ — 2ap”. (14)

Substituting (13) in (3), we finally obtain Eq. (2), and substituting «; and o4, j = 0,1,2, in A, B, and
C, we also obtain system (4b) in the form

16eX® + A3 (8ep? — 4a) + \ 16 \%ep + 8X\3ep, + I
(I) :< € (8ep? —4a) + 2\Q €p ep 5 (15)

—16M*ep + 8\ 3ep, + J —16eX5 — \3(8ep? — 4a) — \Q

where

Q = 4eppua — 2ep’ + 6ep” — 2ap?,

I = 4\ (eppy + 2ep® — ap) + 2M(€Ppan + 6€p*pe — aps) +
+ Pozze + 106D’ pag — aPae + 10epp? + 6ep® — 2ap”,

J = —4X*(epas + 26p” — ap) + 2\ (€Paas + 6ep’pr — apy) —
— Dazzz — 10€p* Dy + apre — 10epp? — 6ep® + 2ap.
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3. Exact solutions of the perturbed mKdV equation with variable
coefficients

We take p = pg, where py is an arbitrary constant, as the initial solution of Eq. (2). From (4a) and (15),
we obtain the related AKNS system

A
>, — Pl g,
—po  —A

(16)
4 2 2 4 2 A Po
Dy = [16eA™ + 4X*(2ep; — a) + 6epy — 2apg] D.
—po  —A
Obviously,
Oy = [16eA? + 4N (2ep? — a) + 6epy — 2api] D,
If we set

E=a+ /[166/\4 + 4AN2(2ep? — a) + 6epy — 2apd] dt + co,

where ¢ is an arbitrary constant, then system (16) and the system

A Po
b, = (0]
¢ <_p0 _A> (17)

have exactly the same solutions. By the eigenvalue method, we obtain two different general solutions of

system (17),
(%’1) _ ( ct(A+ /A2 — pR)e" — capoe ™

B —ci1poe + ca( A + \//\2 —pdle "

P2

and also
<¢1> < c1(Acos O — \/p? — X2sin6) — capg cos

) OS A< Po|, 19
o —01p06059+02()\cos6‘+\/pg—AZSin9)> AL < Ipol (19)

where n =n(\) = \/)\2 —p3&, 0=0(\) = \/p% — A2, and ¢ and cp are arbitrary constants.
The next step is to construct new solutions. For simplicity, we set 7, = n()\;) and 0; = 0()\;), where
i =1,2. From (18), we obtain

prp2 = (A + \//\2 —p3)[2Acico — pg(cfez’7 + 036_2”)] =

1
A+/A2 =p2)(A —pocosh2n), c=co=
A+ /A2 = p2)(=\ —pocosh2n), ¢ = —cy = v
Gt 3 =20+ A A + ) — appees] =
2\ + /A2 — p2)(Acosh 2 — pg), ¢ =co = \}2,
- : (21)
2(A + /A2 — p2)(Acosh2n +pg), ¢1 = —ca2 = 2’
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and

03— 03 = 2/ — RO+ (N — ) (e — e ) =

1
=2\/)\2—p(2)()\—|- \//\2 — p3) sinh 21, c1 =+ =

V2
Substituting p = po and (20) and (21) in (6), we obtain new soliton solutions of Eq. (2):

2)\% — pg — /\1p0 cosh 27]1

A
p1= A1 cosh 2 — po

and ) )
r_ Po — 2/\1 — /\1p0 cosh 27]1
P2 A1 cosh 211 + po ’

Similarly, from (19), we obtain
P12 = [crca(N + p3) — Apo(c? + c3)] cos® O +

+ c1e2(A\? — p3) sin? 6 —l—po\/pg — A2(c3 — c3) cosfsinf) =

1
I vy (23)
— (A+ A+ pgcos20), ¢ = —co = ,

2( po)( Po ) 1 2 V2

P2+ 2 = [(C% + AN+ pg) — 4Apocics] cos? 6 + (pg — M) sin? 0 =

1
2(/\—p())(>\—p()cos20), €1 = ¢y =

1
(po — N)(po — Acos26), c¢1 =co= v’

+ A + Acos20), ¢ = —co= ,
(po + A)(po ), a 2=

and
&~ 6 = (& — )N — p}) cos20 + [2ercapo — A + B))y/pE — A2sin20 =

1
—\/p%—)\z(x\—po)sin%, Cc1=cCy = 2’

—/P2 = A2(X\+pg)sin20, ¢ =—co= |, .
\/po ( 7o) 1 2 2

Substituting p = po and (23) and (24) in (6), we obtain new periodic solutions of Eq. (2):

p, _ 2)\% — p% — /\1p0 COS 201
3 )\1 COS 291 — Po

and
pg — 2/\% — )\1p0 COS 201

I
Py = A1 cos 2601 + po

Multiple wave solutions of nonlinear evolution equations are generally very complicated, and we there-

fore first construct the related formal solution. For convenience, we set ¢} = @i|x=x, and ¢! = ©i|x=r,,

where 1 =1, 2.
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With (7) taken into account, the formal solution of the AKNS system associated with p’ is given by

1y 1 Ao1(ef +¢5) = M1 (0 — 7)) — 2\1p1020% (26)
p2)  PTHOF \Mpa(@ + 0F) + Mo (9 — ) — 2\p109¢)
which implies
P1P2
Arg 17 =
e N
_ A
IR
X{ (A3 =A@t (7 + 95)* + BAP o N
(A3 + AP + 08) (@12 + 952) = 22X 02 ( — ¢B) (012 — ©52) — 8N day phel ¥
2210105 (P — 05) (1% — ¥5%) = 201 9105 (P + 95 ) (1% + 5?) } (27)
(A3 + A (9 + o) (1% + 95) = 2002 (0 — ¢8) (91 — ¢5?) — 8Ai dai phe
At the same time, combining (6) and (8) leads to
’ol - =
1 P1¥2 P1p2
P =p+4h +4Ny T .
O + oF @1 + P35 e,
Substituting (27) in this formula, we obtain
- AT = M) apioh (02 + 905%) = X D5 (0 + )] (28)

(AT +A3)(e7 + 92) (1% +95°) = 20 ha(@f — 05 ) (91 — ¢5%) — 8\ oyl bl
Again substituting p = po and (20)—(22) in (28), we finally obtain the two-soliton solutions of Eq. (2)

Pl =po+

2(A2 — A2)[A1 (A1 — po cosh 211) (A2 cosh 219 — po) — A2(A1 cosh 21 — po) (A2 — po cosh 272)]
p(A1 cosh 211 — po) (A2 cosh 23 — pg) — vk sinh 25y sinh 219 — (A1 — pg cosh 211 ) (A2 — pg cosh 2n3)’

Py = po+

2(A2 — A2)[A1 (A1 — po cosh 21 ) (A2 cosh 2na + po) + A2(A1 cosh 21 — po) (A2 + po cosh 21)]
p(A1 cosh 21 — po) (A2 cosh 22 + pg) — vk sinh 27y sinh 279 + (A1 — po cosh 211 ) (A2 + po cosh 272)”

/!
P3 = Po —

0 2(A = A9) M (A1 + po cosh 2m1) (A2 cosh 21 — po) 4 A2 (A1 cosh 21 4 po) (A2 — po cosh 212)]
p(A1 cosh 2m; + po) (A2 cosh 212 — pg) — vk sinh 25y sinh 219 + (A1 + po cosh 211 ) (A2 — pg cosh 2n3)’

Py =po—

2(A2 — A2)[A1 (A1 + po cosh 211 ) (Mg cosh 2m9 + po) — A2(A1 cosh 211 + po) (A2 + po cosh 272)]
p(A1 cosh 211 + po) (A2 cosh 212 + pg) — vk sinh 29y sinh 219 — (A1 + po cosh 211 ) (A2 + pg cosh 2n3)’

where 1 = A2 + A3, v = 2\ \o, and k = \/A} — p2\ /A3 —p2, [Ni| > pol >0, =1,2.
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Because (28) is applicable in the case where 0 < |A| < |po|, similarly, using (23)—(25) and (28), we can
obtain two-periodic solutions of Eq. (2):

” 2(/\% — )\%)[/\1 (/\1 — Po COS 291)()\2 COS 202 — po) — /\2 ()\1 COS 201 — po)(/\g — Po COS 202)]

Ps =Po+ p(A1 cos 2601 — po) (A2 cos 205 — pg) — s sin 26 sin 202 — v(A1 — po cos 261) (A2 — po cos 262)’
v 2(A7 — A3)[A1 (A1 — po cos 2607) (A2 cos 202 + pg) + A2(A1 cos 201 — po) (A2 + po cos 262)]

Ps = Po (A1 cos 201 — po)(Ag cos 202 + po) — s sin 207 sin 205 + (A1 — po cos 201 ) (A + po cos 2603)’
v 2008 = M)A (M 4 po cos 2601) (A2 cos 202 — po) 4 Ao (A1 cos 201 + po) (A2 — po cos 202)]

P7=Po (A1 cos 2601 + po)(Ag cos 202 — pg) — s sin 2607 sin 205 + (A1 + po cos 201 )(Aa — po cos 2603)’

and also

o= p 2(Af — A3)[A1 (A1 + po cos 2601 ) (A2 cos 202 + py) — Aa(A1 cos 261 + po) (A2 + po cos 265)]

8 — PO

(A1 cos 201 + po)(Aa cos 202 + pg) — s sin 207 sin 203 — (A1 + po cos 201)(Aa + po cos 203)’
where s = \/p3 — A2\/p3 — A3, 0 < [\i| < |pol, i = 1,2.
4. Conclusion

In pi — p} and pY — p§, the amplitudes are independent of the perturbation coefficient €, and only
the wave velocities depend on €. This shows that the influence of these small perturbations, including the
dissipative pyyese and the higher dispersion p°p,, is subtler for these solutions: they do not destroy or
change the shapes of the traveling solutions, but they may render a collision of solitons inelastic because
quasilinear waves are emitted.

In particular, if pg = 0, then we can write the two-soliton solution p} as

p// _ 2()‘% - )‘%)()\1 cosh (2 — A2 cosh Cl)
(A2 + A2) cosh ¢ cosh (o — 2A;1 Aa(1 + sinh ¢y sinh (a)’

where
Ci = 20ilpo=0 = 2Niw + /(326A§ —8a\})dt +2\;co, i=1,2.

On one hand, in the case where a = 1 and ¢ = 0, p// is just the known two-soliton solution of the mKdV
equation [18]

On the other hand, if a and € are constants, then ¢; = 2\;z + (32eA] — 8aA?)t + 2\;co, and p!/ becomes
a prototype example for multisoliton solutions describing purely elastic interactions between individual
solitons. This can reveal an important property that these waves interact such that their identities are
asymptotically preserved in the limit. We set h(\;) = 32eA? — 8aA? and assume that h(A2) > h()\1),
A2 > A1 > 0. Because (2 = (A2/A1)C1 + 2X2[h(A2) — h(A1)]t, for a fixed (1, we obtain a pair of asymptotic
soliton solutions

pll ~ —2\1sech({; Fvg), t— Foo, (29)

with vo = tanh ™" (2X\1 Ao/ (A2 + A\2)). Similarly, for a fixed (s, we obtain another pair of asymptotic soliton
solutions
pl ~ 2X\ysech((a £vg), t— Foo. (30)

Using p!/ given by (29) and by (30), we can easily show that the only effect of the interaction of two solitary
waves is a phase shift and the total phase shift experienced by a soliton is exactly equal to the sum of the

1112



partial shifts resulting from separate collisions with each of the solitons involved. In addition, we note that
the phase shift is not changed by any small perturbing terms and has nothing to do with the coefficient a.

It is known that the mKdV equation arises as an approximate equation that holds in a certain asymp-
totic sense. Taking additional physical factors into account, we can obtain different kinds of small per-
turbations of the mKdV equation. Differential system (2) is so detailed that it can well represent the
corresponding physical situations, but analyzing it mathematically may be too difficult because of the
higher nonlinear dispersion terms and the higher spatial dispersion terms. Nevertheless, based on [18], we
discussed the AKNS system of Eq. (2) in detail and constructed some exact double-wave solutions using
the Darboux transformation method.
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