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COMPLETE CLASSIFICATION OF SPHERICALLY SYMMETRIC

STATIC SPACE–TIMES VIA NOETHER SYMMETRIES

F. Ali,∗ T. Feroze,∗ and S. Ali†

We provide a complete classification of spherically symmetric static space–times by their Noether symme-

tries. We obtain the determining equations for the Noether symmetries using the usual Lagrangian of a

general spherically symmetric static space–time and integrate them in each considered case. In particular,

we find that spherically symmetric static space–times are categorized into six distinct classes correspond-

ing to the Noether algebras of dimensions 5, 6, 7, 9, 11, and 17. Using Noether‘s theorem, we also find

the first integrals corresponding to each symmetry. Moreover, we obtain some new spherically symmetric

static solutions.

Keywords: Noether symmetry, static space–time

1. Introduction

The first exact solution of the Einstein field equations was obtained by Schwarzschild and is a spherically
symmetric static solution. For a spherically symmetric space–time, there are exactly three rotational Killing
vector fields preserving the metric, which gives SO(3) as the isometry group of symmetries of these space–
times. The interest in studying spherically symmetric space–times is explained by the help it gives in
understanding the phenomena of gravitational collapse and black holes, widely known in the literature.
For example, the Schwarzschild solution is a nontrivial exact spherically symmetric solution of the Einstein
field equations and describes the gravitational field exterior to a static, spherical, uncharged massive body
without angular momentum and isolated from all other bodies.

Seeking spherically symmetric space–times is an important task, and because they are significant in
understanding the dynamics around black holes, classifying them according to their physical properties is
crucial. It would therefore be interesting to find the general form of these space–times along with a detailed
characterization of the first integrals of the corresponding geodesic equations. Moreover, the quantities
that remain invariant along the geodesics carry significant physical information. Plane, cylindrically, and
spherically symmetric space–times were classified with respect to their Killing vectors, homotheties, Ricci
collineations, and curvature collineations in [1]–[7].

In [8] and also [9], a connection was found between the symmetries of the geodesic equations and
the Killing vectors of the underlying spaces by comparing the Lie algebras of the two sets of symmetries.
The Noether symmetries, being a superset of the Killing vectors, give more information about the invari-
ants/conserved quantities. The Noether symmetries for different space–time metrics were obtained in a

∗School of Natural Sciences, National University of Sciences and Technology, Islamabad, Pakistan,

e-mail: tferoze@sns.nust.edu.pk.
†School of Electrical Engineering and Computer Science, National University of Sciences and Technology,

Islamabad, Pakistan.

Prepared from an English manuscript submitted by the authors; for the Russian version, see Teoreticheskaya

i Matematicheskaya Fizika, Vol. 184, No. 1, pp. 92–105, July, 2015. Original article submitted December 15, 2014;

revised January 28, 2015.

0040-5779/15/1841-0973 c© 2015 Pleiades Publishing, Ltd. 973



series of papers [10]–[12]. Finding a connection between the Noether symmetries and the Killing vectors
was the basic goal in those papers. To establish this connection, the authors of [10]–[12] found the Lie alge-
bra of the Noether symmetries and then compared this algebra with the algebra of isometries. Ali et al. [13]
recently used the symmetry method approach to completely classify the Lagrangians of plane-symmetric
static space–times using Noether symmetries and also presented the first integrals/conserved quantities in
each case.

In differential geometry, a Lagrangian that yields the geodesic equations (in the form of the Euler–
Lagrange equations) is introduced. The Lagrangian can be obtained directly from the line element [14]

ds2 = gab(xc) dxa dxb,

namely,
L = gab(xc)ẋaẋb.

Here, we employ symmetry methods to completely classify spherically symmetric static space–times
according to the Noether symmetries. We then use the famous Noether theorem to write the first integrals
for each space–time. We thus recover all known solutions of the Einstein field equations and the Noether
symmetries together with their first integrals.

The plan of the paper is as follows. In Sec. 2, we give the basic definitions and describe the structure of
Noether symmetries. In Sec. 3, we write the determining equations for spherically symmetric static space–
times, which is a system of nineteen linear partial differential equations (PDEs). We obtain different values
of the metric coefficient, namely, ν and μ, while integrating the PDEs. This yields a complete classification
of spherically symmetric static space–times by Noether symmetries. The corresponding first integrals are
also given in the same section. Section 4 contains the conclusion.

2. Preliminaries

A symmetry

X = ξ
∂

∂s
+ ηi ∂

∂xi
, i = 1, 2, . . . , n,

is a Noether symmetry if it leaves the action

W =
∫

L(s, xi(s), ẋi(s)) ds (1)

invariant up to some gauge function A [14], i.e., under the transformation

s̃ = s + εξ(s, xi),

x̃i = xi + εηi(s, xi),

the action given by (1) becomes

W̃ =
∫

L(s̃, x̃i(s), ˙̃xi(s)) ds,

where L is the Lagrangian, s is the independent variable, xi are the dependent variables, and ẋi are their
derivatives with respect to s. The variation up to the gauge function is

W̃ − W =
∫

DA(s, xi(s)) ds, (2)
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where D is the standard total derivative operator given by

D =
∂

∂s
+ ẋi ∂

∂xi
.

Equation (2) can also be written as
X(1)L + D(ξ)L = DA, (3)

where
X(1) = X + ηi

,s

∂

∂xi

is the first-order prolonged generator. The coefficients ξ and ηi of the Noether symmetry are functions of
s and xi. The coefficients ηi

,s of the prolonged operator X(1) are functions of s, xi(s), and ẋi(s) and are
defined as

ηi
,s = D(ηi) − ẋiD(ξ),

where xi refers to the space of dependent variables.
Using the same identification, we state the famous Noether theorem: If X is a Noether symmetry

of a given Lagrangian L with respect to the gauge function A, then the quantity

I = A −
(

ξL + (ηi − ξẋi)
∂L

∂ẋi

)
,

called a first integral, is annihilated by the total derivative operator, i.e., DI = 0. In other words, cor-
responding to each Noether symmetry, there is a conservation law/first integral [15], for example, the
generators of time translation ∂/∂t and rotation ∂/∂θ respectively give conservation of energy and angular
momentum.

The general form of a spherically symmetric static space–time is [3]

ds2 = eν(r)dt2 − eμ(r)dr2 − eλ(r)dΩ2, (4)

where dΩ2 = dθ2 + sin2 θ dφ2 and both ν and μ are arbitrary functions of the radial coordinate r. (In
particular, for spherically symmetric space–times, the dependent variables are (t, r, θ, φ) for xi, i = 0, 1, 2, 3.)
It can be seen that eλ(r) can have one of two forms: β2 or r2, where β is some constant [2] (we absorb β2

in the definition of dΩ2).
We write the determining equations using the corresponding Lagrangian of the above space–time and

study the complete integrability of those equations in each case. The usual Lagrangian L for a general
spherically symmetric static space–time is

L = eν(r)ṫ2 − eμ(r)ṙ2 − eλ(r)(θ̇2 + sin2 θ φ̇2), (5)

where the dot denotes differentiation with respect to the arc-length parameter s. For this Lagrangian, the
Noether symmetry generator becomes

X(1) = ξ
∂

∂s
+ η0 ∂

∂t
+ η1 ∂

∂r
+ η2 ∂

∂θ
+ η3 ∂

∂φ
+ η0

,s

∂

∂ṫ
+ η1

,s

∂

∂ṙ
+ η2

,s

∂

∂θ̇
+ η3

,s

∂

∂φ̇
,

and the operator D becomes

D =
∂

∂s
+ ṫ

∂

∂t
+ ṙ

∂

∂r
+ θ̇

∂

∂θ
+ φ̇

∂

∂φ
.
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3. Classification results and computational remarks

Substituting Lagrangian (5) in (3) and comparing the coefficients of all monomials, we obtain the
system of 19 linear PDEs

ξt = 0, ξr = 0, ξθ = 0, ξφ = 0,

As = 0, At − 2eν(r)η0
s = 0, Ar + 2η1

s = 0,

Aθ + 2eμ(r)η2
s = 0, Aφ + 2eμ(r)η3

s = 0,

ξs − μrη
1 − 2η1

r = 0, ξs − νrη
1 − 2η0

t = 0,

ξs −
2
r
η1 − 2η2

θ = 0, ξs −
2
r
η1 − 2 cot θη2 − 2η3

φ = 0,

η2
φ + sin2 θη3

θ = 0, eν(r)η0
r − eμ(r)η1

t = 0,

eμ(r)η1
θ + r2η2

r = 0, eν(r)η0
θ − r2η2

t = 0,

eν(r)η0
φ − r2 sin2 θη3

t = 0, eμ(r)η1
φ + r2 sin2 θη3

r = 0.

(6)

We intend to classify all spherically symmetric static space–times with respect to their Noether symmetries
by finding the solutions of above system of PDEs.

In solving system (6), we used the computer algebra system Maple-17 and split out the cases with the
remarkable algorithm rifsimp, which is essentially an extension of the Gaussian elimination and Groebner
basis algorithms for simplifying overdetermined systems of polynomially nonlinear PDEs or ODEs and
inequalities by transforming them into a convenient form.

In what follows, we list spherically symmetric static space–times, their Noether symmetries, and the
corresponding first integrals. We also present the Noether algebra of Noether symmetries in the cases that
are unknown in the literature.

For solving system of PDEs (6), we note that the first equation simply implies that ξ can only be
a function of the arc-length parameter, i.e., ξ = ξ(s). To distinguish Killing vector fields from Noether
symmetries, we use different letters: Noether symmetries that are not Killing vector fields are denoted
by Y. We also note that a static space–time always admits a timelike Killing vector field. Moreover,
Lagrangian (5) is not explicitly dependent on t; therefore, a timelike Killing vector field appears as a
Noether symmetry in each case. Furthermore, Lagrangian (5) is spherically symmetric; therefore, the Lie
algebra of Killing vector fields, so(3), corresponding to the Lie group SO(3) is intrinsically admitted by
each space–time. It is also important to note here that a static space–time always admits a timelike Killing
vector field. Hence,

X0 =
∂

∂t
, Y0 =

∂

∂s
,

X1 =
∂

∂φ
, X2 = cosφ

∂

∂θ
− cot θ sin φ

∂

∂φ
, X3 = sin φ

∂

∂θ
+ cot θ cosφ

∂

∂φ

form a basis of a minimal five-dimensional Noether algebra, in which Y0 is not a Killing vector field of
spherically symmetric space–time (4). The Noether algebra of these five Noether symmetries is

[X1,X2] = −X3, [X1,X3] = X2, [X2,X3] = −X1,

[Xi,X0] = 0, [Xi,Y0] = 0 otherwise

and is identified with the associated group SO(3) × R
2.
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3.1. Spherically symmetric static space–times with five Noether symmetries. Some exam-
ples of space–times that admit the minimum set of Noether symmetries (five symmetries) and appeared
during the calculations are given in Table 1.

Table 1

No. ν(r) μ(r)

1. log
(

r

α

)2

arbitrary

2. log
(

1 −
(

r

α

)2)
arbitrary

3. log
(

r

α

)2

− log
(

1 −
(

r

α

)2)

4. arbitrary − log
(

1 −
(

r

α

)2)

5. log
(

1 − α

r

)
− log

(
1 − α

r

)

Forms of μ and ν.

The Noether symmetries and corresponding first integrals with a constant value of the gauge function,
A = const, are listed in Table 2.

Table 2

Gen First integrals

X0 φ0 = eν(r)ṫ

X1 φ1 = r2 sin2 θφ̇

X2 φ2 = r2(cos φθ̇ − cot θ sin φφ̇)

X3 φ3 = r2(sin φθ̇ + cot θ cosφφ̇)

Y0 φ4 = eν(r)ṫ2 − eμ(r)ṙ2 − r2(θ̇2 + sin2 θφ̇2)

First integrals.

3.2. Spherically symmetric static space–times with six Noether symmetries. There are two
distinct classes of spherically symmetric static space–times admitting six Noether symmetries. In particular,
we obtain

ds2 =
(

r

a

)α

dt2 − dr2 − r2 dΩ2, α �= 0, 2,

which in addition to the minimum five-dimensional Noether algebra also admits a Noether symmetry
corresponding to the scaling transformation (s, t, r) → (λs, λpt, λ1/2r) and given by

Y1 = s
∂

∂s
+ pt

∂

∂t
+

r

2
∂

∂r
, p =

2 − α

4
,
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forming a six-dimensional Noether algebra. This induces a scale-invariant spherically symmetric static
space–time. The corresponding first integral is

φ6 = s

((
r

a

)α

ṫ2 − ṙ2 − r2(θ̇2 + sin2 θφ̇2)
)

+
α − 2

2

(
r

a

)2

tṫ + rṙ. (7)

The other space–time with a six-dimensional Noether algebra is given by

ds2 = dt2 − eμ(r)dr2 − r2dΩ2, μ(r) �= log
(

1 − r2

b2

)−1

, μ(r) �= const,

with an additional Noether symmetry relative to a nontrivial gauge term,

Y1 = s
∂

∂t
, A = 2t.

The first integral corresponding to Y1 is φ6 = t − sṫ.

3.3. Spherically symmetric static space–times with seven Noether symmetries. There arise
five space–times with seven Noether symmetries in which four cases contain the group of six Killing vector
fields and one case contains only the minimum group of Killing vectors while the other two symmetries are
Noether symmetries. We discuss them separately.

The four metrics are given by

ds2 = er/bdt2 − dr2 − dΩ2, b �= 0, (8)

ds2 = sec2 r

a
dt2 − sec2 r

a
dr2 − dΩ2, a �= 0, (9)

ds2 =
(

1 − r2

b2

)
dt2 −

(
1 − r2

b2

)−1

dr2 − dΩ2, b �= 0, (10)

ds2 =
α2

r2
dt2 − α2

r2
dr2 − dΩ2, α �= 0. (11)

Together with the minimum set of symmetries, they respectively contain two additional symmetries:

X4,1 = t
∂

∂r
− b

(
e−r/b +

t2

4b2

)
∂

∂t
, X5,1 =

∂

∂r
− t

2b

∂

∂t
,

X4,2 = sin
r

a
cos

t

a

∂

∂t
+ sin

t

a
cos

r

a

∂

∂r
, X5,2 = cos

t

a
cos

r

a

∂

∂r
− sin

r

a
sin

t

a

∂

∂t
,

X4,3 = − rbet/b

√
r2 − b2

∂

∂t
+

√
r2 − b2 et/b ∂

∂r
, X5,3 =

rbe−t/b

√
r2 − b2

∂

∂t
+

√
r2 − b2 e−t/b ∂

∂r
,

X4,4 =
t2 + r2

2
∂

∂t
+ rt

∂

∂r
, X5,4 = t

∂

∂t
+ r

∂

∂r
,

where the new subscript refers to different cases, which we consider hereafter.
The corresponding first integrals are listed in Table 3.

978



Table 3

Gen First integrals

X4,1 φ5 = b

(
1 +

t2er/b

4b2

)
ṫ + tṙ

X5,1 φ6 =
ter/b

b
ṫ + 2ṙ

X4,2 φ5 = sec2 r

a

(
ṫ sin

r

a
cos

t

a
− ṙ sin

t

a
cos

r

a

)

X5,2 φ6 = − sec2 r

a

(
ṫ sin

r

a
sin

t

a
+ ṙ cos

t

a
cos

r

a

)

X4,3 φ5 = et/b

(
rṫ
√

r2 − b2

b
+

b2ṙ√
r2 − b2

)

X5,3 φ6 = et/b

(
−rṫ

√
r2 − b2

b
+

b2ṙ√
r2 − b2

)

X4,4 φ5 =
(t2 + r2)ṫ

r2
+

tṙ

r

X5,4 φ6 = 2
(

tṫ

r2
− ṙr

)

Y1 φ5 = sL − rṙ + 2sṙ2

Y2 φ6 = 2s2L + 2(sṙ2 − srṙ) + r2

First integrals of seven Noether symmetries

The Lie algebra of the symmetries of metric (9) is

[X1,X2] = −X3, [X1,X3] = X2, [X2,X3] = −X1,

[X0,X4,2] =
1
a
X5,2, [X0,X5,2] = −1

a
X4,2,

[Xi,Xj ] = 0, [Xi,Y0] = 0 otherwise.

The Lie algebra of the symmetries of metric (10) is

[X1,X2] = −X3, [X1,X3] = X2, [X2,X3] = −X1,

[X0,X4,4] = X5,4, [X4,4,X5,4] = −X4,4,

[X0,X5,4] = X0, [Xi,Xj ] = 0, [Xi,Y0] = 0 otherwise.

The space–time

ds2 =
(

r

a

)2

dt2 − dr2 − r2 dΩ2

contains two nontrivial Noether symmetries

Y1 = s
∂

∂s
+

r

2
∂

∂r
, Y2 =

s2

2
∂

∂s
+

rs

2
∂

∂r
, A = −r2

2
,

whose first integrals are also given in Table 3.
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3.4. Spherically symmetric static space–times with nine Noether symmetries. This section
contains some well-known and important space–times. Here, we have five different cases of space–times in
which three contain two additional Noether symmetries and one case contains one additional Noether
symmetry with all others being Killing vector fields.

We obtained the following results (space–times) with nine Noether symmetries:

ds2 = dt2 − dr2 − dΩ2, (12)

ds2 =
β2

r2
dt2 − β4

r4
dr2 − dΩ2, β �= 0, (13)

ds2 =
(

1 +
r

b

)2

dt2 − dr2 − dΩ2, b �= 0, (14)

ds2 = dt2 − dr2

1 − r2/b2
− r2 dΩ2, b �= 0. (15)

The first three space–times correspond to the famous Bertotti-Robinson-like solutions of the Einstein field
equations, which describe a universe with a uniform magnetic field, and the last case is the Einstein universe.

We first list the Killing vector fields that are also Noether symmetries:

X4,1 = r
∂

∂t
+ t

∂

∂r
, X5,1 =

∂

∂r
,

X4,2 = −βre−t/β ∂

∂t
+ r2e−t/β ∂

∂r
, X5,2 = βret/β ∂

∂t
+ r2et/β ∂

∂r
,

X4,3 =
b

b + r
e−t/b ∂

∂t
+ e−t/b ∂

∂r
,

X5,3 = − b

b + r
et/b ∂

∂t
+ et/b ∂

∂r
,

X4,4 =
√

b2 − r2 sin φ sin θ
∂

∂r
−

√
b2 − r2

r
cos θ sin φ

∂

∂θ
+

√
b2 − r2

r sin θ
cosφ

∂

∂φ
,

X5,4 =
√

b2 − r2 cosφ sin θ
∂

∂r
−

√
b2 − r2

r
cos θ cosφ

∂

∂θ
−

√
b2 − r2

r sin θ
sinφ

∂

∂φ
,

X6,4 =
√

b2 − r2 cos θ
∂

∂r
−

√
b2 − r2

r
sin θ

∂

∂θ
,

and the Noether symmetries corresponding to nontrivial gauge terms are

Y1,1 = s
∂

∂t
, A1,1 = 2t,

Y2,1 = s
∂

∂r
, A2,1 = −2r,

Y1,2 = −rse−t/β

β3

∂

∂t
+

r2se−t/β

β4

∂

∂r
, A1,2 =

2e−t/β

r
,

Y2,2 =
rset/β

β3

∂

∂t
+

r2set/β

β4

∂

∂r
, A1,2 =

2et/β

r
,

Y1,3 = − bs

2(b + r)
e−t/b ∂

∂t
− s

2
e−t/b ∂

∂r
, A1,3 = (b + r)e−t/b,
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Y2,3 =
bs

2(b + r)
et/b ∂

∂t
− s

2
et/b ∂

∂r
, A2,3 = (b + r)et/b,

Y1,4 = s
∂

∂t
, A = 2t.

The Lie algebra of symmetries of metric (13) above is

[X1,X2] = −X3, [X1,X3] = X2, [X2,X3] = −X1,

[X0,X4,2] =
1
α
X4,2, [X4,2,X5,2] = −X4,2, [X0,X5,2] =

1
α
X5,2,

[X0,Y1,2] = − 1
α
Y1,2, [X0,Y2,2] =

1
α

Y2,2,

[Y0,Y1,2] =
1
α4

X4,2, [Y0,Y2,2] =
1
α4

X5,2,

[Xi,Xj ] = 0, [Xi,Y0] = 0, [Yi,Yj ] = 0 otherwise.

The first integrals for the nine Noether symmetries are given in Table 4.

Table 4

Gen First integrals

X4,1, X5,1 φ5 = tṙ − rṫ, φ6 = ṙ

Y1,1, Y2,1 φ7 = 2(t − sṫ), φ8 = r − sṙ

X4,2, X5,2 φ5 = 2e−t/ββ3

(
ṫ

r
+

βṙ

r2

)
, φ6 = 2et/ββ3

(
− ṫ

r
+

βṙ

r2

)

Y1,2, Y2,2 φ7 = 2se−t/β

(
ṫ

rβ
+

ṙ

r2

)
+

2e−t/β

r
, φ8 = 2set/β

(
−ṫ

βr
+

ṙ

r2

)
+

2et/β

r

X4,3, X5,3 φ5 = e−t/b

(
− ṫ(b + r)

b
+ ṙ

)
, φ6 = et/b

(
ṫ(b + r)

b
+ ṙ

)

Y1,3, Y2,3
φ7 = e−t/b

(
sṫ(b + r)

b
+ sṙ + (b + r)

)
,

φ8 = et/b

(
sṫ(b + r)

b
− sṙ + (b + r)

)

X4,4 φ5 =
b2ṙ sin φ sin θ√

b2 − r2
− rθ̇

√
b2 − r2 cos θ sin φ + rφ̇

√
b2 − r2 sin θ cosφ

X5,4 φ6 =
b2ṙ cosφ sin θ√

b2 − r2
− rθ̇

√
b2 − r2 cos θ cosφ + rφ̇

√
b2 − r2 sin θ sin φ

X6,4, Y1,4 φ7 =
b2ṙ cos θ√
b2 − r2

− rθ̇
√

b2 − r2 sin θ, φ8 = t − sṫ

First integrals of nine Noether symmetries.

981



3.5. Spherically symmetric static space–times with eleven Noether symmetries. It turns
out that the famous de Sitter metric

ds2 =
(

1 − r2

b2

)
dt2 − dr2

1 − r2/b2
− r2 dΩ2 (16)

is the only case with eleven Noether symmetries. All except Y0 are Killing vectors. Together with the
minimum set of Noether symmetries, for the metric given by (16), we have the Noether symmetries

X4 =
br sin φ sin θ cos(t/b)√

b2 − r2

∂

∂t
+

+ sin
(

t

b

)√
b2 − r2

(
sin θ sin φ

∂

∂r
+ r cos θ sin φ

∂

∂θ
+

cosφ

r sin θ

∂

∂φ

)
,

X5 =
br cosφ sin θ cos(t/b)√

b2 − r2

∂

∂t
+

+ sin
(

t

b

)√
b2 − r2

(
sin θ cosφ

∂

∂r
+

cos θ cosφ

r

∂

∂θ
− sin φ

r sin θ

∂

∂φ

)
,

X6 = − br sinφ sin θ sin(t/b)√
b2 − r2

∂

∂t
+

+ cos
(

t

b

)√
b2 − r2

(
sin θ sinφ

∂

∂r
+ r cos θ sin φ

∂

∂θ
+

cosφ

r sin θ

∂

∂φ

)
,

X7 = − br cosφ sin θ sin(t/b)√
b2 − r2

∂

∂t
+

+ cos
(

t

b

)√
b2 − r2

(
sin θ cosφ

∂

∂r
+

cos θ cosφ

r

∂

∂θ
− sinφ

r sin θ

∂

∂φ

)
,

X8 =
br cos θ cos(t/b)√

b2 − r2

∂

∂t
+ sin

(
t

b

)√
b2 − r2

(
cos θ

∂

∂r
− sin θ

r

∂

∂θ

)
,

X9 =
−br cos θ sin(t/b)√

b2 − r2

∂

∂t
+ cos

(
t

b

)√
b2 − r2

(
cos θ

∂

∂r
− sin θ

r

∂

∂θ

)
.

The first integrals are given in Table 5.

3.6. Spherically symmetric static space–times with seventeen Noether symmetries. The
famous Minkowski metric, which represents a flat space–time, admits seventeen Noether symmetries. The
list of all symmetries was given in [11], and the first integrals in Cartesian coordinates were mentioned
in [13].

4. Conclusion

We have given a complete list of spherically symmetric static space–times. It can be seen that the
Lagrangian of spherically symmetric static space–times can give 5, 6, 7, 9, 11, or 17 Noether symmetries. A
few examples of space–times with the minimum (i.e., five) Noether symmetries are given in Table 1. Briefly,
there are respectively two, four, and five cases in which the Lagrangian of the space–times give six, seven,
and nine Noether symmetries (including the Bertotti–Robinson and the Einstein metrics). There is only one
case (which is the famous de Sitter space–time) of 11 Noether symmetries, and there is one case (Minkowski
space–time) of 17 Noether symmetries. Just like the Lagrangian of plane symmetric static space–times,
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Table 5

Gen First integrals

X5
φ5 = −r

b

√
b2 − r2 sin φ sin θ cos

(
t

b

)
ṫ +

b2

√
b2 − r2

sin φ sin θ sin
(

t

b

)
ṙ +

+ r
√

b2 − r2 cos θ sin φ sin
(

t

b

)
θ̇ + r

√
b2 − r2 sin θ cosφ sin

(
t

b

)
φ̇

X6
φ6 = −r

b

√
b2 − r2 cosφ sin θ cos

(
t

b

)
ṫ +

b2

√
b2 − r2

cosφ sin θ sin
(

t

b

)
ṙ +

+ r
√

b2 − r2 cos θ cosφ sin
(

t

b

)
θ̇ − r

√
b2 − r2 sin θ sin φ sin

(
t

b

)
φ̇

X7
φ8 =

r

b

√
b2 − r2 sin φ sin θ sin

(
t

b

)
ṫ +

b2

√
b2 − r2

sinφ sin θ cos
(

t

b

)
ṙ +

+ r
√

b2 − r2 cos θ sin φ cos
(

t

b

)
θ̇ + r

√
b2 − r2 sin θ cosφ cos

(
t

b

)
φ̇

X8
φ9 = −r

b

√
b2 − r2 cosφ sin θ cos

(
t

b

)
ṫ +

b2

√
b2 − r2

cosφ sin θ sin
(

t

b

)
ṙ +

+ r
√

b2 − r2 cos θ cosφ sin
(

t

b

)
θ̇ − r

√
b2 − r2 sin θ sin φ sin

(
t

b

)
φ̇

X9
φ7 = −r

b

√
b2 − r2 cos θ cos

(
t

b

)
ṫ +

b2

√
b2 − r2

cos θ sin
(

t

b

)
ṙ −

− r
√

b2 − r2 sin θ sin
(

t

b

)
θ̇

X10
φ10 =

r

b

√
b2 − r2 cos θ sin

(
t

b

)
ṫ +

b2

√
b2 − r2

cos θ cos
(

t

b

)
ṙ −

− r
√

b2 − r2 sin θ cos
(

t

b

)
θ̇

First integrals for eleven Noether symmetries.

the minimum number of Noether symmetries for spherically symmetric static space–times is five, and the
maximum number of Noether symmetries is 17, while the minimum number of isometries is four, and the
maximum number of isometries is 10. This completes the classification of spherically symmetric static
space–times by their Noether symmetries. A similar work on cylindrically symmetric static space–times is
in progress.

There are three new classes that we have not seen in the literature, and we must mention them briefly.
We also list the nonzero components of the Riemannian tensors, Ricci tensors, and Ricci scalar.

The first class is
ds2 = sec2 r

a
(dt2 − dr2) − dΩ2,

in which we have seven Noether symmetries and six Killing vectors. The Ricci scalar and nonzero compo-
nents of the Ricci and Riemann tensors are

Rscalar =
2(a2 − 1)

a2
,

983



R00 = − sec2(r/a)
a2

, R11 =
sec2(r/a)

a2
, R22 = −1, R33 = − sin2 θ,

R0101 = − sec4(r/a)
a2

, R2323 = − sin2 θ.

The second class is

ds2 =
(

α

r

)2

(dt2 − dr2) − dΩ2,

in which we have seven Noether symmetries and six Killing vectors. We note that this metric becomes

r2ds2 = α2(dt2 − dr2) − r2dΩ2, ds2 =
1
r2

ds̃2,

where ds̃ is the standard Minkowski metric. Therefore, (7) represents a conformal Minkowski metric with
the conformal factor 1/r2. The Ricci scalar and nonzero components of the Ricci and Riemann tensors are

Rscalar =
α2 − 1

α2
,

R00 = − 1
r2

, R11 =
1
r2

, R22 = −1, R33 = − sin2 θ,

R0101 = −α2

r4
, R2323 = − sin2 θ.

The third class is

ds2 =
(

β

r

)2

dt2 −
(

β

r

)4

dr2 − dΩ2,

in which we have nine Noether symmetries. The Ricci scalar and nonzero components of the Ricci and
Riemann tensors are

Rscalar = 2,

R22 = −1, R33 = − sin2 θ,

R2323 = − sin2 θ.
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