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SOLUTIONS OF THE SINE-GORDON EQUATION WITH A
VARIABLE AMPLITUDE

E. L. Aero,” A. N. Bulygin,* and Yu. V. Pavlov*

We propose methods for constructing functionally invariant solutions u(x,y, z,t) of the sine-Gordon equa-
tion with a variable amplitude in 3+1 dimensions. We find solutions u(z,y, z,t) in the form of arbitrary
functions depending on either one (a(x,y, z,t)) or two (a(z,y, 2, t), B(x,y, ,t)) specially constructed func-
tions. Solutions f(«) and f(a, B) relate to the class of functionally invariant solutions, and the functions
a(z,y,2,t) and B(z,y,z,t) are called the ansatzes. The ansatzes (a,[3) are defined as the roots of ei-
ther algebraic or mixed (algebraic and first-order partial differential) equations. The equations defining
the ansatzes also contain arbitrary functions depending on (o, 3). The proposed methods allow finding
u(x,y,z,t) for a particular, but wide, class of both regular and singular amplitudes and can be easily

generalized to the case of a space with any number of dimensions.
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1. Introduction

The sine-Gordon (SG) equation
U .
Uga +Uyy + Uyy — Ut; = posmu (1)

(where py = const and the subscript means the derivative with respect to the corresponding variable)
appears in many branches of modern science. Equation (1) describes the motion of dislocations in solids [1],
the deformation of a nonlinear crystal lattice [2], fluxon propagation in Josephson transmission lines [3],
spin orientation in ferromagnets [4], the orientation structure of liquid crystals [5], propagation of resonant
ultrashort optical pulses [6], and “commensurability-noncommensurability” phase transitions [7]. It also
arises in simulations of the processes in the earth’s crust [8], in the description of surface metrics [9], in
molecular biology [10], in field theory models, and in elementary particle physics [11], [12].

Currently, effective methods have been developed for solving the SG equation with a constant am-
plitude, but methods for solving the SG equation with variable amplitude are practically absent. This
essentially restricts the application sphere of the SG equation because many physical phenomena and tech-
nological processes are described by the SG equation with a variable amplitude,

u .
Upy + Uyy + Uzz — vt; =p(z,y,2,t)sinu. (2)

For example, in the mechanics of a nonlinear crystal lattice, the constant-amplitude case describes the
deformation of the ideal crystal lattice by a field of uniform stresses. The deformation of a real lattice
with structural defects (dislocations, disclinations, pore seeds, splits, etc.), even by uniform stresses and
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all the more by a field of nonuniform stresses, is described by the SG equation with a variable amplitude.
In the mechanics of liquid crystals, the case p = const simulates the deformation of the long axes by
an electromagnetic field under the condition that the orientational continuum has no defects and the
electromagnetic field is uniform. Otherwise, p(x,y, z,t) # const. In the surface theory, the SG equation
with p(x,y, z,t) = const describes the metrics of Chebyshev nets on a surface of constant curvature. If the
surface curvature varies, then p(x,y, z,t) # const. In simulating wave propagation in the earth’s crust [13],
the SG equation with constant amplitude describes the case where the mechanical properties of the earth’s
crust are uniform, which is of course a strong idealization. It is clear from the above examples that the
application sphere of the SG equation would be essentially extended if solutions of the SG equation with a
variable amplitude were found.

In describing real media, structural defects are usually simulated by functions with appropriate singu-
larities (point, line, surface, etc.). The singularities can be either stationary or movable, i.e., propagating
with some velocity. They can differ by the rate of growth (logarithmic, power-law, etc.). Media with
nonuniformities described by regular functions without singularities are well known; moreover, the nonuni-
formities have a regular geometric spatial arrangement in many cases. From the above, it is clear that a
mathematical model constructed based on the SG equation would be relevant if the amplitude p(z,y, 2, t)
took structural features of real media into account.

Below, we present a method for solving the SG equation with a variable amplitude. This method is
based on the following statements, which are proved by direct calculation.

Proposition 1. If a function p(z,y, z,t) simultaneously satisfies the equations

Sozz + @yy + SOZZ — sf)t; = 0,

2
2
ng + SO’[Z/ + QO? — ’U; = p($7y’2’t)7
then
u = 4 arctan e?(®¥:%:t) "

is a solution of Eq. (2).

Proof. Indeed, if we substitute (4) in (2) and take the identity

4e® 8e3¥

sin(4 arctane?) = 1420 (14 e2¢)2
into account, then Eq. (2) is

2
Pt '
Paz + Py + 2z =y = (@i eyt el T —p@y s, t)) tanh . (6)

The validity of Proposition 1 follows from (6).

Proposition 2. If a function ¢(x,y, z,t) simultaneously satisfies the equations

Pt
(wa + 901/’1/ + SOZZ - ’U2 = p(irvyazat)a

2 2 %
§01+§0y+§0z_ 02 :05

then
u = 2arctan e? (¥ (8)

is a solution of Eq. (2).
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Proof. This proposition can be proved similarly to Proposition 1. If we substitute (8) in (2) and take
the relation

sin(2 arctane?) = 27 (9)
14 e%
into account, then Eq. (2) is
Dt 2 2 2
Prz + Pyy T P2z — 02 —p(z,y,2,t) = (‘pm + o, +or — ’U2> tanh . (10)

The validity of Proposition 2 is obvious from (10).

The obtained results reduce the solution of Eq. (2) to finding a function ¢(x, y, z,t) that simultaneously
satisfies either system of equations (3) or (7). The function ¢(z,y, z,t) can be found using the methods for
constructing functionally invariant solutions of differential equations [14]-[25].

2. Functionally independent solutions of the SG equation with a
variable amplitude

A solution of differential equations is said to be functionally invariant if it has the form of an arbitrary
function depending on an ansatz. The ansatz is a solution of one or several equations. Equations can be
algebraic or differential or a mixed type. There are functionally invariant solutions depending on two or
more ansatzes.

The idea of the existence of functionally invariant solutions was suggested by Jacobi. He noted that for
the Laplace equation, the argument of an arbitrary function arising in the solution of a partial differential
equation must also satisfy the characteristic equation [26]. Forsyth [15] found functionally invariant solutions
of the Laplace equation, of the wave equation in a space of arbitrary dimensions, and of the Helmholtz
equation in the three-dimensional space. In studying electromagnetic waves, Bateman [14] fundamentally
and consistently developed the Jacobi idea as applied to the wave equation. Soboleff and Smirnoff [16]-[19]
successfully used the method to construct functionally invariant solutions of the wave equation to solve
problems of diffraction and sound wave propagation in uniform and layered solid media. Erugin [20] made
a large contribution to developing the theory of this method. We found functionally invariant solutions of
the SG equation with a constant amplitude in [22].

2.1. Solution with one ansatz. In constructing functionally invariant solutions of partial differen-
tial equations, the basic problem is to find the ansatz. It can usually be chosen from solutions of special
equations.

Let the ansatz 7 be a root of the algebraic equation

24 2
vE(r) +yn(r) + () — e = 0T (1)

where
s* =2 +y? + 27 =t ¢ = &E(1) + 0 (1) + (1) — 0?77, (12)

and £(7), n(7), and {(7) are arbitrary functions of 7. Equation (11) implicitly defines the dependence of 7
on the time and space coordinates. From it, we find the partial derivatives of the ansatz 7(z,y, z,t) using
the rule for differentiating implicit functions, and taking the relations

VT
§TTI + NrTy + C‘r'rz + 7= 17 VgTy + Uy Ty + VT, — ;2t =1 (13)

into account where
V:§T(x_€)+77T(y_77)+c7'(2_§)_vz(t_T)a (14)
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we find that the ansatz 7 satisfies the equations

72
2.2, 2 Ti _
Ty + T, T2 2 =0,

i 2
Txx +7—yy +Tzz - UtQt :p(f,y,z,t), p(x,y,z,t) = y

(15)

According to Eq. (15) and Proposition 2, an arbitrary function depending on 7, ¢(z,y, z,t) = f(7),

satisfies Egs. (7), and the function
u = 2arctan e/ ("

is consequently a solution of SG equation (2) with the amplitude

2
= "f.
play,zt) = f
The function ¢ = f(7)/v satisfies Egs. (3) if the amplitude has the form

f2

QW At + =)

p(z,y,z,t) = - Qf,,J;T

and
W = STT(x - 5) +7777(y - 77) + CTT(Z - C) _672- - 7772- - C72' +U2'
In proving this assertion, in addition to Egs. (13)—(15), we must use

2
V.
vetvgvi— L =W G+ + G-
Vit _

2
sz+Vyy+sz_v2 U[2W+€72-+7772-+<72'_U2]

satisfied by the function v.
According to Proposition 1, the function

u = 4arctan e/ (77

(18)

(19)

is a solution of the SG equation with amplitude (18). The obtained solutions allow finding a large number

of particular solutions by specifying arbitrary functions. We note two elementary solutions:

R
T=tF v = FuR, R=+22+1y2+ 22,
v

2 2 2 2
2. E=xT, 7N = TaT, ¢ = z3T, ] + a5 + a3 =07,
52
7':2 , V:xa:1+yx2+za:3—v2t, 52:x2+y2+z2—v2t2.
v

(21)

(22)

In Fig. 1, we present plots of the amplitude and solution (21) of the SG equation at different times for

v=1,2z=0, and f(7r) =sin7. The solution u(z,y,0,t) has the form of a standing wave.
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Fig. 1. The amplitude p and solution u(z,y,0,t) corresponding to (21) at (a) ¢ =0 and (b) ¢ = 10.

Functionally invariant solutions of the SG equation can be constructed if the ansatz 7(x,y, z,t) is
chosen from solutions of the system of equations

2 s*+ ¢
I'é-(a,ﬁ,T) +y77(047577') +ZC(aaﬁ7 T) -V te(aaﬁaT) = 92 ) (23)
o + Yo + 2Ca — V0, = (C]Z)a ) (24)
2
x€s + ynp + 2(s — vtz = (qz)ﬁ, (25)

where ¢% = €2 + 7% + (% — 0?02

Equation (23) is algebraic. It coincides with (11) in form, but differs from it in that the functions
&, v, ¢, and 6 depend on three arguments «, [, and 7 rather than the one argument 7. Equations (24)
and (25) are first-order partial differential equations. We can find the partial derivatives of the ansatz
from (23)—(25) and prove that it satisfies Egs. (7) with the function

Py, 0) = B (6t + G+ 00 (26)

Consequently, the function u = 2 arctan /(™) is a solution of SG equation (2) with amplitude (26).

965



From the above solution, we can obtain interesting elementary solutions:

1. & = vt cos acos 3, 1 = vT cos asin 3, ( =wvTsina, 0=,
! t+R (z,y,2,t) I 0
T: = 5
2 ’U ) p 7y7 ) /UR
2. & =, n=_(=0r, 0=r,
5° 2 (28)
= t) = T
T 2'()(3:—'[)2‘:), p(x7y727) 'U(Q:_Ut)f
3. & =rT1cosa, n = Tsina, ¢ = Tsinh 3, 9:Tcoshﬂ,
v
(29)
1 1 1 1
T = 22 +y? + u2t2 — 22], Ty, 2,t) = — -
SVt y? 4/ Lo plyat) =, Vot e 22 f
4. & = Tcosasinh 3, 1 = Tsin asinh 3, (=, o=" cosh 3,
v
(30)

1 —fr
— 242 _ p2 92 =
T = 2[Z+\/U t x Yy ]7 p(xvyazat) \/U2t2—x2—y2.

Plots of the amplitude and solution (28) of the SG equation at v = 1 and z = 0 in the case f(7) =7
are shown in Fig. 2. The solution u(z,y, 0,t) represents a superposition of two types of perturbations. The
first one is of the kink type. The break plane moves with the velocity v. The second is of the soliton type.
The transverse sizes of the second solution increase with the velocity v, and the height reaches its maximum
value u = 7. In time, the top of the second solution approaches the plane.

2.2. Solutions with two ansatzes. There are functionally invariant solutions of Eq. (2) with two
ansatzes. Let the ansatz a(z,y, z,t) be the root of the equation

zl(a) +ym(a) + zn(a) — v?tw(a) + g(a) =0 (31)
and the ansatz ((z,y, z,t) be
Bz, y, 2,t) = Tlo + YMe + 210 — VHWa + o (32)
Here, l(a), m(a), n(a), w(a), and g(«) are arbitrary functions of « related by the condition
2+ m?+n? =v%w?. (33)

From (31) and (32), we can find the partial derivatives of the ansatzes («, 3) and verify that an arbitrary
function of («, 3),

¢ = F(a,f), (34)
satisfies the system of equations
2 2 2 ‘P? 22
Yo Tyt — 5 = F50%a), (35)
%) 2
(Pzz""pyy"'@zz - U;t = (F[35+ 5F5>O2(O‘)7 (36)
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Fig. 2. The amplitude p and solution u(z,y,0,t) corresponding to (28) for (a) ¢t = 2, (b) t =5, and
(c) t =10.

where

C%*(a) =12 +m? 4+ n? —v?w?.

Function (34) is a solution of the homogeneous wave equation if

F=A(a) + , (37)
B
where A(«) and B(«) are arbitrary functions of «. Substituting (37) in (35), we obtain
2 2 2
%) B*(a)C* («
vrteytei- T = ()4 ), (38)
v B
Hence, the function
u = 4 arctan[e? (@) +5(@)/5] (39)
is a solution of SG equation (2) with the amplitude
B%(a)C?%(3
p(x,y,2,t) = @C0), (40)

64
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We give a simple example of this solution. Let [ = cosa, m =sina, n =0, vw = 1, and g = 0. Then
the ansatz has the form

t
a:—y—&-(—l)karcsinv , k=0,%1,...,
P

(41)

tany =", p=va2+y?  fP=pP -0

)
and the amplitude is
B*(a)
P,y 2t =" gy (42)
The solutions of Egs. (7) can be obtained if we take the roots of the equations

52 + g2

760, ) + gl ) + (e, B) — vPtr(a, B = 0T »

wl(a, B) +ym(a, B) + zn(a, B) — v*tw(a, ) = g(a, 5)
for the ansatzes («, 3). Here,
gla, B) = 1€ +mn + n¢ — v?wr,

and arbitrary functions I, m, n, and w of (a, 3) are related by the conditions
24+ m? +n? = v2u?, 1€ +mng +ns = v’wrs.

The quantities (s?,¢?) are defined in Eq. (12).
From Eqgs. (43), we find the partial derivatives of (a, 8) and verify that the first-order derivatives satisfy

the homogeneous equations
2

o}
2 2 2 t_
g + oy + o 1}2—07

By (44)

2 2 2
ﬁz+6y+ﬁz_ U2

[0
oy By + ayﬁy + azﬁz — ;Qﬁt =0,

and the second-order derivatives satisfy the nonhomogeneous equations

Qitt

gy +ayy+azz - 02 = Zsa
5 (45)
6zz+ﬁyy+ﬁzz - ?}t; = A(/\_R)a
where
A =PS— RQ,
P=§a($—€)+na(y—n)+éa(z—0—U?'Ta(t—T),
Q=& — &) +nsly —n) + sz — Q) —v?15(t — 1),
(46)

S =—lg(x—&) —mply —n) —np(z — ¢) + v*wp(t — 1),
R= _la(x _5) - ma(y - 77) - na('z - Q +U2wa(t - T) + A
A =&+ nem + (un — V2w,
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The obtained results allow claiming that a function ¢ of form (34) satisfies Eqs. (3) if

2N
plz.y.zt) =" (47)
vhere o(1.1) o(m. f) (n. 1) o(w. f)
_ 9 _ m, _ n, _ _ 2 w, _
N=0n) T 00 YT T 0109 T T aap T (4
Here, we use the notation for the Jacobi determinant
e, ) _ 090y Op Y (49)
da,B)  0adB 9BOa’
Consequently, the function
u = 2arctan[ef (@) (50)

is a solution of SG equation (2) with amplitude (47).
The following simplest ansatzes might be of interest in simulating physical processes and in solving
problems in mechanics:

1. a =z tiy, 0=zt vt,
2. oz:gc—i—iZ\/l—|—c2—|—icvt7 ﬁ:y—l—cz—l—vt\/l—l—c?,

where ¢ is an arbitrary constant.
If we restrict ourself to real solutions, then the function

1 _
¢ = 2F(0.f) + F(@.0) 1)
is a solution of Egs. (7) if
p(zayvzvt):FaFda (52)
and
U= 4arctan[e(F(a’ﬁ)JrF(é“B))/2]. (53)

Here, the bar over a symbol denotes complex conjugation.

Plots of the amplitude and solution (53) of the SG equation for v = 1 and z = 0 in the case F(«, 8) =
B/ cosh v are shown in Fig. 3. The solution u(x,y,0,t) has the form of perturbations periodic in the axis
Oy, which change their sizes and shapes in time; the height reaches its maximal value v = 27 and eventually
approaches the plane.

The obtained solutions of Eq. (2) are given by functional relations (4) and (8). We can construct
functionally invariant solutions of the SG equation with a variable amplitude having another functional
relation. We seek solutions of Eq. (2) in either the form

u = 2arcsin [\/1 -} Zn((% VO))} (54)
n\e, Yo

or the form
u =7+ 2am(p, vp). (55)

Here, sn(p,vp) and dn(ep, 1) are the Jacobi elliptic functions, am(yp, 1) is the Jacobi amplitude, vy = const
is the modulus, and ¢ = ¢(x,y, z,t) is the argument. Substituting either (54) or (55) in (2), we verify
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Fig. 3. The amplitude p and solution u(z,y,0,t) corresponding to (53) at (a) t =1, (b) ¢t = 5, and
(c) t =10.

that (54) and (55) are solutions of the SG equation with the amplitude 13p(x,y, 2, t) if p(z,y, z,t) satisfies
Egs. (3).
We also note that if the function ¢(z,y, 2, t) satisfies either Eq. (3) or (7), then the function

V = erl@yat) (56)

is a solution of the equation

0V 9*V 9V 1 0%V

Ox? + 8y2 + 922 - v2 Ot2 :p(x,y,z,t)V, (57)

Therefore, the solutions of Egs. (3) obtained above can be used in Eqgs. (54)—-(56) to obtain new solutions
of both Eq. (2) (in form (54) or (55)) and Eq. (57).
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3. Conclusion

We have proposed methods for constructing functionally invariant solutions of the SG equation with
a variable amplitude in 341 dimensions. They can be simply generalized to the case of an arbitrary-
dimensional space. Moreover, the greater the dimensionality of the space is, the more possible types there
are of equations whose roots can be ansatzes of functionally invariant solutions [20]. As the dimensionality
increases, the number of arbitrary functions arising in the equations defining the ansatz also increases. This
increases the variety of solutions of the SG equation with a variable amplitude.

The proposed methods allow obtaining solutions for amplitudes with a special form. But the obtained
solutions form a rather wide class of functions. This follows from the solution method itself and also from
the method for constructing it. Solutions have the form of arbitrary functions depending on either one or
two ansatzes. The ansatzes can be found either from one equation or from a system of equations containing
arbitrary functions. And although they must satisfy certain conditions (different for different methods),
there remains a freedom in defining the ansatz (ansatzes).

It can be expected that the proposed approach allows properly describing physical processes in media
with a real structure and finding solutions of particular engineering problems. The freedom in choosing the
ansatz will suffice to satisfy the required initial and boundary conditions.

Acknowledgments. This work is supported by the Russian Foundation for Basic Research (Grant
No. 13-01-00224 a).

REFERENCES

. J. Frenkel and T. Kontorova, Acad. Sci. USSR J. Phys., 1, 137-149 (1939).

. E. L. Aero and A. N. Bulygin, Mech. Solids, 42, 807-822 (2007).

. P. Guéret, IEEE Trans. Magnetics, 11, 751-754 (1975).

. R. K. Dodd, J. C. Eilbeck, J. D. Gibbon, and H. C. Morris, Solitons and Nonlinear Wave Equations, Acad.

Press, London (1982).

P. G. de Gennes, The Physics of Liquid Crystals, Clarendon, Oxford (1974).

. K. Lonngren and A. C. Scott, eds., Solitons in Action, Acad. Press, New York (1978).

W. L. McMillan, Phys. Rev. B, 14, 1496-1502 (1976).

V. G. Bykov, Nonlinear Wave Processes in Geologic Media [in Russian], Dal’'nauka, Vladivostok (2000).

. P. L. Chebyshev, Uspekhi Mat. Nauk, 1, No. 2(12), 38-42 (1946).

10. A. S. Davydov, Solitons in Bioenergetics [in Russian], Naukova Dumka, Kiev (1986).

11. L. A. Takhtadzhyan and L. D. Faddeev, Hamiltonian Approach in the Theory of Solitons [in Russian], Nauka,
Moscow (1986); English transl.: Hamiltonian Methods in the Theory of Solitons, Springer, Berlin (1987).

12. L. A. Takhtadzhyan and L. D. Faddeev, Theor. Math. Phys., 21, 1046-1057 (1974).

13. I. A. Garagash, V. N. Nikolaevskiy, Computational Continuum Mechanics, 2, 44-66 (2009).

14. H. Bateman, Electrical and Optical Wave Motion, Cambridge Univ. Press, London (1914).

15. A. R. Forsyth, Messenger Math., 27, 99-118 (1898).

16. V. Smirnoff and S. Soboleff, “Sur une méthode nouvelle dans le probléeme plan des vibrations élastiques,” in:

=W N

© o N> o

Trudy seismologichecskogo in-ta [Works of the Seismological Institute], No. 20, Acad. Sci. USSR, Leningrad
(1932).

17. V. Smirnoff and S. Soboleff, C. R. Acad. Sci. Paris, 194, 1437-1439 (1932).

18. S. Sobolev, “Functionally invariant solutions of wave equation,” in: Travaux Inst. Physico-Math. Stekloff,
Vol. 5, Acad. Sci. USSR, Leningrad (1934), pp. 259-264.

19. S. L. Sobolev, Selected Works [in Russian], Vol. 1, Equations of Mathematical Physics: Computational Math-
ematics and Cubature Formulas, Sobolev Inst. Math., Siberian Branch, Russ. Acad. Sci., Novosibirsk (2003);
Op. cit., Vol. 2, Functional Analysis: Partial Differential Equations, Sobolev Inst. Math., Siberian Branch, Russ.
Acad. Sci., Novosibirsk (2006).

971



20.
21.
22.
23.
24.
25.
26.

972

N. P. Erugin, Uchenye zap. Leningr. un-ta., 15, 101-134 (1948).

M. M. Smirnov, Dokl. AN SSSR, 67, 977-980 (1949).

E. L. Aero, A. N. Bulygin, and Yu. V. Pavlov, Theor. Math. Phys., 158, 313-319 (2009).

E. L. Aero, A. N. Bulygin, and Yu. V. Pavlov, Nelineinyi Mir, 7, 513-517 (2009).

E. L. Aero, A. N. Bulygin, and Yu. V. Pavlov, Differ. Equ., 47, 1442-1452 (2011).

E. L. Aero, A. N. Bulygin, and Yu. V. Pavlov, Appl. Math. Comput., 223, 160-166 (2013).

C. G. J. Jacobi, J. Reine Angew. Math., 36, 113-134 (1848); “Uber eine particulire Losung der partiellen
Differentialgleichung 0%y + %z‘; + 9V in. C. G. J. Jacobi’s Gesammelte Werke (C. G. J. Jacobi and

ox2 922

C. W. Borchardt, eds.), Vol. 2, Verlag von G. Reimer, Berlin (1882), pp. 191-216.



	Solutions of the sine-Gordon equation with a variable amplitude
	Abstract
	1. Introduction
	2. Functionally independent solutions of the SG equation with a variable amplitude
	2.1. Solution with one ansatz
	2.2. Solutions with two ansatzes

	3. Conclusion
	Acknowledgments
	References


