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SUBDIFFUSION KINETICS OF NANOPRECIPITATE GROWTH AND

DESTRUCTION IN SOLID SOLUTIONS

R. T. Sibatov∗ and V. V. Svetukhin∗

Based on fractional differential generalizations of the Ham and Aaron–Kotler precipitation models, we

study the kinetics of subdiffusion-limited growth and dissolution of new-phase precipitates. We obtain

the time dependence of the number of impurities and dimensions of new-phase precipitates. The solutions

agree with the Monte Carlo simulation results.
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1. Introduction

As is known, diffusion models were successfully used to describe the decomposition of supersaturated
solid solutions (precipitation) at the stage of new-phase precipitate growth [1]–[10]. They are based on the
concept of normal impurity diffusion. But a series of experimental facts demonstrate anomalous diffusion
(predominantly subdiffusion) of impurities and defects in various materials [11]–[15]. It is conventionally
characterized using the law of expansion of the diffusion packet Δ(t) ∝ tα/2.

Classical diffusion (α = 1) is based on Gaussian statistics and the second Fick law, which lead to
the dependence Δ(t) =

√
〈x2(t)〉 ∝ t1/2 [16]. The diffusion packet width increases with time more slowly

(subdiffusion) in the case 0 < α < 1 and more rapidly (superdiffusion) in the case α > 1 than in the normal
case. Equations containing fractional derivatives form the mathematical basis of anomalous self-similarity
diffusion [14], [17], [18].

Existing diffusion models of precipitation rather incompletely reflect the properties of transport phe-
nomena occurring in actual materials, for which the presence of disorder leads to a significant change in the
diffusion type [12], [13]. Using diffusion equations containing fractional derivatives allows considerably sim-
plifying the consideration of complex phenomena, such as diffusion in inhomogeneous media and diffusion
along grain boundaries and dislocations [14], [18].

Here, we study the subdiffusion-limited kinetics of the growth and decomposition of new-phase precip-
itates using fractional differential generalizations of classical models of precipitate growth and dissolution
in solid solutions [2], [3], [7]. As a tool for describing anomalous diffusion in disordered media, we use the
dispersive transport theory developed in [18]–[21].

We compare the analytic solutions with the results of a Monte Carlo simulation of the process.
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2. Random walks with impurity localization

To describe hereditary particle diffusion (diffusion with a delay related to localization times), an integro-
differential equation of the form

∂ρ(r, t)
∂t

= C

∫ t

0

dτ Q(t − τ)∇2ρ(r, t) (1)

is often used [14], [22], where Q(t) is the memory kernel and ρ is the total particle concentration (localized
and mobile). In this case, the Fick law j(r, t) = −D∇ρ(r, t) is inapplicable, and the generalized Fick
law must be used [23]. Equation (1) can be obtained using the continuous-time random walk (CTRW)
model [24]–[29]. It is assumed that particles change their positions by hopping at arbitrary times; the
intervals between hops (waiting times) are independent equally distributed random variables τ .

The integral equation of the CTRW model for the distribution density of the walking-particle coordinate
x at the instant t has the form [29]

ρ(r, t) = Ψ(t)δ(r) +

t∫

0

dt′ ψ(t′)
∫

dr′ w(r′)ρ(r − r′, t − t′), (2)

where ψ(t) is the density of the residence time distribution for particles in the localized states, Ψ(t) =∫ ∞
t

dτ ψ(τ) is the additional distribution function, and w(r) is the density of elementary displacement
distribution. It is assumed that the particle is in the localized state at the coordinate origin at t = 0.

The Fourier–Laplace transformation of Eq. (2) leads to the algebraic relation from which the image of
the function ρ(r, t) (the Montroll–Weiss formula [30]) can be found,

˜̂ρ(k, s) =
Ψ̃(s)

1 − ŵ(k)ψ̃(s)
, ˜̂ρ(k, s) =

∫ t

0

dt

∫
dr eikr−stρ(r, t), (3)

where ŵ(k) is the Fourier transform of the function w(r) and Ψ̃(s) is the Laplace transform of Ψ(t) related
to the Laplace transform of the distribution density by the expressions

Ψ̃(s) =
1 − ψ̃(s)

s
, ψ̃(s) = 1 − sΨ̃(s). (4)

Substituting the expansion of the characteristic function of the displacement distribution density with a
zero mean and the finite dispersion ŵ(k) ∼ 1 − C|k|2 for small |k| and expression (4) in Montroll–Weiss
equation (3) leads to an equation that can be written in the two equivalent forms

[
s + C

ψ̃(s)

Ψ̃(s)
|k|2

]
ρ̃(k, s) = 1, (5)

[
sΨ̃(s)
ψ̃(s)

+ C|k|2
]
ρ̃(k, s) =

Ψ̃(s)
ψ̃(s)

. (6)

The inverse Fourier–Laplace transformation of the first of them leads to hereditary diffusion equation (1),
where the image of the memory kernel has the form Q̃(s) = ψ̃(s)/Ψ̃(s). For Eq. (6), we can write

∂

∂t

∫ t

0

dτ ρ(r, τ)Φ(t − τ) − C∇2ρ(r, t) = δ(r)Φ(t), (7)
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where Φ(t) is the original for the Laplace image Φ̃(s) = Ψ̃(s)/ψ̃(s).
It can be shown [17] that requiring the Green’s function of Eq. (1) to be self-similar leads to the

fractional differential diffusion equation

∂ρ(r, t)
∂t

= Cα∇2
0D

1−α
t ρ(r, t). (8)

Here,

0D
α
t ρ(r, t) =

1
Γ(1 − α)

∂

∂t

∫ t

0

dτ
ρ(r, τ)

(t − τ)α

is the Riemann–Liouville fractional derivative [31]–[33]. The derivative order is determined by the dispersion
parameter 0 < α ≤ 1, which can be found from the experiment. The fundamental solutions of this equation
were given in [17], [31]. Fractional differential equation (8) can be derived as an asymptotic form of Eq. (1)
in the case of a power series distribution of localization times:

Ψ(t) = P{τ > t} ∝ t−α, α > 0, t → ∞. (9)

Indeed, substituting the expressions for the Laplace transforms ψ̃(s) = 1 − bαsα and Ψ̃(s) = bαsα−1 in
Eq. (5) in the asymptotic form as s → 0 leads to the expression

[s + Cαs1−α|k|2]ρ̃(k, s) = 1, Cα =
C

bα
, (10)

whose inverse Laplace transform gives Eq. (8) with the initial condition ρ(r, t)|t=0 = δ(r).
We note that it is convenient to represent the subdiffusion equation in form (8) in order to write the

continuity equation
∂ρ

∂t
+ div j = 0, (11)

where the particle current density is expressed in terms of the concentration using the generalized Fick
law [23]

j = −C 0D
1−α
t ∇ρ(r, t). (12)

We use Eqs. (8) and (12) to analyze the kinetics of subdiffusion growth and disssolution of new-phase
particles.

Mechanisms for anomalous diffusion are various [12], [14], [18]. The fact that subdiffusion can be
observed as a result of normal diffusion in an inhomogeneous medium seems noteworthy to us. Figure 1
shows the results of simulating the walk of a particle (impurity atom or vacancy) on a planar realization of
the spinodal decomposition of a two-component solution in the case of equal fractions of the components.
The realization was obtained using the Monte Carlo method in the framework of the Cahn–Hilliard ap-
proach [34]–[36]. In the calculation, we assumed that the cross section for isotropic scattering of the walking
particle depends on the solution composition in accordance with the formula σ = σ0e

−c/c0 , where 0 ≤ c ≤ 1
is the fraction of one of the components. The results in Fig. 1 are given for the case c0 = 0.3. The region
of subdiffusion behavior is observed in the time dependence of the average squared particle displacement.
The diffusion becomes normal at large times. Such behavior can be explained by the presence of regions
with a low diffusion coefficient (c ≈ 1; see Fig. 1b), which serve as a Brownian trap for walking particles.
The times of localization in these regions are distributed in accordance with a truncated power law. The
truncation causes the transition to normal statistics as t → ∞. The presence of the quasinormal diffusion
region for small times is related to the walk in the homogeneous region at the initial stage; the influence of
the inhomogeneity is manifested at large scales.
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Fig. 1. Realization of anomalous diffusion in the case of a particle walk on the planar realization of the

spinodal decomposition of a two-component solution: (a) the pattern of the spinodal decomposition

simulated by the Monte Carlo method in the framework of the Cahn–Hilliard approach, (b) the given

composition dependence of the diffusion coefficient, and (c) the dependence of the average squared

particle displacement during diffusion process obtained by Monte Carlo simulation.

The authors of [37] used a so-called “gradually truncated power law” as a distribution of waiting times.
Representing Ψ(t) in the analogous form

Ψ(t) ∼ At−αe−βt

Γ(1 − α)

and using Eq. (7), we obtain the diffusion equation with a truncated fractional derivative:

e−βt
0D

α
t eβtp(x, t) − Cα,β

∂2

∂x2
p(x, t) = Nδ(x)

t−αe−βt

Γ(1 − α)
. (13)

The generalized Fick law in this case becomes

j(x, t) = −Cα,β
∂

∂t
e−βt

0I
α
t eβt ∂p(x, t)

∂x
, (14)

where 0I
α
t is the Riemann–Liouville fractional integral. Equations (13) and (14) can be used to describe

effects related to suppressing the subdiffusion behavior and passing to Gaussian statistics at large times.
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3. Subdiffusion generalization of the Ham model

The process of precipitate growth controlled by normal diffusion is considered in the Ham theory of
the decomposition of an supersaturated solid solution [2]. Ham primarily considered the boundary-value
problem for diffusion equation (8) under the condition that the size of a new-phase precipitate changes
very slowly. This is true if the nucleus size is small compared with the size of the cell in which the growth
is considered and if the density of new-phase precipitates significantly exceeds that of impurities in the
matrix. The boundary conditions formulated for the normal diffusion equation in [2] have the forms

ρ(r(S), t) = ρI, nT∇ρ(r(T ), t) = 0.

The first condition means that the solution density on the precipitate surface is equal to the equilibrium
quantity ρI with a constant value under given external conditions. It was assumed in [2] that the new-
phase precipitate has a spherical shape (S is the spherical cluster surface) and the cluster size is small
compared with the distance between the clusters. Nuclei are distributed uniformly over the sample, and
the sample can therefore be divided into cells. It can be assumed that new phase precipitates are located
at the centers of these cells and the boundaries T are the surfaces of the Wigner–Seitz cells. The second
boundary condition therefore suggests that the solution concentrations on both sides of the boundary are
approximately the same, and there is no particle flux from one cell to another.

Solving the boundary value problem under the indicated assumptions, Ham showed [2] that at the
cluster boundary,

∇ρ(r, t)|r=rc ≈ ρ̄(t)
rc

, (15)

where ρ̄(t) is the cell-averaged density of “monomers” (nonprecipitated particles). An analogous consider-
ation of an equivalent boundary value problem, but for fractional differential equation (8), led us to the
same expression [38].

Integrating continuity equation (11), where j is determined in accordance with generalized Fick law (12),
over the volume of an equivalent sphere using the Gauss theorem, we obtain the relation

dN

dt
+

∫

S

dSCα 0D
1−α
t ∇ρ(r, t) = 0. (16)

Here, the integral is taken over the cell and cluster surfaces, and the flux through the cell surface is zero
(the second boundary condition). Only the integral over the spherical precipitate surface remains. The
integration domain varies with time because the clusters grow. In Eq. (16), N is the number of “free”
(nonprecipitated) particles in the cell, which is related to the average concentration by the expression

N = ρ̄(t)
4
3
πr3

s . (17)

In view of the spherical symmetry, the particle concentration on the surface is uniform. Consequently,
taking the surface integral in (16) reduces to multiplying the integrand by the sphere area; using (17), we
obtain

4
3
πr3

s

dρ̄(t)
dt

= −4πr2
cCα 0D

1−α
t ∇ρ(r, t). (18)

Substituting relation (15) in the right-hand side of Eq. (18), we obtain the equation

r3
s

dρ̄(t)
dt

= −3rcCα 0D
1−α
t ρ̄(t). (19)
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From the conservation law for the total number of particles (also free in the cluster), we have

4π

3
ρc[r3

c (t) − r3
c (0] =

4π

3
r3
s [ρ0 − ρ̄(t)]. (20)

The left-hand side in this relation is the number of particles added to the cluster during the time t; it is
expressed in terms of the variation in the cluster volume. Here, ρc is the average particle concentration
in the cluster. The right-hand side is approximately equal to the same number (we neglect the size of the
spherical precipitate) but expressed in terms of the variation in the density of “free” particles in the matrix.

From relation (20), we obtain

rc(t) =
[
r3
c (0) +

r3
s

ρc
(ρ0 − ρ̄(t))

]1/3

. (21)

We substitute this expression in relation (19) and obtain the fractional differential equation describing the
kinetics of new-phase precipitate growth controlled by subdiffusion:

dρ̄(t)
dt

= −3Cα

r3
s

[
r3
c (0) +

r3
s

ρc
(ρ0 − ρ̄(t))

]1/3

0D
1−α
t ρ̄(t). (22)

This equation can be solved using one of the specially developed numerical methods for fractional differential
equations [39]–[42]. An asymptotic analysis of formula (22) in [38] showed that for rather small t, if we set
ρ̄(t) ≈ ρ(0), the solution can be represented in the form

ρ̄(t) ≈ ρ0 exp
{
−

(
2Cα(α)

r2
s

)3/2√
ρ0

ρc

t3α/2

[Γ(α + 1)]3/2

}
. (23)

This expression is the generalized Ham formula. We note that the diffusion coefficient Cα is also determined
by a formula that differs from the classical formula (see [17] for the details). For large t, we have ρ̄(t) � ρ0,
and from Eq. (22), we find that the solution is expressed in terms of a special function, the Mittag-Leffler
function [43]

Eα(x) =
∞∑

n=0

xn

Γ(an + 1)
, 0 < α < 1,

which plays an important role in the fractional differential calculus [31]. The solution is given by the formula

ρ̄(t) = ρ0Eα(−Ktα) ∼ ρ0

K

t−α

Γ(1 − α)
, t � K−1/α. (24)

Here,

K =
3Cα

r3
s

[
r3
c (0) +

r3
s

ρc
ρ0

]1/3

.

The change in the sizes of new-phase precipitates can be calculated using relation (21). For small
times, we obtain

rc(t) = [r3
c (0) + R3]1/3, (25)

where

R =

√
2Cα(α)
Γ(α + 1)

ρ0

ρc
tα/2. (26)

For large times, we obtain

rc(t) =
[
r3
c (0) + r3

s

ρ0

ρc

(
1 − Eα(−Ktα)

)
]1/3

. (27)

Figure 2 shows the comparison of analytic solutions (25) with the numerical solutions for Eqs. (21)
and (22) and with the result of the Monte Carlo simulation (see Fig. 2b) described in the next section.
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Fig. 2. (a) The time dependence of the precipitate radius for different values of α: the lines

correspond to the graphs of function (25), and the points correspond to the solution of (21), where

ρ̄(t) was found using the finite-difference numerical scheme for fractional differential equation (22).

The chosen parameters are rc(0) = 0.1 nm, rs = 100 nm, and ρc/ρ0 = 100. (b) Solution (25) compared

with the result of the Monte Carlo simulation in the case α = 0.4.

4. Monte Carlo simulation in the framework of the Ham approach

The Monte Carlo algorithm for solving an integro-differential equation with a fractional derivative
proposed in [44] was based on using the model of the fractional Poisson process [45]. This algorithm was
used to solve the dispersive transport equation for disordered semiconductors. Here, we use this algorithm
to calculate the many-particle problem of the subdiffusion decomposition of solid solutions at the stage of
growth of new-phase particles with different shapes. Spherical-precipitate growth was modeled in [38].

The process of the growth of new-phase particles limited by subdiffusion was modeled as follows. An
ensemble consisting of Np particles uniformly distributed in a cubic cell of size L was generated. This cell
contained a new-phase nucleus at its center. We assigned each particle coordinates xi, yi, and zi and a time
Ti of localization in a trap randomly selected according to the law [45] (here and hereafter, the equality
sign d= denotes coincidence between the distributions)

T
d=

| log U1|1/α

μ1/α

sin(απU2)[sin((1 − α)πU2)]1/α−1

[sin(πU2)]1/α[log U3]1/α−1
, (28)

where U1, U2, and U3 are independent random numbers uniformly distributed on the interval (0, 1). For
α = 1, this algorithm reduces to the well-known algorithm for modeling the random quantity T

d= | log U |/μ

with the exponential distribution. The distribution of waiting times (28) is shown in Fig. 3a. For all values
0 < α < 1, the function Ψ(t) is characterized by the power asymptotic behavior t−α as t → ∞. For α → 1,
we have Ψ(t) → e−μt.

The set of particles was ranked in accordance with the increase in Ti. Number 1 was assigned to the
particle with the smallest waiting time, and so on. Naturally, the particle with the smallest T escapes
from the trap before the other particles, i.e., the hop into one of the neighboring free sites is randomly
selected for the particle with number 1. If the particle enters the site adjoining the new-phase precipitate,
it becomes part of it and leaves the ensemble of “free” particles. The time of particle attachment was fixed.
The order of all remaining particles decreases by unity. The cluster radius was recalculated in accordance
with its density. Of course, the attachment conditions can be modified. Primarily, we were interested in the
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Fig. 3. Results of the Monte Carlo simulation of the kinetics of growth of precipitates with different

shapes in the framework of the subdiffusion generalization of the Ham approach: (a) the additional

function of the waiting time distribution and (b–f) the time dependence of the decrease in the degree

of supersaturation in the case of precipitates with different shapes and growth directions, (b) spherical

(isotropic growth), (c) cylindrical (growth in height), (d) disk-shaped (increase in radius), (e) rod-

shaped (increase in the radius), and (f) flat precipitates.

influence of subdiffusion on the precipitation kinetics. If the site entered by the particle does not adjoin the
new-phase precipitate, then the particle is again localized, and the waiting time ΔT1 added to the current
time T1 is randomly selected. The particle with the assigned time T1 + ΔT1 and new coordinates now
occupies the prescribed place k in the ranked particle row after all particles with a number not exceeding
k decrease their numbers by unity. The process ends when all particles become parts of the new-phase
precipitate.

The important advantage of the algorithm (for example, in comparison with the scheme in which
delocalization rates are randomly selected) is that the counting rate is directly independent of the time of
new-phase precipitate growth and, consequently, independent of α.

Figure 3b shows the results of the numerical calculations of the kinetics of growth of spherical new-
phase precipitates for different values of α. The ratio of the densities is ρc/ρ0 = 6.4, and the number of
particles is Np = 104. The time scale parameter was chosen for each case of α for the curves to be shown in
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the same graph. The “tails” of these dependences are compared with the power laws (24), and the initial
sections are compared with dependences (23). The results of the numerical calculations thus agree with the
analytic solutions. The results for three cell realizations are given for each value of α. Figures 3c–3f show
the simulation results for different precipitate shapes and growth directions; the curves were approximated
by the dependence e−Atnα

in the initial stage (the values of n are shown in the figure) and by the dependence
t−α in the final stage.

5. Subdiffusion generalization of the Aaron–Kotler model

The Stefan boundary value problem was formulated in [6], [7] to describe the evolution of an isolated
spherical precipitate in an infinite matrix: it is necessary to solve the equation of normal isotropic diffusion
with the boundary conditions

ρ(r, t)|r=R = ρI, ρ(r, t)|r→∞ = ρM, (29)

(ρp − ρI)
dR

dt
= D

∂ρ

∂r

∣
∣
∣
∣
r=R

, t > 0, (30)

and the initial condition
ρ(r, t)|t=0 = ρM, r > R. (31)

Here, ρp and ρM are the respective particle concentrations in the precipitate and the matrix at infinity, and
ρI is the equilibrium concentration on the precipitate surface on the matrix side.

We modify this problem for the case of the subdiffusion-limited decomposition (or dissolution) of the
spherical precipitate. We write the equation of isotropic subdiffusion in spherical coordinates:

∂ρ

∂t
= Cα 0D

1−α
t

[
∂2ρ

∂r2
+

2
r

∂ρ

∂r

]
. (32)

Boundary conditions (29) are still applicable in the subdiffusion case, but expression (30) for the boundary
motion in accordance with relations (11) and (12) is replaced with the equation

(ρp − ρI)
dR

dt
= Cα 0D

1−α
t

[
∂ρ

∂r

]

r=R

(33)

or the equation (in the case ρI = const)

(ρp − ρI) 0D
α
t R = Cα

∂ρ

∂r

∣∣
∣
∣
r=R

. (34)

We solve this problem for the fractional differential equation of diffusion in the “stationary interface”
approximation assuming slow motion of the precipitate boundary, i.e., satisfaction of the condition |ρM −
ρI| � ρp − ρI. In the framework of this approximation, the diffusion equation with the given boundary
conditions at the fixed boundary R = const for an arbitrary R is solved first. Then, after the solution is
substituted in Eq. (33), the dependence R(t) is found. Passing to the function u(r, t) = r[ρ(r, t) − ρM], we
obtain the equation

∂u

∂t
= Cα 0D

1−α
t

∂2u

∂r2
(35)

with the boundary conditions

u(r, t)|r=R = R(ρI − ρM), u(r, t)|r→∞ = 0, t > 0, (36)
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and the initial condition u(r, t)|t=0 = 0 for r > R. If the last condition is taken into account, then
relation (35) can be rewritten in the form

0D
α
t u = Cα

∂2u

∂r2
, (37)

and its Laplace transformation leads to the equation

sαũ(r, s) − Cα
∂2ũ(r, s)

∂r2
= 0.

With the indicated boundary conditions taken into account, the solution of this equation has the form

ũ(r, s) =
R(ρI − ρM)

s
exp

{
−(r − R)

sα/2

√
Cα

}
.

Passing to the concentration transform, we obtain

ρ̃(r, s) =
ρM

s
+

ũ(r, s)
r

=
ρM

s
+

R(ρI − ρM)
rs

exp
{
−(r − R)

sα/2

√
Cα

}
.

The inverse Laplace transformation leads to the expression

ρ(r, t) = ρM +
R(ρI − ρM)

r

∫ t

0

dτ

(
r − R√

Cα

)−2/α

g
(α/2)
+

(
τ

[
r − R√

Cα

]−2/α)

or

ρ(r, t) = ρM +
R(ρI − ρM)

r
G

(α/2)
+

(
t

[
r − R√

Cα

]−2/α)
. (38)

Here, g
(γ)
+ (t) is the one-sided stable density with the characteristic exponent γ (subordinator), and G

(γ)
+ (t)

is the corresponding distribution function [17].
The value of the concentration gradient

∂ρ

∂r
= − R(ρI − ρM)

r2
G

(α/2)
+

(
t

[
r − R√

Cα

]−2/α)
−

− 2t

α
√

Cα

(
r − R√

Cα

)−2/α−1
R(ρI − ρM)

r
g
(α/2)
+

(
t

[
r − R√

Cα

]−2/α)

on the precipitate surface r = R (when the asymptotic form of the stable distribution density [17] is used)
becomes

∂ρ

∂r

∣
∣
∣
∣
r→R

=
ρM − ρI

R
+

t−α/2(ρM − ρI)
Γ(1 − α/2)

√
Cα

.

Substituting the last relation in Eq. (34) for the function R(t) leads to the equation

0D
α
t R = Cα

β(R)
R

+
√

Cα
β(R)t−α/2

Γ(1 − α/2)
, β(R) =

ρM − ρI(R)
ρp − ρI(R)

. (39)

In the case where α = 1 and C1 = D, we have

ρ(r, t) = ρM +
R(ρI − ρM)

r
G

(1/2)
+

(
t

[
r − R√

D

]−2)
= ρM +

R(ρI − ρM)
r

erfc
(

r − R

2
√

Dt

)
,

855



i.e., we obtain the classical result, which is applicable for normal diffusion [6].
We consider the case where the growth of the spherical new-phase precipitate is controlled by subdif-

fusion under the condition ρI(R) = const and accordingly β = (ρM − ρI)/(ρp − ρI) = const. We seek the
solution of Eq. (39) in the form

R(t) = λ(Cαtα)1/2. (40)

Substituting this function and the fractional derivative of it

0D
α
t R =

λC
1/2
α

Γ(1 − α)
d

dt

∫ t

0

dτ τα/2(t − τ)α =
(1 − α/2)λC

1/2
α

Γ(1 − α)
t−α/2B

(
1 +

α

2
; 1 − α

)
=

=
αΓ(α/2)

Γ(1 − α/2)
λC1/2

α t−α/2

in formula (39) leads to the quadratic equation

αΓ
(

α

2

)
λ2 − βλ − Γ

(
1 − α

2

)
β = 0,

which has the positive root

λ =
β +

√
β2 + 4βπα/ sinπα

2αΓ(α/2)
. (41)

Hence, expression (40) gives the law of subdiffusion-limited growth of a spherical precipitate for constant
β and generalizes the expression R(t) ∝ t1/2 obtained for normal diffusion [6].

For spherical precipitates, the equilibrium concentration ρI of particles near the precipitate surface on
the side of the matrix is given by the Gibbs–Thomson expression

ρI = ρ∞I exp
(

A

kTR

)
, (42)

where A is a composition-dependent constant. For Cu in α-Fe, A = 672.51 k [46].
Figure 4 shows the results of the Monte Carlo simulation of the spherical precipitate dissolution for

normal impurity diffusion with the Gibbs–Thomson effect taken into account. Equation (39) for the function
R(t) can also be solved using one of the numerical methods that were especially developed for fractional-
order differential equations [39]–[42].

The results of the solution using the finite-difference method (after the approximation of the Riemann–
Liouville fractional derivative by the Grünwald–Letnikov derivative) are shown in Fig. 5. The kinetics of
dissolution and growth of spherical precipitates with decreasing α decreases (becomes more gently sloping).
In the case of growth, the curves in the large-time limit tend to the dependence tα/2. In the limit α → 1,
the solutions found using the special numerical algorithm for fractional values of α approach the result
calculated by the standard finite-difference method in the case α = 1, which is in turn close to the curve
found using the Monte Carlo simulation. This indicates satisfaction of the correspondence principle and
the applicability of the stationary interface approximation for the chosen parameters.

6. Conclusions

We have considered the kinetics of subdiffusion-limited growth and dissolution of new-phase particles
in solid solutions using an up-to-date approach based on kinetic equations with fractional-order derivatives
and the corresponding algorithms for the Monte Carlo simulation. We considered generalizations of the well-
known Ham [2], [3] and Aaron–Kotler [6], [7] precipitation models. The solutions obtained in the framework
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a b

Fig. 4. Results of the Monte Carlo simulation of spherical precipitate dissolution for normal impurity

diffusion with the Gibbs–Thomson effect taken into account: (a) evolution of the impurity distribution

near the precipitate projected on the xy plane and (b) the kinetics of diffusion-limited dissolution at

different temperatures.

R0 = 6 nm, CM = 0.127C1, T = 380K R0 = 2nm, CM = 3C1, T = 380K

Monte Carlo
(Maple solution) (Maple solution)

a b

Fig. 5. Kinetics of subdiffusion (a) dissolution and (b) growth of spherical precipitates for different

anomalous-diffusion exponents α calculated in the framework of the fractional differential generaliza-

tion of the Aaron–Kotler model.

of these generalizations agree with the results of the Monte Carlo simulation. Using the simulation, we
considered the kinetics of growth of precipitates with different shapes: spherical, disk-shaped, cylindrical,
and rod-shaped ones and some others. As the precipitates grow, the initial section of the supersaturation
decrease curve is described by the dependence ∼ e−ktnα

, and the large-time asymptotic behavior is of the
power-law type with the exponent −α for all considered shapes. In the generalized Aaron–Kotler model, the
analytic results were mainly obtained in the stationary interface approximation. The particle profiles in the
matrix were expressed in terms of stable distributions that are a generalization of the Gaussian distribution.
If the Gibbs–Thomson effect is not taken into account, then we found that in the subdiffusion generalizations
of the Ham and Aaron–Kotler models, the kinetics of the spherical cluster growth is described by the power
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law ∝ tα/2. If the Gibbs–Thomson effect is taken into account, then the time dependence of the radius
turns out to be steeper in the initial growth stages and becomes the power-law dependence tα/2 in the
large-time limit.

The obtained results can turn out to be useful for analyzing experimental and model data on precipi-
tation. In particular, the existing data for the Cu–Fe system [47]–[51] are evidence of the power-law growth
of spherical Cu precipitates in α-Fe with the exponent 0.4, which contradicts the results of the mentioned
normal-diffusion models and the classical coalescence model. The data in [52] on Si nanoprecipitate dis-
solution in an Al matrix at annealing temperatures of 500–560◦C showed behavior that is slower than is
predicted by the classical diffusion model of spherical precipitate dissolution [53]. In connection with this,
we plan to devote the next paper to a detailed analysis of existing experimental data in the framework of
the presented fractional differential models.
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