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WEAKLY PERIODIC GIBBS MEASURES OF THE ISING MODEL

WITH AN EXTERNAL FIELD ON THE CAYLEY TREE

M. M. Rahmatullaev∗

We study weakly periodic Gibbs measures of the Ising model with an external field on the Cayley tree.

We prove that under some conditions on the model parameters, there exist at least two weakly periodic

Gibbs measures for the antiferromagnetic Ising model with an external field.
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1. Introduction

One of the main problems emerging when studying a Hamiltonian is to describe all limit Gibbs measures
corresponding to this Hamiltonian. It is known that the set of such measures for the Ising model constitutes
a nonempty, convex, compact subset in the set of all probability measures. The problem of describing all
elements of this subset is still far from completion. For an Ising model with a zero external field, translation-
invariant (see, e.g., [1]–[4]), periodic [1], [5], and continuum sets of nonperiodic [1], [5] Gibbs measures for
the Ising model on the Cayley tree were described. Translation-invariant and periodic Gibbs measures for
the Ising model with an external field were analyzed in [1], [2], [6], [7].

To extend the set of Gibbs measures, the notion of periodic Gibbs measures was generalized to that of
weakly periodic Gibbs measures in [8]–[11], where the existence of such new measures was proved for the
Ising model on the Cayley tree. Under some conditions on the parameters of some invariant sets, weakly
periodic (nonperiodic) Gibbs measures for the Ising model on the Cayley tree were found in [8] and [9].
But weakly periodic Gibbs measures for Ising models with external fields have not yet been studied.

Here, we consider the Ising model with an external field and prove that weakly periodic (nonperiodic)
Gibbs measures exist under some conditions on the model parameters.

The paper is organized as follows. We give necessary definitions and formulate the problem in Sec. 2
and devote Sec. 3 to studying weakly periodic Gibbs measures corresponding to normal divisors of index
two.

2. Definitions and the problem setting

Let τk = (V, L), k ≥ 1, be the Cayley tree of order k, i.e., an infinite tree graph every vertex of which
is incident to exactly k+1 edges. Here, V is the set of vertices, and L is the set of edges of the tree τk. It
is known that τk can be represented as Gk, the free product of k+1 cyclic groups of the second order. For
an arbitrary point x0 ∈ V , we set

Wn = {x ∈ V | d(x0, x) = n}, Vn =
n⋃

m=0

Wm, Ln = {〈x, y〉 ∈ L | x, y ∈ Vn},
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where d(x, y) is the distance between the vertices x and y in the Cayley tree, i.e., the number of edges in
the shortest path joining the vertices x and y.

Let Φ = {−1, 1}, and let σ ∈ Ω = ΦV be a configuration, i.e.,

σ = {σ(x) ∈ Φ, x ∈ V }.

Let A ⊂ V . We let ΩA denote the space of configurations defined on the set A and taking values in
Φ = {−1, 1}.

We consider the Hamiltonian of the Ising model with an external field,

H(σ) = −J
∑

〈x,y〉∈L

σ(x)σ(y) − λ
∑

x∈V

σ(x), (1)

where J, λ ∈ R and 〈x, y〉 are nearest neighbors.
Let hx ∈ R, x ∈ V . For every n, we then define a measure μn on ΩVn setting

μn(σn) = Z−1
n exp

{
−βH(σn) +

∑

x∈Wn

hxσ(x)
}

, (2)

where β = 1/T (T is temperature, T > 0), σn = {σ(x), x ∈ Vn} ∈ ΩVn , Z−1
n is the normalizing factor, and

H(σn) = −J
∑

〈x,y〉∈Ln

σ(x)σ(y) − λ
∑

x∈Vn

σ(x).

The compatibility condition for the measures μn(σn), n ≥ 1, is

∑

σ(n)

μn(σn−1, σ
(n)) = μn−1(σn−1), (3)

where σ(n) = {σ(x), x ∈ Wn}.
Let μn, n ≥ 1, be a sequence of measures on the sets ΩVn that satisfy compatibility condition (3). By the

Kolmogorov theorem, we then have a unique limit measure μ on ΩV = Ω (called the limit Gibbs measure)
such that μ(σn) = μn(σn) for every n = 1, 2, . . . . It is known that measures (2) satisfy condition (3) if and
only if the set h = {hx, x ∈ Gk} of quantities satisfies the condition

hx = λβ +
∑

y∈S(x)

f(hy, θ), (4)

where S(x) is the set of children of the point x ∈ V (see [1]). Here,

f(x, θ) = arctanh(θ tanhx), θ = tanh(Jβ).

Let Gk/Ĝk = {H1, . . . , Hr} be the quotient group, where Ĝk is a normal divisor of index r ≥ 1.

Definition 1. We call a set h = {hx, x ∈ Gk} of quantities a Ĝk-periodic set if hxy = hx for all x ∈ Gk

and y ∈ Ĝk. We call a Gk-periodic measure a translation-invariant measure.

For x ∈ Gk, we introduce the notation x↓ = {y ∈ Gk | 〈x, y〉} \ S(x).
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Definition 2. We call the set h = {hx, x ∈ Gk} of quantities a Ĝk-weakly periodic set if hx = hij for
x ∈ Hi and x↓ ∈ Hj and any x ∈ Gk.

We note that a weakly periodic set h coincides with the standard periodic set (see Definition 1) if the
value hx is independent of x↓.

Definition 3. We call a measure μ Ĝk-(weakly) periodic if it corresponds to a Ĝk-(weakly) periodic
set h of quantities.

In this paper, we study weakly periodic Gibbs measures and demonstrate that such measures exist for
the Ising model with an external field.

3. Weakly periodic measures

The difficulty in the problem of describing weakly periodic Gibbs measures depends on the structure
and index of the normal divisor with respect to which periodicity is required. It was proved in [12] that
there are no normal divisors with an odd index differing from unity for the group Gk. We therefore consider
normal divisors with even indices. Here, we restrict ourself to the case of index two.

We describe Ḡk-weakly periodic Gibbs measures for any normal divisor of Ḡk of index two. We note
that any normal divisor of the group Gk of index two has the form

HA =
{

x ∈ Gk

∣∣∣∣
∑

i∈A

wx(ai) is even
}

,

where ∅ �= A ⊆ Nk = {1, 2, . . . , k + 1} and wx(ai) is the number of letters in the word x ∈ Gk [1].
Let the set A ⊂ {1, 2, . . . , k + 1}, and let HA be the corresponding normal divisor of index two. We

note that in the case |A| = k + 1 (where |A| is the cardinality of a set A), i.e., in the case where A = Nk,
the notion of weak periodicity coincides with the notion of the standard periodicity. We therefore consider
a set A ⊂ Nk such that A �= Nk. By virtue of (4), a Gk-weakly periodic set h is then

hx =

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

h1, x ∈ HA, x↓ ∈ HA,

h2, x ∈ HA, x↓ ∈ Gk \ HA,

h3, x ∈ Gk \ HA, x↓ ∈ HA,

h4, x ∈ Gk \ HA, x↓ ∈ Gk \ HA,

(5)

where hi, i = 1, 4, satisfy the system of equations

h1 = λβ + |A|f(h3, θ) + (k − |A|)f(h1, θ),

h2 = λβ + (|A| − 1)f(h3, θ) + (k + 1 − |A|)f(h1, θ),

h3 = λβ + (|A| − 1)f(h2, θ) + (k + 1 − |A|)f(h4, θ),

h4 = λβ + |A|f(h2, θ) + (k − |A|)f(h4, θ).

(6)

We now consider the map W : R
4 → R

4 determined by system (6) such that system (6) is the equation
h = W (h). The map W has the invariant subsets

I1 = {h ∈ R
4 : h1 = h2 = h3 = h4}, I2 = {h ∈ R

4 : h1 = h4, h2 = h3}. (7)
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Theorem 1. We have the following statements:

1. For an Ising model with external fields, all HA-weakly periodic Gibbs measures on the sets I1 and I2

are translation-invariant.

2. For |A| = k and θ > 0, all HA-weakly periodic Gibbs measures are translation-invariant.

Proof. 1. It suffices to demonstrate that system of equations (6) has a unique solution h1 = h2 =
h3 = h4. The proof of the theorem for the invariant subset I1 is obvious. We now prove the theorem for
the invariant subset I2.

Using the formula

f(h, θ) = arctanh(θ tanhh) =
1
2

log
(1 + θ)e2h + (1 − θ)
(1 − θ)e2h + (1 + θ)

and introducing the notation α = (1 − θ)/(1 + θ) and zi = e2hi , i = 1, 4, instead of (6), we obtain the
system of equations

z1 = e2λβ

(
z3 + α

αz3 + 1

)|A|(
z1 + α

αz1 + 1

)(k−|A|)
,

z2 = e2λβ

(
z3 + α

αz3 + 1

)|A|−1(
z1 + α

αz1 + 1

)(k+1−|A|)
,

z3 = e2λβ

(
z2 + α

αz2 + 1

)|A|−1(
z4 + α

αz4 + 1

)(k+1−|A|)
,

z4 = e2λβ

(
z2 + α

αz2 + 1

)|A|(
z4 + α

αz4 + 1

)(k−|A|)
.

(8)

Straightforward but cumbersome algebra brings this system to the form

z1 − z2 = A1(z3 − z1),

z1 − z3 = A2(z1 − z4) + B2(z3 − z4) + C2(z3 − z2),

z1 − z4 = A3(z1 − z4) + B3(z3 − z2),

z2 − z3 = A4(z3 − z2) + B4(z1 − z4),

z2 − z4 = A5(z3 − z2) + B5(z1 − z2) + C5(z1 − z4),

z3 − z4 = A6(z4 − z2),

(9)

where

Ai = (1 − α2)Ãi(z1, z2, z3, z4),

Bi = (1 − α2)B̃i(z1, z2, z3, z4),

Ci = (1 − α2)C̃i(z1, z2, z3, z4),

and Ãi, B̃i, and C̃i are positive for all i = 1, 6.
For the invariant subset I2, we have h2 = h3, whence the equality z1 − z2 = A1(z3 − z1) implies that

z1 = z2 for α < 1.
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In the antiferromagnetic case, i.e., for α ∈ (1, +∞), we obtain Ai, Bi, Ci < 0 for all i. We then have
h2 = h3, i.e., z2 = z3, on the invariant subset I2, and by virtue of the relation z2 − z4 = A3(z1 − z4), we
therefore obtain z1 = z4. Hence, for all α ∈ (0, +∞), we have z1 = z2, whence z1 = z2 = z3 = z4 on the
subset I2.

2. From (6) in the case |A| = k, we obtain

h2 = λβ + (k − 1)f(h3, θ) + f(λβ + kf(h3, θ), θ),

h3 = λβ + (k − 1)f(h2, θ) + f(λβ + kf(h2, θ), θ).
(10)

We now prove that this system has only solutions with h2 = h3. Let h2 > h3. From (10), we then have

h2 − h3 = (k − 1)
(
f(h3, θ) − f(h2, θ)

)
+ f(λβ + kf(h3, θ), θ) − f(λβ + kf(h2, θ), θ). (11)

It is easy to see that the function f increases monotonically for θ > 0. Hence, equality (11) fails because
its left-hand side is positive while its right-hand side is negative. Equality (11) also fails for h2 < h3, and
therefore h2 = h3, which results in translation-invariant solutions of system (6). The theorem is proved.

We next consider an antiferromagnetic Ising model with an external field, i.e., the case α > 1 (θ < 0).
We introduce the notation

a = e2λβ , ϕ(x) =
x + α

αx + 1
.

It is known [1], [6], [7] that in this case, we have a unique translation-invariant Gibbs measure corresponding
to the unique solution of the equation

z = aϕk(z).

We let z∗ denote this solution.
Assuming that |A| = k, we can write system of equations (8) in the form

z1 = aϕk(z3), z2 = aϕk−1(z3)ϕ(z1),

z3 = aϕk−1(z2)ϕ(z4), z4 = aϕk(z2).
(12)

Solving system (12) reduces to analyzing the system of equations

z2 = aϕk−1(z3)ϕ(a(ϕk(z3))),

z3 = aϕk−1(z2)ϕ(a(ϕk(z2))).
(13)

Introducing the notation

ψ(z) = aϕk−1(z)ϕ(a(ϕk(z))), (14)

we reduce system of equations (13) to the form

z2 = ψ(z3), z3 = ψ(z2). (15)

The number of solutions of this system coincides with the number of solutions of the equation ψ(ψ(z)) = z.
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Lemma 1. Let γ : [0, 1] → [0, 1] be a continuous function with a fixed point ξ ∈ (0, 1). Assuming that

the function γ is differentiable at ξ and that γ′(ξ) < −1, we have values x0 and x1 such that the inequalities

0 ≤ x0 < ξ < x1 ≤ 1 hold and γ(x0) = x1 and γ(x1) = x0.

Proof. This lemma is proved in [13].

The following statements hold for function (14): this function is defined on R+, it is bounded and
differentiable, and ψ(z∗) = z∗. By virtue of Lemma 1 for ψ′(z∗) < −1, system of equations (15) has three
solutions: (z∗, z∗), (z0, z1), and (z1, z0), where ψ(z0) = z1 and ψ(z1) = z0. The inequality ψ′(z∗) < −1 is
equivalent to the inequality

k
(1 − α2)2z2(k−1)/k

∗
(αz∗ + 1)4

+ b(k − 1)
(1 − α2)z(k−1)/k

∗
(αz∗ + 1)2

+ b2 < 0, (16)

where b = k
√

a. Hence, (b − b1)(b − b2) < 0, where

b1 =
(k − 1 −

√
k2 − 6k + 1 )(α2 − 1)z(k−1)/k

∗
2(αz∗ + 1)2

,

b2 =
(k − 1 +

√
k2 − 6k + 1 )(α2 − 1)z(k−1)/k

∗
2(αz∗ + 1)2

.

(17)

We have thus proved the following theorem.

Theorem 2. For |A| ≥ 6 and λ ∈ (λ1, λ2), where λ1,2 = (k/2β) log b1,2 and the quantities b1,2 are de-

fined in (17), at least two HA-weakly periodic (nonperiodic) Gibbs measures exist for the antiferromagnetic

Ising model with an external field.

The existence of at least two weakly periodic (nonperiodic) Gibbs measures for the Ising model was
proved in [14], and Theorem 2 generalizes this result to the case of the Ising model with an external field.
Indeed, if we take the Ising model with a zero external field, i.e., with a = 1, then inequality (16) becomes

k
(1 − α)2

(1 + α)2
+ (k + 1)

(1 − α)
(1 + α)

+ 1 < 0.

Hence, α ∈ (α1, α2), where α1,2 = (k − 1 ±
√

k2 − 6k + 1 )/2, i.e., we reproduce the result in [14].

Remark 1. The HA-weakly periodic Gibbs measures obtained in Theorem 2 are new and open a
possibility to describe a continuum of nonperiodic Gibbs measures differing from those previously known.

Acknowledgments. The author thanks Professor U. A. Rozikov for setting the problem and for the
useful advice.

REFERENCES

1. U. A. Rozikov, Gibbs Measures on Cayley Trees, World Scientific, Singapore (2013).

2. P. M. Blekher and N. N. Ganikhodzhaev, Theory Probab. Appl., 35, 216–227 (1990).

3. F. Spitzer, Ann. Probab., 3, 387–398 (1975).

4. S. Zachary, Ann. Probab., 11, 894–903 (1983).

5. U. A. Rozikov, Theor. Math. Phys., 118, 77–84 (1999).

827



6. H. O. Georgii, Gibbs Measures and Phase Transitions (De Gruyter Stud. Math., Vol. 9), de Gruyter, Berlin

(1988).

7. C. Preston, Gibbs States on Countable Sets, Cambridge Univ. Press, London (1974).

8. U. A. Rozikov and M. M. Rakhmatullaev, Theor. Math. Phys., 156, 1218–1227 (2008).

9. U. A. Rozikov and M. M. Rakhmatullaev, Theor. Math. Phys., 160, 1292–1300 (2009).

10. U. A. Rozikov and M. M. Rahmatullaev, Dokl. Akad. Sci. Resp. Uzbekistan, 4, 12–15 (2008).

11. M. M. Rahmatullaev, Uzbek. Math. J., 2, 144–152 (2009).
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