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ONE-DIMENSIONAL TWO-COMPONENT BOSE GAS AND THE

ALGEBRAIC BETHE ANSATZ

N. A. Slavnov∗

We apply the nested algebraic Bethe ansatz to a model of a one-dimensional two-component Bose gas

with a δ-function repulsive interaction. Using a lattice approximation of the L-operator, we find the Bethe

vectors of the model in the continuum limit. We also obtain a series representation for the monodromy

matrix of the model in terms of Bose fields. This representation allows studying an asymptotic expansion

of the monodromy matrix over the spectral parameter.
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1. Introduction

We consider a model of a one-dimensional two-component Bose gas with a δ-function repulsive interac-
tion (TCBG model). This model is a generalization of the Lieb–Liniger model [1], [2] (quantum nonlinear
Schrödinger equation) in which Bose fields have two internal degrees of freedom (colors). This model was
solved by Yang in [3], where the eigenvectors and the spectrum of the Hamiltonian were found. The general
approach for solving the model with n internal degrees of freedom (multicomponent Bose gas) was given
in [4] (also see [5], [6]). The nested algebraic Bethe ansatz was applied to this model in [7], [8]. Our main
goal here is to create a base for calculating form factors of local operators in this model in the framework
of the nested algebraic Bethe ansatz.

The algebraic Bethe ansatz is an effective method for finding the spectra of quantum Hamiltonians. But
from the standpoint of calculating form factors of local operators, applying this method encounters some
difficulties. The main problem is to embed the local operators of the model under consideration into the
algebra of monodromy matrix elements. This problem is solvable in some cases [9], [10]. But constructing
such a solution requires expressing the monodromy matrix T (u) of the model in terms of the R-matrix.
This is not the case with the TCBG model. On the other hand, representations for form factors of local
operators and correlation functions in terms of multiple integrals of the product of the wave functions can
be easily obtained in the framework of the traditional approach. But evaluating those multiple integrals
faces serious technical difficulties, and they have so far been computed only in some relatively simple special
cases [11].

A method for calculating form factors of local operators in models with the GL(3) symmetry was
recently developed in [12]. This method is based on the nested algebraic Bethe ansatz and deals with
partial zero modes of the monodromy matrix elements Tij(u) [13] in a composite model [14]. Most of
the tools in this approach can be used directly in the TCBG model, but some of them should be slightly
modified. In particular, the definition of zero modes should be adjusted. We solve these problems here.

We consider a lattice approximation of the TCBG model. Using the L-operator obtained in [7], [8] we
construct a monodromy matrix and the Bethe vectors. We show that these vectors have a correct continuum
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limit. We also obtain an explicit series representation for the monodromy matrix in terms of local Bose
fields. Using this representation, we can derive an asymptotic expansion of the monodromy matrix over the
spectral parameter. We thus find the zero modes.

The paper is organized as follows. In Sec. 2, we describe a general scheme of the algebraic Bethe ansatz.
We define the Bethe vectors of GL(3)-invariant models and give their representation in a multicomposite
model. Section 3 is devoted to a brief description of the TCBG model. In Sec. 4, we give a lattice
approximation of the TCBG model in the framework of the nested algebraic Bethe ansatz. In Sec. 5,
we consider the continuum limit of the Bethe vectors of the lattice model. In Sec. 6, we obtain a series
representation of the TCBG monodromy matrix. Using this representation, we find an antimorphism
between the Bose fields in Sec. 7 and the zero modes of the monodromy matrix elements in Sec. 8. In
conclusion, we discuss some further applications of the obtained results.

2. Algebraic Bethe ansatz

In this section, we describe an abstract scheme of the algebraic Bethe ansatz, which is applicable to
a wide class of quantum integrable models [15]–[17]. The key objects of the algebraic Bethe ansatz are a
monodromy matrix and an R-matrix. The models considered below are described by the GL(3)-invariant
R-matrix [18], [19] acting in the tensor product V1 ⊗ V2 of two auxiliary spaces Vk ∼ C3, k = 1, 2:

R(x, y) = I + g(x, y)P, g(x, y) =
c

x − y
. (2.1)

In this definition, I is the identity matrix in V1 ⊗ V2, P is the permutation matrix exchanging V1 and V2,
and c is a constant.

The monodromy matrix T (w) satisfies the algebra

R12(w1, w2)T1(w1)T2(w2) = T2(w2)T1(w1)R12(w1, w2). (2.2)

Equation (2.2) holds in the tensor product V1 ⊗ V2 ⊗H, where H is the Hilbert space of the Hamiltonian
of the considered model. The matrices Tk(w) act nontrivially in Vk ⊗ H. We assume that the space H
has a pseudovacuum vector |0〉. Similarly, the dual space H∗ has a dual pseudovacuum vector 〈0|. These
vectors are annihilated by the operators Tij(w), where i > j for |0〉 and i < j for 〈0|. Both vectors are
simultaneously eigenvectors of the diagonal elements of the monodromy matrix,

Tii(w)|0〉 = λi(w)|0〉, 〈0|Tii(w) = λi(w)〈0|, i = 1, 2, 3, (2.3)

where λi(w) are some scalar functions. In the framework of the general scheme of the algebraic Bethe
ansatz, λi(w) remain free functional parameters. In fact, we can always normalize the monodromy matrix
T (w) → λ−1

2 (w)T (w) such that we deal with only the ratios

r1(w) =
λ1(w)
λ2(w)

, r3(w) =
λ3(w)
λ2(w)

. (2.4)

Below, we assume that λ2(w) = 1.
The trace in the auxiliary space V ∼ C

3 of the monodromy matrix trT (w) is called the transfer matrix.
It is the generating functional of the Hamiltonian and all integrals of motion of the model.
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2.1. Notation. We use the same notation and conventions as in [20], [21]. In addition to the function
g(x, y), we also introduce the function

f(x, y) = 1 + g(x, y) =
x − y + c

x − y
. (2.5)

Sets of variables are denoted by a bar, w̄, ū, v̄, etc. Individual elements of the sets are denoted by
subscripts, wj , uk, etc. The expression ūi, for example, means ū \ ui. We also consider partitions of sets
into disjoint subsets and let the symbol ⇒ denote them. Subsets are denoted by superscripts in parenthesis,
ū(j). For example, ū ⇒ {ū(1), ū(2)} means that the set ū is divided into two disjoint subsets ū(1) and ū(2)

such that ū(1) ∩ ū(2) = ∅ and {ū(1), ū(2)} = ū.
To avoid excessively cumbersome formulas, we use a shorthand notation for products of operators or

functions depending on one or two variables: if the arguments of the operators Tij or the functions rk given
by (2.4) are sets of variables, then the product should be taken over the indicated set. For example,

Tij(ū) =
∏

uk∈ū

Tij(uk), r3(ū(1)) =
∏

uj∈ū(1)

r3(uj). (2.6)

A similar convention is applied to the products of the functions f(x, y):

f(z, w̄i) =
∏

wj∈w̄,
wj �=wi

f(z, wj), f(ū, v̄) =
∏

uj∈ū

∏

vk∈v̄

f(uj , vk). (2.7)

2.2. Bethe vectors. The eigenvectors of the transfer matrix are called on-shell Bethe vectors (or
simply on-shell vectors). To find them, generic Bethe vectors should be constructed first. In the framework
of the algebraic Bethe ansatz, generic Bethe vectors are polynomials in the operators Tij with i < j applied
to the pseudovacuum vector. We let Ba,b(ū; v̄) denote them, stressing that they are parameterized by
two sets of complex parameters ū = {u1, . . . , ua} and v̄ = {v1, . . . , vb} with a, b = 0, 1, . . . . Different
representations for Bethe vectors were found in [22]–[25]. Here, we give one of the representations obtained
in [25]:

Ba,b(ū; v̄) =
∑ Kn(v̄(1)|ū(1))

f(v̄, ū)
f(v̄(2), v̄(1))f(ū(1), ū(2))T13(v̄(1))T23(v̄(2))T12(ū(2))|0〉. (2.8)

Here, the sums are taken over partitions of the sets ū ⇒ {ū(1), ū(2)} and v̄ ⇒ {v̄(1), v̄(2)} with 0 ≤ # ū(1) =
# v̄(1) = n ≤ min(a, b). We recall that T13(ū(1)) (and similar expressions) means the product of the
operators T13(u) over the subset ū(1). Finally, Kn(v̄(1)|ū(1)) is the the partition function of the six-vertex
model with domain-wall boundary conditions [26]. Its explicit representation was found in [27]:

Kn(x̄|ȳ) =
( ∏

1≤k<j≤n

g(xj , xk)g(yk, yj)
)

f(x̄, ȳ)
g(x̄, ȳ)

det
n

(
g2(xj , yk)
f(xj , yk)

)
. (2.9)

In particular, K1(x|y) = g(x, y).
A generic Bethe vector becomes on-shell if the parameters ū and v̄ satisfy a system of Bethe equations:

r1(ui) =
f(ui, ūi)
f(ūi, ui)

f(v̄, ui), i = 1, . . . , a,

r3(vj) =
f(v̄j , vj)
f(vj , v̄j)

f(vj , ū), j = 1, . . . , b.

(2.10)

We recall that ūi = ū \ ui and v̄j = v̄ \ vj .
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2.3. Multicomposite model. The properties of local operators in the framework of the algebraic
Bethe ansatz can be studied using a composite model [14]. We suppose that we have a lattice quantum
model with N sites. The monodromy matrix T (u) is then a product of local L-operators,

T (u) = LN (u) · · ·L1(u). (2.11)

We fix an arbitrary site m, 1 ≤ m ≤ N . Then (2.11) can be written as

T (u) = T (2)(u)T (1)(u), (2.12)

where
T (1)(u) = Lm(u) · · ·L1(u), T (2)(u) = LN (u) · · ·Lm+1(u). (2.13)

Representation (2.12) defines a composite model. In the framework of the composite model, the original
matrix T (u) is called the total monodromy matrix, and the matrices T (2)(u) and T (1)(u) are called partial
monodromy matrices. The elements of the partial monodromy matrices T (1)(u) and T (2)(u) act in the
spaces H(1) and H(2) associated with the respective lattice intervals [1, m] and [m + 1, N ]. The elements of
the total monodromy matrix act in the state space H = H(1) ⊗H(2).

In the framework of the algebraic Bethe ansatz, it is assumed that H(1) and H(2) have pseudovacuum
vectors |0〉(k), k = 1, 2, such that |0〉 = |0〉(1) ⊗ |0〉(2). These vectors have properties analogous to (2.3):

T
(k)
ij (u)|0〉(k) = 0, i > j, T

(k)
ii (u)|0〉(k) = λ

(k)
i (u)|0〉(k), k = 1, 2. (2.14)

Similarly to (2.4), we introduce the ratios

r
(k)
1 (w) =

λ
(k)
1 (w)

λ
(k)
2 (w)

, r
(k)
3 (w) =

λ
(k)
3 (w)

λ
(k)
2 (w)

, k = 1, 2. (2.15)

Because of the normalization λ2(u) = 1, we can always set λ
(k)
2 (u) = 1. Below, we also extend conven-

tion (2.6) to products of functions (2.15).
For each partial monodromy matrix T (k)(u), we can construct the corresponding partial Bethe vectors

B
(k)
a,b(ū; v̄). They are given by Eq. (2.8), where we should replace all Tij(u) with T

(k)
ij (u) and |0〉 with

|0〉(k). The main problem considered in the framework of the composite model is to express the total
Bethe vectors Ba,b(ū; v̄) in terms of partial Bethe vectors B

(k)
a,b(ū; v̄). This problem was solved in [14] for

GL(2)-based models. The more general case of GL(N)-invariant models was considered in [22], [28]. The
particular case of GL(3)-invariant models was studied in [29], where the representation

Ba,b(ū; v̄) =
∑

r
(2)
1 (ū(1))r(1)

3 (v̄(2)) ×

× f(ū(2), ū(1))f(v̄(2), v̄(1))
f(v̄(2), ū(1))

B
(1)
a1,b1

(ū(1); v̄(1))B(2)
a2,b2

(ū(2); v̄(2)) (2.16)

was found. Here, the sum is taken over all possible partitions ū ⇒ {ū(1), ū(2)} and v̄ ⇒ {v̄(1), v̄(2)}. The
cardinalities of the subsets are shown by the subscripts on the partial Bethe vectors.

Similarly, we can define a multicomposite model in which the original interval is divided into M > 2
intervals,

T (u) = T (M)(u) · · ·T (1)(u). (2.17)
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For each of these intervals, we can define partial Bethe vectors B
(j)
aj ,bj

. The total Bethe vector can then be
expressed in terms of the partial Bethe vectors as

Ba,b(ū; v̄) =
∑{ ∏

1≤k<j≤M

[
r
(j)
1 (ū(k))r(k)

3 (v̄(j))
f(ū(j), ū(k))f(v̄(j), v̄(k))

f(v̄(j), ū(k))

] M∏

j=1

B
(j)
aj ,bj

(ū(j); v̄(j))
}

. (2.18)

Here, the functions r
(j)
1 (u) and r

(j)
3 (v) are vacuum eigenvalues of the respective operators T

(j)
11 (u) and

T
(j)
33 (v). The sum in (2.18) is taken over all possible partitions

ū ⇒ {ū(1), . . . , ū(M)}, # ū(j) = aj, a1 + · · · + aM = a,

v̄ ⇒ {v̄(1), . . . , v̄(M)}, # v̄(j) = bj , b1 + · · · + bM = b.
(2.19)

It is important that the number M of partial monodromy matrices is not related to the cardinalities
of the Bethe parameters a and b. In particular, we can have M > a and M > b. In that case, some of the
numbers aj and bj are equal to zero, i.e., the corresponding subsets are empty.

Equation (2.18) can be easily proved by induction on M . Indeed, assuming that it holds for M−1
partial monodromy matrices, we apply (2.16) to the partial Bethe vector B

(M−1)
aM−1,bM−1

(ū(M−1); v̄(M−1)). This
immediately gives (2.18) for M partial monodromy matrices.

In the particular cases a = 0 or b = 0, we reproduce the known formulas for the Bethe vectors in the
GL(2)-invariant multicomposite model [30], [31]. For instance,

Ba,0(ū, ∅) ≡ Ba(ū) =
∑ ∏

1≤k<j≤M

{r(j)
1 (ū(k))f(ū(j), ū(k)}

M∏

j=1

B
(j)
aj

(ū(j)). (2.20)

The multicomposite model is a convenient way to express Bethe vectors in terms of local operators. In
the next section, we discuss the method in more detail.

2.4. Bethe vectors in the SU(2) XXX chain. As a first application of the multicomposite model,
we construct the Bethe vectors of the SU(2) inhomogeneous XXX chain. This result is used in Sec. 3 to
describe the Bethe vectors of the TCBG model.

We consider an inhomogeneous XXX chain consisting of M sites. This model has a 2×2 monodromy
matrix T (xxx)(u), and the Bethe vectors are therefore parameterized by only one set of Bethe parameters,
for example, ū. Correspondingly, Eq. (2.20) should be used to consider the multicomposite model.

The monodromy matrix is defined as a product of local L-operators,

T (xxx)(u) = L
(xxx)
M (u − ξM ) · · ·L(xxx)

1 (u − ξ1), (2.21)

where ξk are inhomogeneities and

L(xxx)
n (u) =

1
u

⎛

⎝
u +

c

2
(1 + σz

n) cσ−
n

cσ+
n u +

c

2
(1 − σz

n)

⎞

⎠ . (2.22)

Here, σz
n and σ±

n are spin-1/2 operators acting at the nth site of the chain. They are given by the standard
Pauli matrices acting in the nth copy of the tensor product (C2)⊗M . The pseudovacuum vector is the state
with all spins up:

|0̃〉 =
(

1
0

)
M

⊗ · · · ⊗
(

1
0

)
1
. (2.23)
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Bethe vectors with a spins down and M−a spins up have the form

B
(xxx)
a (ū) =

∑

M≥ja>···>j1≥1

Ω(a,M)
j1,...,ja

(ū; ξ̄)
a∏

m=1

σ−
jm

|0̃〉. (2.24)

where Ω(a,M)
j1,...,ja

(ū; ξ̄) are coefficients depending on the Bethe parameters ū and inhomogeneities ξ̄. We find
these coefficients explicitly.

We consider a multicomposite model with M partial monodromy matrices T (j). This means that
each T (j) coincides with the L-operator Lj(u − ξj). Each partial Bethe vector B

(j)
aj (ū(j)) in (2.20) then

corresponds to the jth site of the chain, and because of (2.22), we hence obtain

B
(j)
aj

(ū(j)) = g(ū(j), ξj)(σ−
j )aj

(
1
0

)
j
. (2.25)

Obviously, B
(j)
aj vanishes if aj > 1, because (σ−

j )2 = 0. We therefore conclude that aj ≤ 1 and the subsets
ū(j) either are empty or contain exactly one element. Let the subsets ū(jk), k = 1, . . . , a, corresponding
to the lattice sites j1, . . . , ja contain one element uk and the other subsets be empty. Then the sum over
partitions of the set ū becomes the sum over permutations in ū and the sum over the lattice sites j1, . . . , ja

with the restriction ja > · · · > j1.
It is easy to see that

u − ξj + c
2 (1 + σz

j )
u − ξj

(
1
0

)
j

= f(u, ξj)
(

1
0

)
j
,

u − ξj + c
2 (1 − σz

j )
u − ξj

(
1
0

)
j

=
(

1
0

)
j

(2.26)

and therefore
r
(j)
1 (u) = f(u, ξj). (2.27)

Then Eq. (2.20) becomes

B
(xxx)
a (ū) = Sym

ū

∏

1≤k<j≤a

f(uj , uk) ×

×
∑

M≥ja>···>j1≥1

a∏

k=1

[( M∏

m=jk+1

f(uk, ξm)
)

g(uk, ξjk
)σ−

jk

]
|0̃〉, (2.28)

where Sym denotes symmetrization (i.e., the sum over permutations) over the set indicated by the subscript.
The symmetrization in (2.28) acts on all the expressions depending on ū. Comparing (2.28) with (2.24),
we can see that

Ω(a,M)
j1,...,ja

(ū; ξ̄) = Sym
ū

∏

1≤k<j≤a

f(uj, uk)
a∏

k=1

[( M∏

m=jk+1

f(uk, ξm)
)

g(uk, ξjk
)
]
. (2.29)

In the homogeneous limit ξk = c/2, this expression coincides with the amplitude of the Bethe vector in the
coordinate Bethe ansatz representation (see [6]).

3. Two-component Bose gas

We consider the TCBG model on a finite interval [0, L] with periodic boundary conditions. In the
secondary quantized form, the Hamiltonian is

H =
∫ L

0

(∂xΨ†
α∂xΨα + κΨ†

αΨ†
βΨβΨα) dx, (3.1)
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where κ > 0 is a coupling constant, α, β = 1, 2, and summation over repeated subscripts is assumed. The
Bose fields Ψα(x) and Ψ†

α(x) satisfy the canonical commutation relations

[Ψα(x), Ψ†
β(y)] = δαβδ(x − y). (3.2)

The coupling constant κ is related to the constant c in (2.1) by κ = ic.

The basis in the Fock space of the model is constructed by acting with the operators Ψ†
α(x) on the

Fock vacuum |0〉 as

Ψα(x)|0〉 = 0, 〈0|Ψ†
α(x) = 0, 〈0|0〉 = 1. (3.3)

We note that pseudovacuum vector (2.3) in the case of the TCBG model coincides with the Fock vacuum
|0〉, and we therefore use the same symbol for them.

The spectral problem for the TCBG model was solved in [3] (also see [4], [6]). The Hamiltonian
eigenvectors can be found in two steps. Using the terminology of the algebraic Bethe ansatz, we can say
that a generic Bethe vector Ba,b(ū; v̄) should be constructed at the first stage. In the TCBG model, Bethe
vectors exist for a ≤ b. They have the form1

Ba,b(ū; v̄) =
∑

b≥ka>···>k1≥1

∫

D
dz1 · · ·dzb χk1,...,ka(z1, . . . , zb|ū, v̄) ×

×
a∏

m=1

Ψ†
1(zkm)

b∏

�=1,
�/∈{k1,...,km}

Ψ†
2(z�)|0〉. (3.4)

Here, the integration domain is D = {L > zb > · · · > z1 > 0}. In this domain, the wave function
χk1,...,ka(z1, . . . , zb|ū, v̄) has the form

χk1,...,ka(z1, . . . , zb|ū, v̄) = Sym
v̄

Ω(a,b)
k1,...,ka

(ū; v̄ + c)
∏

b≥j>k≥1

f(vj , vk)
b∏

k=1

eizkvk

∣∣∣
c=−iκ

, (3.5)

where the coefficients Ω(a,b)
k1,...,ka

(ū; v̄ + c) are given by (2.29).

Generic Bethe vector (3.4) becomes an eigenvector of Hamiltonian (3.1) if the parameters ū and v̄

satisfy system of Bethe equations (2.10). In the TCBG model, it has the form [3]

eiLvj =
b∏

k=1,
k �=j

vj − vk + iκ

vj − vk − iκ

a∏

�=1

u� − vj + iκ

u� − vj
, j = 1, . . . , b,

1 =
a∏

�=1,
� �=j

ui − u� − iκ

ui − u� + iκ

b∏

k=1

vk − ui − iκ

vk − ui
, i = 1, . . . , a.

(3.6)

Comparing this system with (2.10), we conclude that r1(u) = 1 and r3(u) = eiLu in the TCBG model.

1Here and hereafter, we neglect the normalization of eigenvectors in all formulas for them.
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4. Lattice two-component Bose gas

Quantum systems described by GL(3)-invariant R-matrix (2.1) were considered in [8], where a proto-
type of a lattice L-operator of the TCBG model was found. It has the form

L(a)(u) = u1 + p, (4.1)

where 1 is the unit matrix and

p =

⎛

⎜⎜⎝

a†
1a1 a†

1a2 ia†
1

√
m + ρ

a†
2a1 a†

2a2 ia†
2

√
m + ρ

i
√

m + ρ a1 i
√

m + ρ a2 −m − ρ

⎞

⎟⎟⎠ . (4.2)

Here, m is an arbitrary complex number and ρ = a†
1a1 + a†

2a2. The operators ak and a†
k, k = 1, 2, act in

a Fock space with the Fock vacuum |0〉: ak|0〉 = 0. They have the standard commutation relations of the
Heisenberg algebra, [ai, a

†
k] = δik.

At c = −1, L-operator (4.1) satisfies algebra (2.2) with R-matrix (2.1). Based on L-operator (4.1), we
can construct a quantum system of discrete bosons. To obtain a continuous quantum system, we should
make several transforms of (4.1). First, we introduce the operators

ψk = Δ−1/2ak, ψ†
k = Δ−1/2a†

k, k = 1, 2, (4.3)

such that
[ψj , ψ

†
k] =

δjk

Δ
. (4.4)

In these formulas, Δ is a lattice interval. Setting m = 4/κΔ, we introduce a new L-operator as

L(u) =
κΔ
2

L(a)

(
u + 2i/Δ

iκ

)
· J, (4.5)

where J = diag(1, 1,−1). Obviously L(u) satisfies RTT -relation (2.2) with R-matrix (2.1) at c = −iκ.
The last transformation is to make N copies Ln, n = 1, . . . , N , of L-operator (4.5) by changing

ψk → ψk(n) and ψ†
k → ψ†

k(n) with

[ψj(n), ψ†
k(m)] =

δjkδnm

Δ
. (4.6)

The operators ψk(n) and ψ†
k(n) are lattice approximations of the Bose fields Ψk(x) and Ψ†

k(x). Indeed, we
divide the interval [0, L] into N sites of length Δ. Setting xn = nΔ and

ψk(n) =
1
Δ

∫ xn

xn−1

Ψk(x) dx, ψ†
k(n) =

1
Δ

∫ xn

xn−1

Ψ†
k(x) dx, (4.7)

we reproduce commutation relations (4.6). On the other hand, in the limit Δ → 0, operators (4.7) obviously
become the Bose fields Ψk(x) and Ψ†

k(x).2

We can now standardly define the monodromy matrix:

T (u) = LN (u) · · ·L1(u), (4.8)

2Here and hereafter, limits of operator-valued expressions should be understood in the weak sense.
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where

Ln(u) =
1
N

⎛

⎜⎜⎜⎜⎜⎜⎝

1 − iuΔ
2

+
κΔ2

2
ψ†

1(n)ψ1(n)
κΔ2

2
ψ†

1(n)ψ2(n) −iΔψ†
1(n)Qn

κΔ2

2
ψ†

2(n)ψ1(n) 1 − iuΔ
2

+
κΔ2

2
ψ†

2(n)ψ2(n) −iΔψ†
2(n)Qn

iΔQnψ1(n) iΔQnψ2(n) 1 +
iuΔ
2

+
κΔ2

2
ρ̂n

⎞

⎟⎟⎟⎟⎟⎟⎠
(4.9)

and

N = 1 − iuΔ
2

, Qn =
(

κ +
κ

2Δ2

4
ρ̂n

)1/2

,

ρ̂n = ψ†
1(n)ψ1(n) + ψ†

2(n)ψ2(n).

(4.10)

The normalization factor N in (4.9) is used to satisfy the condition λ2(u) = 1.

Remark 1. We write the number of lattice site n as the argument of the operators ψi and ψ†
i . This

number is traditionally written as a subscript of ψi and ψ†
i , but this is inconvenient in the case of the TCBG

model.

The L-operator (4.9) is a natural generalization of a 2×2 L-operator L̃n(u) found in [32] for the lattice
model of one-component bosons:

L̃n(u) =
1
N

⎛

⎜⎝
1 − iuΔ

2
+

κΔ2

2
ψ†(n)ψ(n) −iΔψ†(n)Qn

iΔQnψ(n) 1 +
iuΔ
2

+
κΔ2

2
ψ†(n)ψ(n)

⎞

⎟⎠ . (4.11)

It is easy to see that L-operator (4.11) is the lower-right 2×2 minor of matrix (4.9) with the identification
ψ1(n) ≡ 0, ψ2(n) ≡ ψ(n). It was shown by different methods in [33]–[35] that L-operator (4.11) in the
continuum limit Δ → 0 describes a model of one-dimensional bosons with a δ-function interaction. We must
solve an analogous problem: to verify that the model with monodromy matrix (4.8) and L-operator (4.9)
in the continuum limit does describe the TCBG model. For this, we find the Bethe vectors of lattice
model (4.8) and show that they coincide with states (3.5) in the continuum limit.

We indicate several properties of L-operator (4.9). It is easy to see that

(
Ln(u)

)
11
|0〉 =

(
Ln(u)

)
22
|0〉 = |0〉,

(
Ln(u)

)
33
|0〉 = r0(u) |0〉,

(
Ln(u)

)
12
|0〉 = 0, 〈0|

(
Ln(u)

)
21

= 0,
(4.12)

where
r0(u) =

1 + iuΔ/2
1 − iuΔ/2

. (4.13)

From these properties, we easily obtain

r1(u) = 1, r3(u) = rN
0 (u),

T12(u)|0〉 = 0, 〈0|T21(u) = 0.
(4.14)

We note that the condition r1(u) = 1 in fact implies the actions of T12(u) and T21(u) in the second line
of (4.14). Indeed, from RTT -relation (2.2), we have

[T21(v), T12(u)] = g(v, u)
(
T11(u)T22(v) − T11(v)T22(u)

)
. (4.15)
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Applying this equation, for example, to the vector |0〉 and using the fact that r1(u) = 1, we obtain

[T21(v), T12(u)]|0〉 = T21(v)T12(u)|0〉 =

= g(v, u)
(
T11(u)T22(v) − T11(v)T22(u)

)
|0〉 =

(
r1(u) − r1(v)

)
|0〉 = 0. (4.16)

Similarly, acting with (4.15) on 〈0|, we obtain 〈0|T21(u) = 0.
The property T12(u)|0〉 = 0 leads to a simplification of the explicit formula for Bethe vector (2.8).

Obviously, in this case, we should consider only partitions of the set ū such that ū(2) = ∅ and ū(1) = ū.
Then (2.8) becomes

Ba,b(ū; v̄) =
∑ Ka(v̄(1)|ū)

f(v̄, ū)
f(v̄(2), v̄(1))T13(v̄(1))T23(v̄(2))|0〉. (4.17)

Here, the sum is taken over partitions of only one set v̄ ⇒ {v̄(1), v̄(2)} with the restriction # v̄(1) = a. The
last restriction can obviously be satisfied if and only if a ≤ b. Hence, if a > b, then Ba,b(ū; v̄) = 0. In
particular,

B0,1(∅; v) = T23(v)|0〉, B1,1(u; v) =
g(v, u)
f(v, u)

T13(v)|0〉. (4.18)

To conclude this section, we give two formulas concerning the continuum limit Δ → 0. The first
formula gives the limit of powers of the function r0(u):

lim
Δ→0

rn
0 (u) = lim

Δ→0

(
1 + iuΔ/2
1 − iuΔ/2

)xn/Δ

= eiuxn . (4.19)

The second formula describes a typical procedure for taking the continuum limit of sums over lattice sites.
Let Φ(x) be an integrable function on the interval [0, L]. Then

Δ
N∑

j=1

Φ(xj)ψ†(j) =
N∑

j=1

Φ(xj)
∫ xj

xj−1

Ψ†
k(x) dx →

∫ L

0

Φ(x)Ψ†
k(x) dx, Δ → 0, (4.20)

and we recall that all limits of operator-valued expressions are understood in the weak sense. We can hence
formulate a general rule: a sum over lattice sites multiplied by Δ becomes an integral in the continuum
limit. It is easy to see that if we have an m-fold sum over lattice sites multiplied by Δm, then it becomes
an m-fold integral in the continuum limit.

5. Bethe vectors in terms of local operators

We consider a multicomposite model with total monodromy matrix (4.8). Let the number M of the
partial monodromy matrices coincide with the number N of lattice sites. Then every partial monodromy
matrix T (n)(u) is the L-operator Ln(u) given by (4.9). Correspondingly, we have

r
(k)
1 (u) = 1, r

(k)
3 (v) = r0(v). (5.1)

The formula for total Bethe vector (2.18) becomes

Ba,b(ū; v̄) =
∑ N∏

j=1

rj−1
0 (v̄(j))

∏

1≤k<j≤N

f(ū(j), ū(k))f(v̄(j), v̄(k))
f(v̄(j), ū(k))

N∏

j=1

B
(j)
aj ,bj

(ū(j); v̄(j)). (5.2)

This is the main formula that we use. But before applying this formula to the TCBG model, it is useful to
see how it works in the simpler example of the one-component Bose gas.
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5.1. One-component Bose gas. The L-operator of the one-component Bose gas is given by (4.11),
but to construct Bethe vectors, we only need to know this L-operator up to terms of the order Δ:

L̃n(u) =

⎛

⎜⎝
1 − iuΔ

2
−iΔ

√
κψ†(n)

iΔ
√

κψ(n) 1 +
iuΔ
2

⎞

⎟⎠ + O(Δ2). (5.3)

We recall that we here set ψ2(n) ≡ ψ(n) and ψ1(n) ≡ 0 and similarly for ψ†
k(n). In the continuum limit,

these operators become the respective Bose fields Ψ(x) and Ψ†(x).
Bethe vectors of the one-component Bose gas correspond to the particular case of Ba,b(ū; v̄) at a = 0

and ū = ∅. Then formula (5.2) becomes

B0,b(∅; v̄) ≡ Bb(v̄) =
∑ N∏

j=1

rj−1
0 (v̄(j))

∏

1≤k<j≤N

f(v̄(j), v̄(k))
N∏

j=1

B
(j)
bj

(v̄(j)). (5.4)

A partial Bethe vector at the site j is

B
(j)
bj

(v̄(j)) = (−iΔ
√

κψ†(j))bj |0〉, (5.5)

where corrections of the order O(Δbj+1) are neglected.

Remark 2. We recall that the total pseudovacuum vector |0〉 in the multicomposite model is equal
to the tensor product of the partial pseudovacuum vectors |0〉(j), j = 1, . . . , N . But in the case of the
one-component Bose gas, we can assume that all operators ψ(j) and ψ†(j) act in the same Fock space.
Obviously, because ψ(j) and ψ†(k) commute for j �= k, such a formulation is equivalent to the original one.
In the case of the TCBG model, we use the same treatment of the multicomposite model.

We consider an example b = 2. We then have two possibilities:

• There exists one bj such that bj = 2, and all other b� = 0. Then the subset v̄(j) coincides with the
original set {v1, v2}, and all other subsets v̄(�) are empty.

• There exist two bj = 1 and bk = 1, and all other b� = 0. Then the subsets v̄(j) and v̄(k) consist of one
element (e.g., v̄(j) = v2 and v̄(k) = v1 or vice versa). All other subsets v̄(�) are empty.

We consider the first case. We let B2,∅ denote the corresponding contribution to the Bethe vector.
Then

B2,∅ = −κΔ2
N∑

j=1

(r0(v1)r0(v2))j−1 (ψ†(j))2|0〉, (5.6)

and because of (4.19), we obtain

B2,∅ = −κΔ2
N∑

j=1

eixj(v1+v2)(ψ†(j))2|0〉. (5.7)

This sum goes to zero because it has the coefficient Δ2. Indeed, because of (4.20), we have

Δ2
N∑

j=1

eixj(v1+v2)(ψ†(j))2|0〉 → Δ
∫ L

0

eix(v1+v2)(Ψ†(x))2 dx|0〉 −→ 0, Δ → 0. (5.8)
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It remains to consider the second case. We let B1,1,∅ denote the corresponding contribution to the
Bethe vector. Then

B1,1,∅ = −κΔ2 Sym
v̄

∑

1≤k<j≤N

rj−1
0 (v2)rk−1

0 (v1)f(v2, v1)ψ†(j)ψ†(k)|0〉 (5.9)

or, because of (4.19),

B1,1,∅ = −κΔ2 Sym
v̄

∑

1≤k<j≤N

eixkv1+ixjv2 f(v2, v1)ψ†(j)ψ†(k)|0〉. (5.10)

This time, we again have the coefficient Δ2, but the sum is double. The limit is therefore finite,

lim
Δ→0

B1,1,∅ = B2(v̄) = −κ Sym
v̄

f(v2, v1)
∫ L

0

dx2

∫ x2

0

eix1v1+ix2v2Ψ†(x2)Ψ†(x1)|0〉 dx1. (5.11)

It is clear from (5.4) and (5.5) that for general b, the Bethe vector Bb(v̄) is proportional to Δb. This coefficient
should be compensated in the continuum limit. The only possible way to obtain such a compensation is
to have a b-fold sum over the lattice sites. Then Δb times the b-fold sum gives a b-fold integral. Hence,
we should consider only such partitions of the set v̄ = {v1, . . . , vb} that reduce to b-fold sums over lattice
sites. Obviously, these are partitions such that there are exactly b nonempty subsets in them. In this case,
each such subset contains only one variable. Hence, we in fact treat the case already considered in Sec. 2.4.
Therefore, the sum over partitions reduces to the sum over lattice sites and the sum over permutations,
i.e., to the symmetrization over v̄.

For general b, we thus obtain

Bb(v̄) = (−i
√

κΔ)b Sym
v̄

∏

b≥j>k≥1

f(vj , vk)
N∑

jb>···>j1

b∏

k=1

(rjk−1
0 (vk)ψ†(jk))|0〉 (5.12)

or, partially taking the continuum limit,

Bb(v̄) = (−i
√

κΔ)b Sym
v̄

∏

b≥j>k≥1

f(vj , vk)
N∑

jb>···>j1

b∏

k=1

(eixjk
vkψ†(jk))|0〉. (5.13)

This b-fold sum over the lattice sites passes into a b-fold integral, and we finally obtain

lim
Δ→0

Bb(v̄) = (−i
√

κ)b Sym
v̄

∏

b≥j>k≥1

f(vj , vk)
∫

D

b∏

k=1

(eixkvkΨ†(xk))|0〉 dx1 · · · dxb, (5.14)

where D = {L > xb > · · · > x1 > 0}. Representation (5.14) coincides with the well-known result for the
Bethe vectors in the coordinate Bethe ansatz [1], [2], [31]. We have thus constructed Bethe vectors in terms
of the local Bose field Ψ†(x) starting from lattice L-operator (5.3).

5.2. Two-component Bose gas. The infinitesimal lattice L-operator of the TCBG model has the
form [7]

Ln(u) =

⎛

⎜⎜⎜⎜⎝

1 − iuΔ
2

0 −iΔ
√

κψ†
1(n)

0 1 − iuΔ
2

−iΔ
√

κψ†
2(n)

iΔ
√

κψ1(n) iΔ
√

κψ2(n) 1 +
iuΔ
2

⎞

⎟⎟⎟⎟⎠
+ O(Δ2). (5.15)
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We again consider a multicomposite model with the number of partial monodromy matrices T (n)(u) equal
to the number of lattice sites. Each T (n)(u) of such a model then coincides with L-operator (5.15). We
first find how the Bethe vector depends on Δ. In the TCBG model, Bethe vectors are given by (4.17). It is
easy to see that the total number of creation operators T13 and T23 in (4.17) is b. In the case of the partial
Bethe vectors B

(j)
aj ,bj

(ū(j); v̄(j)), we have

T
(j)
13 (w) = −iΔ

√
κψ†

1(j), T
(j)
23 (w) = −iΔ

√
κψ†

2(j). (5.16)

Therefore,
B

(j)
aj ,bj

(ū(j); v̄(j)) ∼ Δbj , consequently Ba,b(ū; v̄) ∼ Δb. (5.17)

The Bethe vectors of the multicomposite TCBG model are given by (5.2). Using the same arguments as in
the case of the one-component Bose gas, we conclude that we should consider only partitions of the set v̄

with exactly b nonempty subsets consisting of one element. The sum over such partitions of the set v̄ then
becomes the sum over permutations of v̄ and a b-fold sum over the lattice sites.

We now consider what happens with the partitions of the set ū. In every partial Bethe vector, bj ≥ aj.
As shown above, all bj are equal to either zero or one. If bj = 0, then aj = 0. But if bj = 1, then either
aj = 1 or aj = 0. We obtain a partial Bethe vector of the form B

(j)
1,1 in the first case and of the form B

(j)
0,1

in the second case. But because all nonempty subsets ū(j) consist of exactly one element, the sum over
partitions of the set ū also becomes the sum over permutations in ū and the sum over the lattice sites where
aj = 1.

The sum in (5.2) is therefore organized as follows. First, we should choose a set J consisting of b

numbers J = {j1, . . . , jb}. These are the numbers of the lattice sites where bjk
= 1. In all other sites,

bj = 0. We assume that the subset v̄(jk) consists of one element vk. Symmetrizing over v̄ and summing
over all possible jk with the restriction jb > · · · > j1, we thus reproduce the sum over partitions of the set
v̄. More precisely, we reproduce only such partitions that eventually contribute to the continuum limit.

Up to this point, everything is exactly as in the case of one-component bosons. We should now take
the partitions of the set ū into account. For this, from the set J = {j1, . . . , jb}, we should choose a subset K

of numbers consisting of a elements: K = {jk1 , . . . , jka}, K ⊂ J . These are the numbers of the lattice sites
where ajkm

= 1. In all other sites, aj = 0. We assume that the subset ū(jkm ) consists of one element um.
Symmetrizing over ū and summing over all possible jkm with the restriction jka > · · · > jk1 , we reproduce
the sum over partitions of the set ū.

Summarizing all the above, we rewrite (5.2) as

Ba,b(ū; v̄) = Sym
v̄,ū

∏

b≥j>k≥1

f(vj , vk)
∏

a≥j>k≥1

f(uj , uk) ×

×
N∑

jb>···>j1

∑

jka >···>jk1 ,
jkm∈J

a∏

m=1

b∏

�=km+1

f−1(v�, um)
b∏

k=1

rjk−1
0 (vk) ×

×
a∏

m=1

B
(jkm )
1,1 (um; vkm)

∏

j�∈J\K

B
(j�)
0,1 (∅; v�). (5.18)

Because of (4.18) and (5.15), we find

B
(j)
0,1(∅; v) = −iΔ

√
κψ†

2(j)|0〉, B
(j)
1,1(u; v) = −iΔ

√
κ

g(v, u)
f(v, u)

ψ†
1(j)|0〉, (5.19)
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and using (4.19), we obtain

Ba,b(ū; v̄) = (−iΔ
√

κ)b Sym
v̄,ū

∏

b≥j>k≥1

f(vj , vk)
∏

a≥j>k≥1

f(uj, uk) ×

×
N∑

jb>···>j1

∑

jka >···>jk1 ,
jkm∈J

a∏

m=1

b∏

�=km+1

f−1(v�, um)
b∏

k=1

eixkvk ×

×
a∏

m=1

g(vkm , um)
f(vkm , um)

ψ†
1(jkm)

∏

j�∈J\K

ψ†
2(j�)|0〉. (5.20)

Using the obvious properties of the functions g(x, y) and f(x, y)

f(x, y + c) =
1

f(y, x)
, g(x, y + c) = − g(y, x)

f(y, x)
, (5.21)

we see that

Sym
ū

∏

a≥j>k≥1

f(uj, uk)
a∏

m=1

{
g(vkm , um)
f(vkm , um)

b∏

�=km+1

1
f(v�, um)

}
= (−1)aΩ(a,b)

k1,...,ka
(ū; v̄ + c),

where the coefficients Ω(a,b)
k1,...,ka

are given by (2.29).
Hence, (5.20) becomes

Ba,b(ū; v̄) = (−1)a(−iΔ
√

κ)b Sym
v̄

∏

b≥j>k≥1

f(vj , vk) ×

×
N∑

jb>···>j1

∑

jka >···>jk1 ,
jkm∈J

b∏

k=1

eixkvkΩ(a,b)
k1,...,ka

(ū; v̄ + c) ×

×
a∏

m=1

ψ†
1(jkm )

∏

j�∈J\K

ψ†
2(j�)|0〉, (5.22)

and it becomes clear that in the continuum limit, we obtain (3.4) up to a normalization factor.

6. Representation of the monodromy matrix in terms of Bose
fields

In this section, we derive explicit representations of the monodromy matrix elements Tij(u) in terms
of the Bose fields. These representations have the form of a formal power series in the coupling constant
κ. But we note that these series, in a weak sense, are truncated on an arbitrary Bethe vector.

We represent infinitesimal L-operator (5.15) as a 2×2 block matrix:

Ln(u) =

(
a bn

cn d

)
+ O(Δ2). (6.1)

Here, d = 1 + iuΔ/2, and a is a 2×2 matrix a = (1 − iuΔ/2) · 1, where 1 is the 2×2 identity matrix. A
two-component column vector bn and two-component row vector cn are

bn = −iΔ
√

κ

(
ψ†

1(n)

ψ†
2(n)

)
, cn = iΔ

√
κ

(
ψ1(n) ψ2(n)

)
. (6.2)
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It is convenient to separate the diagonal and antidiagonal parts of L-operator (6.1) as3

Ln(u) = Λ(u) + Wn, Λ(u) =

(
a 0

0 d

)
, Wn =

(
0 bn

cn 0

)
. (6.3)

Representation (6.3) should now be substituted in (4.8) and then expanded in a series in Wn. Because the
antidiagonal part Wn is proportional to

√
κ, the monodromy matrix T (u) becomes a polynomial in

√
κ

and becomes an infinite power series in the continuum limit:

T (u) =
∞∑

n=0

κ
n/2Tn(u), (6.4)

where

κ
n/2Tn(u) =

(
1 − iuΔ

2

)−N ∑

N≥kn>···>k1≥1

ΛN−knWknΛkn−kn−1−1 · · ·Λk2−k1−1Wk1Λ
k1−1. (6.5)

It is clear from this representation that the diagonal blocks of the monodromy matrix are series in integer
powers of κ and the antidiagonal blocks are series in half-integer powers of κ.

Let

W̃ki = Λ−kiWkiΛ
ki−1 =

(
0 b̃ki

c̃ki 0

)
, (6.6)

where

b̃ki =
bki

1 + iuΔ/2

(
1 + iuΔ/2
1 − iuΔ/2

)ki

, c̃ki =
cki

1 − iuΔ/2

(
1 − iuΔ/2
1 + iuΔ/2

)ki

. (6.7)

Then Eq. (6.5) becomes

κ
n/2Tn(u) =

(
1 − iuΔ

2

)−N

ΛN
∑

N≥kn>···>k1≥1

W̃knW̃kn−1 · · · W̃k1 . (6.8)

Partially taking the continuum limit via (4.19), we obtain

lim
Δ→0

(
1 − iuΔ

2

)−N

ΛN =

(
1 0

0 eiuL

)
(6.9)

b̃ki = bkie
iuxki , and c̃ki = ckie

−iuxki .
It is convenient to study the operators Tn(u) separately for even and odd n. Let n = 2�. The product

of two matrices W̃ki and W̃ki−1 gives a block-diagonal matrix

W̃kiW̃ki−1 =

(
b̃ki c̃ki−1 0

0 c̃ki b̃ki−1

)
. (6.10)

Hence, we obtain

κ
�T2�(u) =

(
A�(u) 0

0 D�(u)

)
, (6.11)

3Here and hereafter, we omit the terms O(Δ2) because they do not contribute to the continuum limit.
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where
A�(u) =

∑

N≥k2�>···>k1≥1

b̃k2�
c̃k2�−1 b̃k2�−2 c̃k2�−3 · · · b̃k2 c̃k1

D�(u) = eiuL
∑

N≥k2�>···>k1≥1

c̃k2�
b̃k2�−1 c̃k2�−2 b̃k2�−3 · · · c̃k2 b̃k1 .

(6.12)

We note that all operators in these products commute because they are from different lattice sites. Therefore,

b̃k2�
c̃k2�−1 b̃k2�−2 c̃k2�−3 · · · b̃k2 c̃k1 = :b̃k2�

c̃k2�−1 b̃k2�−2 c̃k2�−3 · · · b̃k2 c̃k1 :,

c̃k2�
b̃k2�−1 c̃k2�−2 b̃k2�−3 · · · c̃k2 b̃k1 = :c̃k2�

b̃k2�−1 c̃k2�−2 b̃k2�−3 · · · c̃k2 b̃k1 :,
(6.13)

where the symbol : · : denotes normal ordering. Obviously,

c̃k2i b̃k2i−1 = κΔ2eiu(xk2i−1−xk2i
) :

(
ψ†

1(k2i−1)ψ1(k2i) + ψ†
2(k2i−1)ψ2(k2i)

)
: . (6.14)

Hence, we find

A�(u) = κ
�Δ2�

∑

N≥k2�>···>k1≥1

�∏

i=1

eiu(xk2i
−xk2i−1) ×

× :
�−1∏

i=1

(
ψ†

1(k2i)ψ1(k2i+1) + ψ†
2(k2i)ψ2(k2i+1)

)
(

ψ†
1(k2�)ψ1(k1) ψ†

1(k2�)ψ2(k1)

ψ†
2(k2�)ψ1(k1) ψ†

2(k2�)ψ2(k1)

)
:,

D�(u) = eiuL
κ

�Δ2�
∑

N≥k2�>···>k1≥1

�∏

i=1

e−iu(xk2i
−xk2i−1 ) ×

× :
�∏

i=1

(
ψ†

1(k2i−1)ψ1(k2i) + ψ†
2(k2i−1)ψ2(k2i)

)
: .

It remains to replace the sums over ki with integrals via (4.20). It is convenient to set xk2i = zi and
xk2i−1 = yi. Then

A�(u) = κ
�

∫ L

0

�∏

i=1

{eiu(zi−yi) dzi dyi}Θ�(z̄, ȳ) ×

× :
�−1∏

i=1

(
Ψ†

1(zi)Ψ1(yi+1) + Ψ†
2(zi)Ψ2(yi+1)

)
(

Ψ†
1(z�)Ψ1(y1) Ψ†

1(z�)Ψ2(y1)

Ψ†
2(z�)Ψ1(y1) Ψ†

2(z�)Ψ2(y1)

)
: , (6.15)

D�(u) = eiuL
κ

�

∫ L

0

�∏

i=1

{
e−iu(zi−yi) dzi dyi

}
Θ�(z̄, ȳ) ×

× :
�∏

i=1

(
Ψ†

1(yi)Ψ1(zi) + Ψ†
2(yi)Ψ2(zi)

)
: , (6.16)

where

Θ�(z̄, ȳ) = θ(z� − y�)
�−1∏

i=1

θ(yi+1 − zi)θ(zi − yi). (6.17)
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The antidiagonal blocks of the monodromy matrix can be found in exactly the same manner. Setting
n = 2� + 1 in (6.8), we find

κ
�+1/2T2�+1(u) =

(
0 B�(u)

C�(u) 0

)
, (6.18)

where

C�(u) = ieiuL
κ

�+1/2

∫ L

0

�∏

i=1

{eiu(zi−yi) dzi dyi}e−iuy�+1θ(y�+1 − z�)Θ�(z̄, ȳ) dy�+1 ×

× :
�∏

i=1

(
Ψ†

1(zi)Ψ1(yi+1) + Ψ†
2(zi)Ψ2(yi+1)

)
·
(
Ψ1(y1) Ψ2(y1)

)
:,

B�(u) = − iκ�+1/2

∫ L

0

�∏

i=1

{e−iu(zi−yi) dzi dyi}eiuy�+1θ(y�+1 − z�)Θ�(z̄, ȳ) dy�+1 ×

× :
�∏

i=1

(
Ψ†

1(yi)Ψ1(zi) + Ψ†
2(yi)Ψ2(zi)

)
·
(

Ψ†
1(y�+1)

Ψ†
2(y�+1)

)
: .

We have thus obtained an explicit series representation for the monodromy matrix elements Tij(u) in
terms of the local Bose fields. This series is formal, and we do not study the problem of its convergence.
But it is easy to see that if we introduce a vector

|Φa,b〉=
∫ L

0

Φa,b(x1, . . . , xa; y1, . . . , yb)
a∏

i=1

Ψ†
1(xi)

b∏

j=1

Ψ†
2(yj)|0〉 dx1, . . . , dxa dy1, . . . , dyb,

where Φa,b(x1, . . . , xa; y1, . . . , yb) is a continuous function within the integration domain, then the action of
any Tij(u) on |Φa,b〉 becomes a finite sum.

7. Maps of fields

Because the R-matrix is invariant under transposition with respect to both spaces, the map

φ(Tjk(u)) = Tkj(u) (7.1)

defines an antimorphism of algebra (2.2) (see [21]). This map is a very convenient tool in studying form
factors because it allows relating form factors of different operators. In the case of the TCBG model,
antimorphism (7.1) agrees with the map of the Bose fields

φ(Ψi(x)) = −Ψ†
i(L − x), φ(Ψ†

i (x)) = −Ψi(L − x). (7.2)

Indeed, for example, we consider how map (7.2) acts on the matrix elements Tjk(u) for j, k = 1, 2. By
Eqs. (6.11) and (6.15), we have

Tjk(u) =
∞∑

�=0

κ
�(T2�)jk(u), j, k = 1, 2, (7.3)
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where

(T2�)jk(u) =
∫ L

0

�∏

n=1

{eiu(zn−yn) dzn dyn}Θ�(z̄, ȳ) ×

× :Ψ†
j(z�)Ψk(y1)

�−1∏

n=1

( 2∑

s=1

Ψ†
s(zn)Ψs(yn+1)

)
: . (7.4)

We recall that because of the factor Θ�(z̄, ȳ), the integration in (7.4) is over the domain z� > y� > z�−1 >

· · · > z1 > y1. All the operators in (7.4) therefore commute with each other, and the normal ordering is in
fact unnecessary. Acting on (7.4) with φ as in (7.2), we obtain

φ
(
(T2�)jk(u)

)
=

∫ L

0

�∏

n=1

{eiu(zn−yn) dzn dyn}Θ�(z̄, ȳ) ×

× :Ψ†
k(L − y1)Ψj(L − z�)

�−1∏

n=1

( 2∑

s=1

Ψ†
s(L − yn+1)Ψs(L − zn)

)
: . (7.5)

It now suffices to change the integration variables zn → L − y�+1−n and yn → L − z�+1−n. We then have

Θ�(z̄, ȳ)
∣∣∣zn→L−y�+1−n,
yn→L−z�+1−n

=
�−1∏

n=1

θ(y�−n+1 − z�−n)
�∏

n=1

θ(z�−n+1 − y�−n+1) =

=
�−1∏

i=1

θ(yi+1 − zi)
�∏

i=1

θ(zi − yi) = Θ�(z̄, ȳ). (7.6)

It is also easy to see that

�−1∏

n=1

( 2∑

s=1

Ψ†
s(L − yn+1)Ψs(L − zn)

)∣∣∣∣zn→L−y�+1−n,
yn→L−z�+1−n

=
�−1∏

n=1

( 2∑

s=1

Ψ†
s(z�−n)Ψs(y�−n+1)

)
=

=
�−1∏

n=1

( 2∑

s=1

Ψ†
s(zn)Ψs(yn+1)

)
. (7.7)

Hence, we obtain

φ
((

T2�

)
jk

(u)
)

=
∫ L

0

�∏

n=1

{eiu(zn−yn) dzn dyn}Θ�(z̄, ȳ) ×

× :Ψ†
k(y1)Ψj(z�)

�−1∏

n=1

( 2∑

s=1

Ψ†
s(zn)Ψs(yn+1)

)
: = (T2�)kj(u). (7.8)

Similarly, using the explicit representations for other operators Tjk(u), we can prove that (7.2) implies (7.1).

8. Zero modes

A method for calculating the form factors of local operators in GL(3)-invariant models was developed
in [12]. This method is based on using partial zero modes of the monodromy matrix elements Tij(u) in the
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composite model consisting of two partial monodromy matrices (2.12). Although this approach is applicable
to a wide class of integrable models, it should be slightly modified in the case of the TCBG model. The
point is that it was assumed in [12] that the monodromy matrix T (u) passes into the identity operator as
|u| → ∞. This restriction is not very important, but it leads to minor changes in the case of the TCBG
model.

We note that a monodromy matrix T (a)(u) constructed by L-operator (4.1) has the property mentioned
above. Indeed, we can define local L-operators L

(a)
n (u), n = 1, . . . , N , by Eqs. (4.1) and (4.2), where

the operators ak and a†
k are respectively replaced with ak(n) and a†

k(n) with the commutation relations
[ai(n), a†

k(m)] = δnmδik. We can then set

T (a)(u) = u−NL
(a)
N (u) · · ·L(a)

1 (u), (8.1)

and this matrix obviously has an asymptotic expansion

T (a)(u) = 1 +
c

u
T (a)[0] + O(u−2), u → ∞. (8.2)

Therefore, we can standardly define the zero modes of this monodromy matrix:

T (a)[0] = lim
u→∞

u

c

(
T (a)(u) − 1

)
. (8.3)

But in passing from L-operator (4.1) to L-operator (4.9), we multiplied L(a)(u) by the matrix J =
diag(1, 1,−1) (see (4.5)). As a result, the monodromy matrix T (u) given by (4.8) has an essential sin-
gularity at infinity in the continuum limit. The definition of zero modes therefore needs clarification in the
case of the TCBG model. We clarify it in this section and consider an asymptotic expansion of the mon-
odromy matrix elements Tij(u) at a large value of the argument. For this, we use the integral representations
for Tij(u) obtained in Sec. 6.

If u → ∞, then the expansion for the monodromy matrix contains multiple integrals of rapidly oscil-
lating exponents. Methods for calculating rapidly oscillating integrals are well known (see, e.g., [36], [37]).
In our case, the integration domain of every integration variable is a finite interval [0, L], and one of the
simplest ways to obtain the asymptotic expansion of Tij(u) is therefore integration by parts. Using this
method, we can easily show that single and double integrals yield a 1/u behavior while all the terms with
� > 1 give contributions of the order o(u−1). Therefore, to find zero modes, it suffices to take only the first
nontrivial terms of the expansion for T (u). We then have

Tij(u) = δij + κ

∫ L

0

eiu(z−y)θ(z − y)Ψ†
i (z)Ψj(y) dz dy + O(κ2), i, j = 1, 2,

T33(u) = eiuL + κ eiuL

∫ L

0

eiu(y−z)θ(z − y)
(
Ψ†

1(y)Ψ1(z) + Ψ†
2(y)Ψ2(z)

)
dz dy + O(κ2).

Ti3(u) = −i
√

κ

∫ L

0

eiuyΨ†
i (y) dy + O(κ3/2), i = 1, 2,

T3j(u) = i
√

κeiuL

∫ L

0

e−iuyΨj(y) dy + O(κ3/2), j = 1, 2.

All the terms denoted by O(κ2) or O(κ3/2) contribute O(u−2) as u → ∞ and are therefore unimportant.
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Integrating by parts, we obtain

Tij(u) = δij +
iκ

u

∫ L

0

Ψ†
i (y)Ψj(y) dy + O(u−2), i, j = 1, 2, (8.4)

T33(u) = eiuL − iκ

u
eiuL

∫ L

0

(
Ψ†

1(y)Ψ1(y) + Ψ†
2(y)Ψ2(y)

)
dy + O(u−2), (8.5)

Ti3(u) = −
√

κ

u

(
eiuLΨ†

i (L) − Ψ†
i (0)

)
+ O(u−2), i = 1, 2, (8.6)

T3j(u) = −
√

κ

u

(
Ψj(L) − eiuLΨj(0)

)
+ O(u−2), j = 1, 2. (8.7)

We now define the zero modes as

Tij [0] = lim
u→∞

u

c

(
Tij(u) − δij

)
= −

∫ L

0

Ψ†
i (y)Ψj(y) dy, i, j = 1, 2 (8.8)

(we recall that c = −iκ). This is the same definition as for the models considered in [12]. The zero mode
T33[0] is defined slightly differently:

T33[0] = lim
u→∞

u

c

(
e−iuLT33(u) − 1

)
=

∫ L

0

(
Ψ†

1(y)Ψ1(y) + Ψ†
2(y)Ψ2(y)

)
dy, (8.9)

and therefore T11[0] + T22[0] = −T33[0].
Looking at (8.6) and (8.7), we see that we in fact have two types of zero modes for these operators.

We call them left and right zero modes, respectively denoted by T
(L)
ij [0] and T

(R)
ij [0]. Then

T
(R)
k3 [0] = lim

u→−i∞
e−iuL u

c
Tk3(u) =

1
i
√

κ
Ψ†

k(L),

T
(L)
k3 [0] = lim

u→+i∞

u

c
Tk3(u) = − 1

i
√

κ
Ψ†

k(0),

k = 1, 2, (8.10)

and
T

(R)
3j [0] = lim

u→+i∞

u

c
T3j(u) =

1
i
√

κ
Ψj(L),

T
(L)
3j [0] = lim

u→−i∞
e−iuL u

c
T3j(u) = − 1

i
√

κ
Ψj(0),

j = 1, 2. (8.11)

The sums T
(L)
ij [0]+T

(R)
ij [0] play the same role as the zero modes of the monodromy matrix of type (8.1),

(8.2). It is known, in particular [38], [13], that some of the zero modes Tij [0] annihilate on-shell Bethe
vectors:

T
(a)
ij [0] Ba,b(ū, v̄) = 0, i > j. (8.12)

Similarly, it can be verified that

(T (L)
3j [0] + T

(R)
3j [0])Ba,b(ū, v̄) = 0, j �= 3, (8.13)

if Ba,b(ū, v̄) is an on-shell vector. To prove (8.13), it suffices to use the formulas of the action of Tij(u) on
Bethe vectors [25] and then to consider the limits u → ±i∞ as in (8.11).
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Finally, the obtained formulas for the zero modes allow studying the form factors of local operators
in the framework of composite model (2.12). Indeed, let the partial monodromy matrix T (1)(u) in (2.12)
correspond to an interval [0, x], where x is a fixed point of the interval [0, L]. The partial zero modes T

(1)
ij [0]

and T
(1;R)
ij [0] are given by (8.8)–(8.11), where L should be replaced with x everywhere. In particular, we

obtain

Ψ†
i (x)Ψj(x) = − d

dx
T

(1)
ij [0] =

1
iκ

d

dx
lim

u→∞
u
(
T

(1)
ij (u) − δij

)
, i, j = 1, 2,

Ψj(x) = i
√

κ T
(1;R)
3j [0] =

1√
κ

lim
u→+i∞

uT
(1)
3j (u), j = 1, 2,

Ψ†
k(x) = i

√
κ T

(1;R)
k3 [0] =

1√
κ

lim
u→−i∞

e−iuxuT
(1)
k3 (u), k = 1, 2.

(8.14)

The problem of calculating the form factors of local operators in the TCBG model thus reduces to evaluating
the form factors of the partial zero modes T

(1)
ij [0] and T

(1;R)
ij [0].

9. Conclusion

We have described the TCBG model in the framework of the algebraic Bethe ansatz. Our main goal
was to prove that lattice L-operator (4.9) correctly describes the TCBG model in the continuum limit and
allows finding zero modes of the monodromy matrix T (u). This goal was successfully achieved.

To calculate the form factors of the fields Ψi(x) and Ψ†
i (x) and their combinations Ψ†

i (x)Ψj(x), we can
now use the method in [12]. In fact, part of the results can already be predicted. Indeed, definition (8.8)
of the zero modes Tij [0] for i, j = 1, 2 coincides with the definition used in [12]. Therefore, the form factors
of the operators Ψ†

i (x)Ψj(x) are in fact already computed.
The calculation of the form factors of the fields Ψi(x) and Ψ†

i (x) should be slightly modified. But the
modification in this case affects only the limit u → ∞ and does not affect the determinant representations
for partial zero modes. We will consider this question in detail in our subsequent publication.
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