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BÄCKLUND TRANSFORMATIONS RELATING DIFFERENT

HAMILTON–JACOBI EQUATIONS

A. P. Sozonov∗ and A. V. Tsiganov∗

We discuss one of the possible finite-dimensional analogues of the general Bäcklund transformation relating

different partial differential equations. We show that different Hamilton–Jacobi equations can be obtained

from the same Lax matrix. We consider Hénon–Heiles systems on the plane, Neumann and Chaplygin

systems on the sphere, and two integrable systems with velocity-dependent potentials as examples.

Keywords: general Bäcklund transformation, Hamilton–Jacobi equation, separation of variables, Lax
matrix

1. Introduction

Bäcklund transformations, invented in 1875 in studying negative-curvature surfaces, continue to be a
modern and rather popular tool for seeking solutions (in particular, soliton solutions) of nonlinear differential
equations. It is believed that the Bäcklund transformations (BTs) yield

a. relations between solutions of a given equation (auto-BT),

b. relations between solutions of different equations (hetero-BT), and

c. a method for constructing discrete systems.

The existence of a nontrivial symmetry of an equation (auto-BTs) in essence is a property providing
its integrability (all necessary references can be found in recently published monographs [1], [2]). Using
autotransformations for discretization is discussed in [3]–[5]. On the other hand, the general BT (hetero-BT)
is a somewhat more complicated object, describing more the relations between equations than a bijective
map between their solutions [6].

The analogue of auto-BTs in the finite-dimensional case is represented by the canonical coordinate
transformations

(u, pu) → (v, pv), {ui, puj} = {vi, pvj} = δij , (1)

preserving not only the Poisson bracket but also the form of the Hamilton–Jacobi equations

Hi

(
u,

∂S

∂u

)
= αi, Hi

(
v,

∂S

∂v

)
= 0 (2)

corresponding to a family of integrals of motion H1, . . . , Hn in involution. This analogue of auto-BTs, i.e.,
a canonical map preserving the algebraic form of the integrals of motion for a finite-dimensional integrable
system, was first introduced by Wojciechowski [7].
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To construct discrete or difference integrable equations using auto-BT (1), it suffices to regard the
variables v as the same variables u taken at the next instant of a discrete time variable. Dozens of papers
are devoted to this interpretation of BTs in the finite-dimensional case; appropriate references can be found
in [5], [8], [9].

Up to now, there is no widely recognized analogue of the general BT relating different partial differential
equations. This is likely to be some canonical transformation of variables (1) that allows constructing
different Hamilton–Jacobi equations

Hi

(
u,

∂S

∂u

)
= 0, H̃i

(
v,

∂S̃

∂v

)
= 0 (3)

and satisfies some additional conditions. Imposing additional conditions is necessary to construct a non-
trivial theory.

One example of such additional conditions can be found in the theory of superintegrable or degenerate
systems. For instance, we consider the two-dimensional harmonic oscillator with the integrals of motion

H1 = p2
x + p2

y + a(x2 + y2), H2 = p2
x − p2

y + a(x2 − y2).

The related Hamilton–Jacobi equations admit a separation of variables in the Cartesian coordinates u =
(x, y).

Because this is a superintegrable system, there is another set of integrals of motion

H̃1 = p2
x + p2

y + a(x2 + y2), H̃2 = xpy − ypx,

for which the corresponding Hamilton–Jacobi equations admit a separation of variables in the polar coor-
dinates v = (r, ϕ) on the plane. This allows stating that the canonic transformation of variables

(u, pu) = (x, y, px, py) → (v, pv) = (r, ϕ, pr, pϕ) (4)

specifies the relation between two different systems of Hamilton–Jacobi equations

H1,2

(
x, y,

∂S

∂x
,
∂S

∂y

)
= α1,2, H̃1,2

(
r, ϕ,

∂S̃

∂r
,
∂S̃

∂ϕ

)
= α̃1,2.

In this case, the additional condition is the requirement that the Hamilton–Jacobi equation for the Hamilton
function H1 = H̃1 (the mechanical energy) admits a simultaneous separation of variables in terms of the u

and v variables. This additional condition is often (and rather successfully) used in the theory of classical
and quantum superintegrable systems [10].

Because this expression relates two different systems of Hamilton–Jacobi equations corresponding to the
same superintegrable system, we can speak about the semiauto-BT (semiauto-BT) or about the semigeneral
BT (semihetero-BT). The problem of constructing relations between completely different Hamilton–Jacobi
equations remains open.

Here, we consider several relations of this type that can be treated as BTs of general form [11]. The
basic problem is to prove the usefulness of imposing the additional conditions that

1. the required canonical transformation of variables (1) is an auto-BT for the original dynamical system
with the integrals of motion H1, . . . , Hn, which therefore admits a simultaneous separation of variables
in both the u and the v variables, and

2. the Hamilton–Jacobi equations corresponding to the different integrals of motion Hk and H̃k admit a
simultaneous separation of variables in terms of the v variables obtained after the autotransformation.

Below, we show that there are examples of such transformations and that these transformations can be
used to construct and classify integrable systems.
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2. Integrable systems on the plane

We recall that the Hamilton–Jacobi equation

H(q, p) = E

admits an additive separation of variables if the complete integral of this equation has the form

S(u1, . . . , un; α1, . . . , αn) =
n∑

i=1

Si(ui; α1, . . . , αn),

where uk are the separation variables in involution with respect to the canonical Poisson brackets. In this
case, the second Jacobi equations

pui =
∂Si(ui; α1, . . . , αn)

∂ui
, i = 1, 2, . . . , n, (5)

define their conjugate momenta, which allows proving that the solutions of separated equations (5) for
αi = Hi(u, pu) are in involution with each other.

There are four systems of orthogonal curvilinear coordinates on the plane: Cartesian, polar, parabolic,
and elliptic coordinates. The Hamilton–Jacobi equation for the Hamilton function of natural form

H1 = p2
1 + p2

2 + V (q1, q2) (6)

admits an additive separation of variables in one of these coordinate systems if the potential takes one of
the forms

1. V (q1, q2) = U1(x) + U2(y), 2. V (q1, q2) = U1(r) +
U2(φ)

r2
,

3. V (q1, q2) =
U1(u1) + U2(u2)

u1 + u2
, 4. V (q1, q2) =

U1(ζ1) + U2(ζ2)
ζ2
1 − ζ2

2

.

(7)

Here, x and y are the Cartesian coordinates, r and φ are the polar coordinates, u1 and u2 are the parabolic
coordinates, and ζ1 and ζ2 are the elliptic coordinates on the plane (see [12]).

Hence, we have a complete description and complete classification of all integrable systems on the plane
that admit a separation of variables in one of the orthogonal curvilinear coordinate systems. A Stäckel-type
generalization of this classification of integrable systems to Riemann spaces of constant curvature can be
found in [13]. Applying the auto-BT to these integrable systems with integrals of motion quadratic in
momenta, we obtain a family of new canonical coordinates (v, pv) from the classical curvilinear coordinates
(u, pu), which can be regarded as separation variables for the integrable systems with higher-degree integrals
of motion. To classify the integrable systems thus obtained, we can use an elaborated classification of
orthogonal systems of coordinates and the Stäckel-type integrable systems corresponding to them.

Hereafter, we restrict ourself to considering dynamical systems on the plane that admit a separation
of variables in the parabolic coordinates because, on one hand, these systems are rather interesting and,
on the other hand, the corresponding formulas are not so cumbersome as those for the elliptic coordinates,
which can be found in [11]. We therefore consider the parabolic coordinates on the plane

λ − 2q2 −
q2
1

λ
=

(λ − u1)(λ − u2)
λ

, (8)
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for which separated equations (5) are

p2
ui

+ Ui(ui) = H1 +
H2

ui
, i = 1, 2. (9)

Adding Eqs. (9), we obtain another integrable system with the Hamiltonian

H̃1 =
1
2
(p2

u1
+ U1(u1) + p2

u2
+ U2(u2)) = H1 +

H2

2

(
1
u1

+
1
u2

)
, (10)

which can be regarded as an integrable perturbation of the original Hamiltonian H1 given by (6). Subtract-
ing the second equation from the first, we obtain the second integral of motion

H̃2 = (p2
u1

+ U1(u1) − p2
u2

− U2(u2)) = H2

(
1
u1

− 1
u2

)
.

The integrals of motion thus obtained have no physical meaning.
To give a physical meaning to these integrals, we can use the auto-BTs of the original dynamical system

(ui, pui) → (vi, pvi),

which preserve the original integrals of motion H and H2 and change the second integrals of motion:

H̃1 = H1 +
H2

2

(
1
v1

+
1
v2

)
, H̃2 = H2

(
1
v1

− 1
v2

)
. (11)

If there is a particular transformation in the variety of auto-BTs such that the Hamiltonian H̃ after its
application becomes a meaningful function (from the physical standpoint) of the original physical variables
(q, p), then this transformation can be called an analogue of the general BT relating different Hamilton–
Jacobi equations.

2.1. Hénon–Heiles systems. There are three integrable Hénon–Heiles systems on the plane with a
third-degree potential. These systems can be obtained using finite-dimensional reductions of the following
partial differential equations: the fifth-order Korteweg–de Vries (KdV) equation, the Kaup–Kupershmidt
equation, and the Sawada–Kotera equation [14]. The explicit integration of the equations of motion in all
three cases was discussed in [15].

The first Hamilton function, related to the KdV equation,

H1 = p2
1 + p2

2 − 16aq2(q2
1 + 2q2

2), a ∈ R, (12)

generates a Hamilton–Jacobi equation admitting a separation of variables in parabolic coordinates on the
plane.

The second Hamilton function, related to the Kaup–Kupershmidt equation, is

H̃1 = p2
1 + p2

2 − 2aq2(3q2
1 + 16q2

2). (13)

Because the Kaup–Kupershmidt equation is gauge equivalent to the Sawada–Kotera equation, there is a
canonical transformation

(q1,2, p1,2) → (P1,2, Q1,2)
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that identifies H̃1 given by (13) with the Hamiltonian

Ĥ1 = P 2
1 + P 2

2 − 2aQ2(3Q2
1 + Q2

2), (14)

which admits a separation of variables in the Cartesian coordinates [16]. Different properties of this trans-
formation and its generalizations were discussed in [17], [18].

Below, we present a previously unknown relation between Hénon–Heiles systems (12) and (13), which
can be considered an analogue of the general BT. We could have constructed the sought analogue of the
general BT using the finite-dimensional reduction method [14] if we had known the BT (hetero-BT) relating
the fifth-order KdV equation to either the Kaup–Kupershmidt or Sawada–Kotera equation, but we do not
know such a transformation.

Because we believe that all information about the integrable system, including its relation to other
systems, must be contained in the “correct” Lax representation, we need only learn how to obtain this
information. Therefore, we below obtain all relations among the Hénon–Heiles systems directly from the
2×2 Lax matrix for Hénon–Heiles system (12) without using any additional information.

2.2. Bäcklund transformations. Using the orthogonal coordinate systems on the plane, we can
construct a continuum of 2×2 Lax matrices [19], [20] corresponding to integrable systems with the potentials
V (q1, q2) given by (7). The appropriate Lax matrix for the Hénon–Heiles system has the form

L(λ) =

⎛
⎜⎝

p2

2
+

p1q1

2λ
λ − 2q2 −

q2
1

λ

aλ2 + 2aq2λ + a(q2
1 + 4q2

2) +
p2
1

4λ
−p2

2
− p1q1

2λ

⎞
⎟⎠ , a ∈ R. (15)

The spectral curve of this Lax matrix is given by the equation

C : μ2 − aλ3 − H1

4
+

H2

λ
= 0, (16)

including the integrals of motion H1 given by (12) and

H2 = aq2
1(q

2
1 + 4q2

2) +
p1(q2p1 − q1p2)

2
.

Auto-BTs preserve the form of integrals of motion [7] defined by the characteristic polynomial of the
Lax matrix, and each auto-BT can therefore be associated with the similarity transformation

L̂ = V LV −1

for the Lax matrix [8]. Because there are infinitely many auto-BTs for any dynamical system, there are
also infinitely many similarity transformations associated with them [8], [5].

We consider the special similarity transformations given by the matrix

V =

(
L12 0

4(L11 − L̂11(λ)) 4L12

)
, (17)

where Lij are the elements of the original Lax matrix (15) and

L̂11(λ) =
p2

2
+

q1p1(λ − 2q2)
2q2

1

.

After the transformation, we obtain a unique matrix L̂(λ) = V LV −1 satisfying the following three condi-
tions:
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1. Zeros of the upper off-diagonal element

L̂12(λ) =
(λ − u1)(λ − u2)

4λ

are the original parabolic coordinates (8) on the plane.

2. The lower off-diagonal element

L̂21 = 4a(λ − v1)(λ − v2) =

= 4aλ2 +
(8aq2

1q2 − p2
1)λ

q2
1

+ 4a(q2
1 + 4q2

2) +
2p1(p1q2 − p2q1)

q2
1

(18)

also has only two zeros, which are the functionally independent functions v1,2(q, p) in involution with
respect to the canonical Poisson brackets.

3. The conjugate momenta for the coordinates u1,2 and for the coordinates v1,2 are the values of the
diagonal element of the Lax matrix:

pui = L̂11(λ)
∣∣
λ=ui

, pvi = L̂11(λ)
∣∣
λ=vi

, i = 1, 2.

Because
det(L(λ) − μ) = det(L̂(λ) − μ) = μ2 − L̂2

11(λ) − L̂12(λ)L̂21(λ),

we readily obtain separated equations of form (9) by substituting λ = u1,2 and λ = v1,2 in these equations.
The two families of the canonical variables (u, pu) and (v, pv) are related by the canonical transformation

that is a finite-dimensional analogue of the auto-BT for the nonlinear evolution equations.

Proposition 1. The auto-BT for Hénon–Heiles system (12) consists of the canonical transformation

of parabolic coordinates on the plane and their conjugate momenta

(u1, u2, pu1 , pu2) → (v1, v2, pv1 , pv2)

and the relations

Φ(λ, μ) = μ2 − aλ3 =
H1

4
− H2

λ
, λ = u1,2, v1,2, μ = pu1,2 , pv1,2 , (19)

which allow constructing the Hamilton–Jacobi equations

H1,2

(
λ,

∂S

∂λ

)
= α1,2, λ = u, v,

which have the same form in both the (u, pu) and the (v, pv) variables.

From the geometric standpoint, auto-BTs describe a change of coordinates (shift) on the Jacobian of
the hyperelliptic curve (spectral curve of Lax matrix [8]).

Supplementing this autotransformation with the additional rule to seek other Hamilton–Jacobi equa-
tions, we can obtain an analogue of the general BT. For instance, substituting the v variables in defini-
tion (11), we obtain

H̃1 = H1 −
d log(λ − v1)(λ − v2)

dλ

∣∣∣∣
λ=0

= p2
1 +

p2
2

2
− 2aq2(6q2

1 + 16q2
2). (20)
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This Hamiltonian coincides with Hamiltonian (13) for the second Hénon–Heiles system up to the canonical
transformation

p1 →
√

2p1, q1 → q1√
2
.

On the other hand, the canonical transformation

(q, p) → (Q, P ), P1,2 =
pv1 ± pv2√

2
, Q1,2 =

v1 ± v2√
2

, (21)

transforms this Hamiltonian into the Hamiltonian of the third Hénon–Heiles system

Ĥ1 = P 2
1 + P 2

2 − 2aQ2(3Q2
1 + Q2

2).

According to [14], [16], canonical transformation (21) is a finite-dimensional analogue of the gauge equiva-
lence of the Kaup–Kupershmidt and Sawada–Kotera equations.

Hence, the Hamilton–Jacobi equations for all three integrable Hénon–Heiles systems (12)–(14) on the
plane admit a simultaneous separation of variables in terms of the v variables. We can regard this as the
existence of a finite-dimensional analogue of the general BT relating different systems of Hamilton–Jacobi
equations.

Proposition 2. An analogue of the general BT for Hénon–Heiles systems (12)–(14) consists of the

same canonical transformation of the parabolic coordinates on the plane and their conjugate momenta

(u1, u2, pu1 , pu2) → (v1, v2, pv1 , pv2)

relations Φ(λ, μ) given by (19) and the two additional relations

H̃1,2 = Φ(v1, pv1) ± Φ(v2, pv2),

which allow constructing two different systems of Hamilton–Jacobi equations

H1,2

(
u,

∂S

∂u

)
= α1,2, H̃1,2

(
v,

∂S̃

∂v

)
= α̃1,2,

whose complete integrals can be additively separated in the v variables.

This analogue of the general BT relates two different common level surfaces of the integrals of mo-
tion H1,2 and H̃1,2. Similar relations between different Abelian manifolds also appear in the theory of
superintegrable systems.

2.3. The integrable system with the potential depending linearly on the velocity. If we
assume that the functions U1,2(u) in definition (7) are the same Nth-degree homogeneous polynomials, then
we can write explicit expressions for the Hamiltonian admitting a separation in parabolic coordinates on
the plane [21]:

H1 = p2
1 + p2

2 + VN (q1, q2), VN = 4a

[N/2]∑
k=0

21−2k

(
N − k

k

)
q2k
1 qN−2k

2 . (22)

If N = 3, then we obtain the Hamiltonian for Hénon–Heiles system (12), and if N = 4, then we obtain the
Hamiltonian for the so-called system (1:12:16),

H1 = p2
1 + p2

2 − 4a(q4
1 + 12q2

1q
2
2 + 16q4

2). (23)
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The corresponding Lax matrix

L(λ) =

⎛
⎜⎝

p2

2
+

p1q1

2λ
λ − 2q2 −

q2
1

λ

aλ3 + 2aq2λ
2 + a(q2

1 + 4q2
2)λ + 4aq2(q2

1 + 2q2
2) +

p2
1

4λ
−p2

2
− p1q1

2λ

⎞
⎟⎠ (24)

after the similarity transformation with the matrix V given by (17), where

L̂11(λ) =
√

a λ2 − 4
√

aq2q1 − p1

2q1
λ − 2

√
aq3

1 + 2p1q2 − p2q1

2q1
,

transforms into the matrix L̂ whose two off-diagonal elements L̂12(λ) and L̂21(λ) generate two families of
separation variables. Again, the momenta associated with them are generated by the values of the diagonal
element of L̂.

Similar to the Hénon–Heiles system, the first family is represented by the parabolic coordinates on the
plane u1,2, and the second family consists of the coordinates v1,2 that are zeros of the polynomial

L̂21 =
4(4aq1q2 −

√
ap1)

q1
λ2 +

8aq2
1(q

2
1 + 2q2

2) + 4
√

aq1(2p1q2 − p2q1) − p2
1

q2
1

λ +

+
16aq2

1q2(q2
1 + 2q2

2) + 2p1(p1q2 − p2q1)
q2
1

=
4(4aq1q2 −

√
ap1)

q1
(λ − v1)(λ − v2).

The canonical transformation between these two families of separation variables is the auto-BT for the
system (1:12:16). As before, we can regard this transformation as a general BT if we add rule (11) to define
the second system of Hamilton–Jacobi equations.

In our case, the second dynamical system is given by integrable Hamiltonian (11) with the potential
linearly depending on the velocities:

H̃1 =
p2
1

2
+ p2

2 + 4
√

ap1q1q2 − 2
√

ap2q
2
1 − 8aq2

2(5q2
1 + 8q2

2).

Using the canonical transformations, we can rewrite this Hamiltonian in the more symmetric form

H̃1 = p2
1 + p2

2 − 3
√

ap2q
2
1 + 2a(q4

1 − 12q2
1q

2
2 − 32q4

2). (25)

The corresponding second integral

H̃2
2 = p4

1 + 4q4
1(q

4
1 − 8q2

1q
2
2 − 112q4

2)a
2 + 4q3

1(64p1q
3
2 − p2q

3
1 − 12p2q1q

2
2)a

3/2 +

+ q2
1(4p2

1q
2
1 − 48p2

1q
2
2 + 32p1p2q1q2 + p2

2q
2
1)a − 6a1/2p2

1p2q
2
1

is a fourth-degree polynomial in momenta. The physical meaning of these integrals was discussed, for
example, in [22], where a detailed list of necessary references can also be found.

We note that using an analogue of the general BT, we have not only found the expressions for new
integrals of motion but also constructed the separation variables and separated equations. Moreover,
using the quite nontrivial canonical transformations (21), we can prove that the integrable system with
potential (25) linearly depending on velocities is equivalent to the system with the Hamiltonian

Ĥ1 = P 2
1 + P 2

2 − a(Q4
1 + 6Q2

1Q
2
2 + Q4

2),

similar to the relation between the second and the third Hénon–Heiles systems.
If N ≥ 5 in relations (22), i.e., for fifth- and higher-order potentials, the genus of the spectral curve of

the corresponding Lax matrix is larger than the number of degrees of freedom, and the analogous similarity
transformations for the Lax matrices have not been found.
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3. Integrable systems on the sphere

There are two systems of orthogonal coordinates on the sphere: the spherical and the elliptic (sphero-
conical) coordinates. We restrict ourself to considering dynamical systems admitting separation in elliptic
coordinates and to their BTs.

If q1, q2, and q3 are the Cartesian coordinates of the three-dimensional Euclidean space R
3, where the

two-dimensional sphere S
2 is placed, then the elliptic coordinates u1 and u2 on the sphere can be determined

standardly:
(λ − u1)(λ − u2)

(λ − a1)(λ − a2)(λ − a3)
=

q2
1

λ − a1
+

q2
2

λ − a2
+

q2
3

λ − a3
, ai ∈ R, (26)

where ai are the parameters defining the coordinate domain,

a1 < u1 < a2 < u2 < a3.

The conjugate momenta pu are the values of the function

h(λ) =
1
2

(
p1q1

λ − a1
+

p2q2

λ − a2
+

p3q3

λ − a3

)
(27)

at λ = u1,2. As usual, constraints are imposed on the redundant coordinates qk ∈ R
3 and momenta

pk ∈ T ∗
R

3 not included in these definitions,

q2
1 + q2

2 + q2
3 = 1, p1q1 + p2q2 + p3q3 = 0,

defining the embedding of the sphere and its cotangent bundle into the respective Euclidean space and its
cotangent bundle.

If the Hamilton–Jacobi equation defined by the Hamiltonian of the natural form

H =
∑

gij(q)pipj + V (q)

admits a separation of variables in the elliptic coordinates on the sphere, then relative separated equa-
tions (5) have the form

p2
ui

+ Ui(ui) =
K1

ui − a1
+

K2

ui − a1
+

K3

ui − a1
, i = 1, 2,

where Kj are three functionally dependent integrals of motion in involution. It is convenient to write these
equations in the form

(ui + a1)(ui + a2)p2
ui

+ Ui(ui) = H +
H2

ui − a3
, i = 1, 2, (28)

where H and H2 are two functionally independent integrals of motion in involution.
Similar to the systems on the plane, we can add and subtract these separated equations to obtain a

new integrable system. We then seek an auto-BT (u, pu) → (v, pv) that gives the Hamiltonians

H̃ = H +
H2

2

(
1

v1 − a3
+

1
v2 − a3

)
, H̃2 = H2

(
1

v1 − a3
− 1

v2 − a3

)
(29)

a physical meaning in the original variables (q, p). If such an auto-transformation exists, then we call it the
analogue of the general BT relating different Hamilton–Jacobi equations.
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3.1. The Neumann and Chaplygin systems. We take the Lax matrix for the Neumann system
on the sphere

L(λ) =

⎛
⎜⎜⎜⎜⎝

1
2

3∑
k=1

qkpk

λ − ak

3∑
k=1

q2
k

λ − ak

−1
4

(
1 +

3∑
i=1

p2
k

λ − ak

)
−1

2

3∑
k=1

qkpk

λ − ak

⎞
⎟⎟⎟⎟⎠ . (30)

In the equation

C : 4(λ − a1)(λ − a2)μ2 + λ − H1 −
H2

λ − a3
= 0

defining the spectral curve of the given matrix, we have a Hamiltonian function

− H1 = J2
1 + J2

2 + J2
3 + a1q

2
1 + a2q

2
2 + a3q

2
3 , (31)

where Jk are the components of the angular momentum vector J = q × p.
According to [11], there exists a unique similarity transformation L̂ = V LV −1 with the matrix V given

by (17) that allows simultaneously obtaining two families of separation variables from the off-diagonal
elements of the matrix

L̂ =

⎛
⎜⎜⎜⎝

(p1q3 − p3q1)q1

2q3(λ − a1)
+

(p2q3 − p3q2)q2

2q3(λ − a2)
1
4

( n∑
i=1

q2
i

λ − ai

)

−1 − (p1q3 − p3q1)2

q2
3(λ − a1)

− (p2q3 − p3q2)2

q2
3(λ − a2)

− (p1q3 − p3q1)q1

2q3(λ − a1)
− (p2q3 − p3q2)q2

2q3(λ − a2)

⎞
⎟⎟⎟⎠ .

The first family is represented by the elliptic coordinates on the sphere u1,2, and the second family consists
of the coordinates v1,2 that are zeros of the second off-diagonal element L̂21.

Proposition 3. The auto-BT for Neumann system (31) consists of the canonical transformation of

the elliptic coordinates on the sphere and their conjugate momenta

(u1, u2, pu1 , pu2) → (v1, v2, pv1 , pv2)

and the relations

Φ(λ, μ) = 4(λ − a1)(λ − a2)μ2 + λ = H1 +
H2

λ − a3
, (32)

which allow constructing the Hamilton–Jacobi equations

H1,2

(
λ,

∂S

∂λ

)
= α1,2, λ = u, v,

which have the same form in both the (u, pu) and the (v, pv) variables.

As before, supplementing this auto-BT with an additional rule to seek other Hamilton–Jacobi equations,
we can obtain an analogue of the general BT. In fact, substituting the variables v1,2 in the definition of
H̃1,2 given by (29), we obtain the Hamilton function

H̃1 = J2
1 + J2

2 + 2J2
3 − 2a1q

2
2 − 2a2q

2
1 − (a1 + a2)q2

3 , (33)

which defines the known Chaplygin system [23], which describes the motion of a solid in an ideal incom-
pressible liquid.
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Proposition 4. Neumann system (31) and Chaplygin system (33) are related by an analogue of

the general BT consisting of the canonical transformations of the elliptic coordinates and their conjugate

momenta

(u1, u2, pu1 , pu2) → (v1, v2, pv1 , pv2),

relations Φ(λ, μ) given by (32), and two additional relations

H̃1,2 = Φ(v1, pv1) ± Φ(v2, pv2),

which allow constructing two different systems of Hamilton–Jacobi equations

H1,2

(
u,

∂S

∂u

)
= α1,2, H̃1,2

(
v,

∂S̃

∂v

)
= α̃1,2,

whose complete integrals are additively separable in the v variables.

As with the Hénon–Heiles systems, this analogue of the general BT relates two different consistent
level surfaces of the integrals of motion H1,2 and H̃1,2.

3.2. Integrable system with a potential depending linearly on the velocity. For systems
on the sphere, similarly to systems (22) on the plane, there is a general expression for the homogeneous
polynomial potentials

VN =
PN (u1) − PN (u2)

u1 − u2
,

which can be rewritten in terms of the redundant variables qi [24]. For N = 2, we obtain Neumann
system (31), and for N = 3, we obtain a system with a fourth-degree potential. The homogeneous potentials
can be added to each other and singular terms can be added to them.

We consider the Lax matrix for one of these systems:

L(λ) =

⎛
⎜⎜⎜⎜⎝

1
2

3∑
k=1

qkpk

λ − ak

3∑
k=1

q2
k

λ − ak

1
4

(
aλ − a(a1q

2
1 + a2q

2
2 + a3q

2
3) − b −

3∑
i=1

p2
k

λ − ak

)
−1

2

3∑
k=1

qkpk

λ − ak

⎞
⎟⎟⎟⎟⎠ ,

constructed using standard rules [19], [20]. The equation for the spectral curve for this Lax matrix,

4(λ − a1)(λ − a2)μ2 − λ(aλ − a(a1 + a2) − b) = H1 +
H2

λ − a3
,

contains the Hamilton function

H1 = J2
1 + J2

2 + J2
3 − a(a1q

2
1 + a2q

2
2 + a3q

2
3)

2 + a(a2
1q

2
1 + a2

2q
2
2 + a2

3q
2
3) − b(a1q

2
1 + a2q

2
2 + a3q

2
3)

and the second integral of motion H2, which we do not write explicitly for brevity.
As before, in this case, there is a unique similarity transformation with the matrix V given by (17),

where

L̂11 =
√

a

2
+

q2
1(a1 − a3)

√
a + (q3p1 − q1p3)q1/q3

2(λ − a1)
+

q2
2(a2 − a3)

√
a + (q3p2 − q2p3)q2/q3

2(λ − a2)
,
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that allows obtaining a Lax matrix whose off-diagonal elements generate two families of separation variables.
The first family is represented by the elliptic coordinates on the sphere u1,2, and the second family

consists of the coordinates v1,2 that are zeros of the second off-diagonal element,

L̂21 =
2
√

ap3

q3
− 2a(a1q

2
1 + a2q

2
2 − a3(q2

1 + q2
2)) − δ1

λ − a1
− δ2

λ − a2
,

where

δi = a(ai − a3)2q2
i +

2
√

aqi(q3pi − qip3)(ai − a3)
q3

+
(q3pi − qip3)2

q2
3

, i = 1, 2.

Substituting the variables v1,2 in the definition of H̃1,2 given by (29) and applying the canonical transfor-
mations

J1 = J1 +
√

a(a2 − a3)q2q3, J2 = J2 −
√

a(a1 − a3)q1q3, J3 = J3 +
√

a(a1 − a2)q1q2,

and
qk =

qk√
a1 − a2

, k = 1, 2, 3,

we obtain the expressions for the Hamilton function and the second integral of motion:

H̃ = J2
1 + J2

2 + 2J2
3 − 2

√
a(q2q3J1 + q1q3J2 − 2q1q2J3) + b(q2

1 − q2
2),

H̃2
2 = (J2

1 − J2
2 − 2

√
aq3(q2J1 + q1J2) + bq2

3)
2 + 4J2

1J2
2 .

(34)

We again emphasize that we have simultaneously obtained integrals of motion, separation variables, and
separated equations. Similarly to [11], we can construct different additional integrable perturbations of this
system by properly varying the separated equations.

We recall that Sokolov [25], [26] found an analogous integrable perturbation for the Kovalevskaya
Hamiltonian

H̃ = J2
1 + J2

2 + 2J2
3 + a(q1J3 − q3J1) + bq2 (35)

with a potential depending on velocities. A similar integrable perturbation for the Goryachev–Chaplygin
system

H̃ = J2
1 + J2

2 + 4J2
3 + a(2q1J3 − q3J1) + bq2 (36)

was discussed in [27], [28]. Both a discussion of the physical meaning of such integrable systems with
potentials depending on the velocities and appropriate references can be found in those papers.

4. Conclusion

We have discussed possible analogues of the general BT that relate different Hamilton–Jacobi equations.
In essence, the idea of such transformations was formulated by Jacobi [29]: “The main trouble when

integrating given differential equations is to find convenient variables. No general rule exists for finding

these variables. We must therefore go in the opposite direction, and finding a remarkable substitution, we

must look for the problems in which it can be successfully exploited.” That is, substituting the separation
variables (however found) in arbitrary separable equations, we obtain a family of integrable Hamiltonians
that simultaneously admit an additive separation in a complete integral of the appropriate Hamilton–Jacobi
equations. But the theory of simultaneously separable systems thus obtained is too general because the
integrable Hamiltonians obtained in most cases do not have any physical meaning.
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We suggest restricting the general Jacobi theory a little and obtaining the new separated equations
from old ones (9) by simultaneously applying the coordinate shift on the Jacobian of the appropriate
algebraic curve. The geometric meaning of such addition and subtraction of separated equations defining
the Jacobian of the hyperelliptic genus-g=n=2 curve is not yet clear. But this construction of the new
separated equations obviously allows generalizing to the n-dimensional case.

Another part of the imposed constraints is using the auto-BTs (the coordinate shift on the Jacobian)
to give a physical meaning to the perturbed Hamiltonian H̃ . If we regard the v variables as the original u

variables at the next instant of some new time variable t̃ when discretizing, then we propose regarding the
v variables as the separation variables for some new integrable system with the Hamiltonian H̃ in our case.
That is, we propose using the BTs as a source of new coordinate systems constructed from the classical
orthogonal coordinate systems. This part of the construction, much more complicated for the n-dimensional
generalization, also requires additional study.
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