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LOCAL ALGEBRAIC ANALYSIS OF DIFFERENTIAL SYSTEMS

O. V. Kaptsov∗

We propose a new approach for studying the compatibility of partial differential equations. This approach

is a synthesis of the Riquier method, Gröbner basis theory, and elements of algebraic geometry. As

applications, we consider systems including the wave equation and the sine-Gordon equation.
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1. Introduction

The problem of the compatibility of partial differential equations began to be extensively studied on
the cusp of the twentieth century in papers by König, Riquier, Janet, Cartan, and others. The papers from
that time were reviewed in [1], [2]. After a quiet period, interest in this problem was revived by arising
applications and the appearance of new problems. At this stage, the language of fibration, homology,
and commutative algebra came into use in the theory of differential equations [3]–[6]. The central focus
of studies recently shifted to the algorithmic and computation problems [7]–[9]. This is explained by
successes in developing computer algebra. Most progress was achieved in studying the compatibility of
systems of algebraic equations thanks to the Gröbner basis theory [10], [11]. Overdetermined systems
arise in applications from studying the symmetries and conservation laws of equations in mathematical
physics [12], [13]. Differential relations have been successfully used to construct solutions of equations of
gas dynamics [14] and quantum mechanics [15]. The inverse scattering method [16] uses the compatibility
conditions of linear systems of partial differential equations.

Here, we propose an algebraic-analytic approach for studying some local properties of partial differential
equations. In this approach, we use ideas from algebraic geometry and the Gröbner basis. The algebraic
structure in which the construction is done consists of a local differential ring, relations in the ring, and a
semigroup acting on the ring.

In Sec. 2, we introduce an infinite-dimensional space, an analogue of the space of infinite jets. Each
point a in this space is associated with a local differential algebra F(a) of convergent series. Each subset
S ⊂ F(a) generates a differential ideal, and the passive sets of finitely generated differential ideals of F(a)
become the basic object of study. A passive set is similar to the Gröbner basis of ideals of a polynomial
ring, but our definition of passivity does not use the order on the ring. At the end of Sec. 2, we obtain a
necessary condition for a set to be passive.

In Sec. 3, we prove statements analogous to those known in the theory of Gröbner bases. In contrast
to the standard approach applied to the polynomial algebra, we use a partition of the algebra F(a), the
semigroup action compatible with this partition, and the Weierstrass division theorem for power series.
We define the reduction of a series with respect to some subsets of F(a), the normal form of a series, the
τ -series (analogue of the S-polynomial), and the canonical set of a differential ideal. We describe a way
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to reduce a convergent differential series to the normal form. We obtain a convenient passivity criterion
in terms of the τ -series. We prove that if a differential ideal has a passive set, then there exists a unique
canonical set generating this ideal.

Finally, in Sec. 4, we describe the scheme for constructing a passive set for a given differential ideal. This
scheme relies on a certain refinement, proved here, of the implicit function theorem. Although this scheme
is not universal, it can be useful in studying the compatibility of concrete systems of partial differential
equations. We consider two examples as applications of this scheme. In the first example, we study the
compatibility of a system consisting of the sine-Gordon equation and a third-order equation defined by a
higher symmetry. In the second example, we construct passive sets associated with the three-dimensional
sound wave equation in a nonhomogeneous medium. We note how the passive sets can be used to construct
solutions of the equations.

2. Passive sets

Let N denote the set of nonnegative integers, and Nm = {1, . . . , m}. Then N
n is a semigroup generated

by the generators
e1 = (1, 0, . . . , 0), . . . , en = (0, . . . , 0, 1).

Let K be a field complete with respect to some norm. We let K
∞ denote the set of families {ai

α}i∈Nm

α∈Nn ,
ai

α ∈ K. The operation of adding families

{ai
α} + {bi

α} = {ai
α + bi

α}

and of multiplying by the field elements
c{ai

α} = {cai
α}

define the structure of a vector space on K
∞. The space K

n × K
∞ is denoted by K

n+∞. Such spaces are
often called jet spaces or prolongation spaces.

We associate each point a ∈ K
n+∞ with some K-algebra of convergent series as follows. If L is a

finite-dimensional coordinate subspace in K
n+∞, then K

n+∞ is representable as a direct sum L⊕M , where
M is the direct complement of L. We let πL denote the projector from K

n+∞ to L along M . The space
L is mapped into K

s, s = dimL, by the coordinate isomorphism φ. We associate a point a ∈ K
n+∞ with

a point aL = φ(πL(a)) ∈ K
s and let F(aL) denote the set of convergent power series depending on a finite

number of variables with the center at aL.
If the subspace L is contained in a subspace L′, then we consider that the ring F(aL) is canonically

embedded in F(aL′). The union
F(a) =

⋃

L∈Kn+∞

F(aL) (2.1)

is then a K-algebra corresponding to the point a. The Cartesian coordinates on K
n+∞ are denoted by

x1, . . . , xn, . . . , ui
α, . . . , and the whole set of Cartesian coordinates is denoted by Y . It is split into two

subsets
X = {x1, . . . , xn}, U = {ui

α : i ∈ Nm, α ∈ N
n}. (2.2)

According to [17], the algebra F(a) is local with the maximal ideal

M(a) = {f ∈ F(a) : f(a) = 0}. (2.3)

The n differentiation operators

Dif =
∂f

∂xi
+

∑

j∈Nm,
α∈N

n

∂f

∂uj
α

uj
α+ei
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act on F(a). Consequently, F(a) is a differential algebra. The elements of F(a) are called convergent

differential series.

It is useful to consider the disjoint union of algebras (the “bunch” of local algebras over K
n+∞)

F =
⋃

a∈Kn+∞

F(a). (2.4)

Definition 1. An ordered triple (K, Y, S) of sets, where S is a subset in F , is called a local analytic

differential system.

Local analytic differential systems can be regarded as an algebraic formalization of partial differential
equations.

We let 〈〈S〉〉 denote the differential ideal in F(a) generated by the set S, and Dα denote the product
Dα1

1 · · ·Dαn
n of operators. Let iv(f) be the set of variables on which the series f ∈ F depends. If Y ′ is a

nonempty subset of Y , then
K[〈Y ′〉]a = {f ∈ F(a) : iv(f) ⊆ Y ′} (2.5)

is a subalgebra of F(a).

Definition 2. We call the set

O(S) = {Dαs : α ∈ N
n, s ∈ S}

the orbit of the set S ⊂ F .

In analogy with both algebraic geometry and the theory of local analytic algebras [18], we introduce
the following concepts.

Definition 3. Let S ⊂ F(a), where a is a point in K
n+∞ such that the orbit of the set S is contained

in the maximal ideal M(a) given by (2.3). Then the quotient algebra

OS(a) = F(a)/〈〈S〉〉

is called the local algebra of a. If OS(a) is isomorphic to some algebra K[〈Y ′〉]a, then a is called a nonsingular

point for S.

Further, we obtain conditions for a point to be nonsingular. In the case of local analytic algebras, such
conditions follow from the Jacobi implicit function theorem [18].

Definition 4. The set B ⊂ F(a) is said to be normalized if the following conditions are satisfied:

1. Any element f ∈ B has the form
f = ui

α + g, (2.6)

in which case the variables ui
α form a set L in U and iv(g) ∈ Y \ L.

2. If f1 = ui
α + g1 and f2 = ui

α + g2 ∈ B, then g1 = g2.

In this case, L is called the set of pivotal variables, and P = Y \ L is called the set of parametric variables

of the system B.
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Remark 1. The notions of pivotal and parametric derivatives of orthonormal systems are used in the
Janet–Riquier theory [19].

Definition 5. The generator system B of the ideal F(a) is called the normalized system if B is a
normalized set in F(a).

Everywhere below, we use the notion of a system of ideal generators in the standard sense [17], although
the considered ideals are often differentiable.

Remark 2. The normalized generator system for a given differential ideal can be nonunique. Sufficient
conditions for the existence of a normalized generator system were obtained in [20].

Statement 1. A point a ∈ K
n+∞ is nonsingular for S ⊂ F(a) if the ideal 〈〈S〉〉 has a normalized

generator system B and 〈〈S〉〉 �= F(a). In this case, the local algebra OS(a) of a is isomorphic to the algebra

K[〈P〉]a, where P is the set of parametric variables of B.

Proof. We take an arbitrary series f ∈ F(a). If f is independent of the pivotal variables of the
normalized generator system B of the ideal 〈〈S〉〉, then f ∈ K[〈P〉]a.

We suppose that f depends on the pivotal variables y1, . . . , yp of the generator system B. Then there
are series f1, . . . , fp ∈ B such that

fi = yi + hi, i = 1, . . . , p, hi ∈ K[〈P〉]a.

Using the Weierstrass division theorem [18], [20], [21], we can represent the series f as

f =
p∑

i=1

qifi + r, r, qi ∈ F(a),

where r is independent of the pivotal variables in L and is uniquely defined. Consequently, r belongs to
K[〈P〉]a.

Definition 6. A convergent differential series f ∈ F of form (2.6) is said to be solvable for ui
α if g is

independent of the elements of the orbit O(ui
α).

Definition 7. A set S ⊂ F(a) is said to be passive (at the point a) if

1. there exists a normalized generator system B of the differential ideal 〈〈S〉〉 and

2. each series f ∈ S is solvable for some element ui
α, and the union of orbits of ui

α moreover coincides
with the set of pivotal variables of B.

In this case, we let O(st S) denote the union of orbits of ui
α and st f denote the element for which the series

f ∈ S is solvable.

Below, we give a necessary condition for a set to be passive.

Lemma 1. If S is a passive set, then any element of the ideal 〈〈S〉〉 depends on at least one element

of the orbit O(stS).
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Proof. We suppose that there is a nonzero set h ∈ 〈〈S〉〉 independent of the elements of the orbit
O(st S). Because S is a passive set and the set h belongs to the ideal generated by the normalized generator
system B, we have

h =
p∑

j=1

ajbj , (2.7)

where aj ∈ F(a) and bj ∈ B. Because b1, . . . , bp belongs to the normalized set B, the Jacobi matrix of these
sets in the variables st b1, . . . , st bp is the unit matrix.

We now let y1, . . . , yr denote the variables on which the series a1, . . . , ap, b1, . . . , bp depend, assuming
that y1 = st b1, . . . , yp = st bp in this case. We perform the change of variables

z1 = b1, . . . , zp = bp.

According to the implicit function theorem, the last relations can be solved for y1, . . . , yp. Substituting the
found y1, . . . , yp in (2.7), we obtain the representation

h =
p∑

j=1

ãjzj,

where h can depend on only yp+1, . . . , yr. Because the right-hand side of the last relation depends on at
least one of the variables z1, . . . , zp, we obtain a contradiction.

We would like to direct attention to the following question: Is it true that if a is a nonsingular point of
S ⊂ F(a), then the ideal 〈〈S〉〉 has a passive set? An affirmative answer to this question would mean that
passivity is equivalent to regularity.

Remark 3. A passive set is an analogue of the Gröbner basis of an ideal of a polynomial ring. But
we do not use the order in our definition. On the other hand, the order and other algebraic structures are
useful for obtaining the criterion for a set to be passive.

3. Stratified sets and reductions

We first introduce the definitions that we soon need. Hereafter, (Γ,≤) denotes a well-ordered set. Let
a semigroup G act on the set A, i.e., the map (g, a) → ga of the set G × A into A is defined and satisfies
the condition

g1(g2a) = (g1g2)a for all a ∈ A, g1, g2 ∈ G.

Definition 8. Let {Aγ}γ∈Γ be a partition of the set A. A semigroup G acting on A preserves the

partition if for any g ∈ G, any γ ∈ Γ, and all a, b ∈ Aγ , there exists a γ′ such that ga, gb ∈ Aγ′ .

Definition 9. Let a partition {Aγ}γ∈Γ of the set A and a semigroup G acting on A and conserving
this partition be given. The set A is called a stratified G-set if a reflexive (or irreflexive) transitive relation
≺ is given on it satisfying the conditions that for all g ∈ G,

1. a ≺ b implies ga ≺ gb and

2. a ≺ ga for any a ∈ A.

744



We introduce the sets

F̂(a) = F(a) \ K[〈X〉]a, F̂ =
⋃

a∈Kn+∞

F̂(a),

where K[〈X〉]a is given by formula (2.5). Any partition {Uγ}γ∈Γ of the set U generates partitions of the
sets F̂(a) and F̂ as follows. We consider the family of the sets

Yγ = X ∪
( ⋃

γ′≤γ

Uγ′

)
.

We take a point a ∈ K
n+∞ and the subalgebra

Fγ(a) = {f ∈ F(a) : iv(f) ∈ Yγ}.

Then the families {Fγ(a)}γ∈Γ and {Fγ}γ∈Γ, where

Fγ =
⋃

a∈Kn+∞

Fγ(a),

generate the partitions {Φγ(a)}γ∈Γ and {Φγ}γ∈Γ of the sets F̂(a) and F̂ into the blocks

Φγ(a) = Fγ(a) \
( ⋃

γ′<γ

Fγ′(a)
)
, Φγ = Fγ \

( ⋃

γ′<γ

Fγ′

)
. (3.1)

The partition {Φγ}γ∈Γ induces the irreflexive transitive relation on F̂

f ≺ g ⇐⇒ ∃γ, γ′ : f ∈ Φγ , g ∈ Φγ′ , γ < γ′ (3.2)

and the reflexive transitive relation

f � g ⇐⇒ ∃γ, γ′ : f ∈ Φγ , g ∈ Φγ′ , γ ≤ γ′. (3.3)

The relations ≺ and � on F̂(a) can be introduced similarly.
The action of the semigroup N

n
−0 = N

n \�0 (where �0 is a block of zeros) on the sets U , F̂(a), and F̂ is
given by the formulas

αui
β = ui

α+β , αf = Dα(f). (3.4)

Everywhere below, we assume that F̂ and F̂(a) are stratified N
n
−0-sets with relation (3.2). It was shown

in [20] that if U is a stratified N
n
−0-set, then F̂ is also a stratified N

n
−0-set.

Definition 10. A subset S in F is said to be weakly solvable if each series f ∈ S has the form
f = ui

α + h with some ui
α ∈ U and h ∈ F such that h ≺ ui

α. In this case, the element ui
α is called the

highest term of f and is denoted by lt f .

The next statement allows introducing “partial division” in the algebra F(a).

Statement 2. Let f be an arbitrary series in the algebra F(a) and ui
α ∈ iv(f). We assume that the

set g ∈ F(a) has the form g = ui
β + h, where ui

β ∈ U and h ≺ ui
β, and that there is an element δ ∈ N

n such

that ui
α = ui

β+δ. Then there are unique series q, r ∈ F(a) satisfying the relations

f = qDδg + r, (3.5)

q � f, r � f, ui
α /∈ iv(r). (3.6)
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Proof. The existence and uniqueness of the sets q, r ∈ F(a) satisfying both (3.5) and the relations

iv(q) ⊆
(
iv(f) ∪ iv(Dδg)

)
, iv(r) ⊂

(
iv(f) ∪ iv(Dδg)), ui

α /∈ iv(r), (3.7)

follow from the Weierstrass division theorem [18], [21]. Because lt(Dδg) = ui
α ∈ iv(f), we have

Dδg � f. (3.8)

Then (3.6) follows from formulas (3.7) and (3.8).

We say that f ∈ F(a) is one-step reducible to the set r ∈ F(a) with respect to g if the conditions of
Statement 2 are satisfied. The one-step reduction is denoted by f −→

g
r.

Definition 11. Let f ∈ F(a) and S = {f1, . . . , fk} ⊂ F(a) be a weakly solvable subset. The series f

reduces to a series r ∈ F(a) with respect to S if there is a finite set of one-step reductions of the form

f −−→
fi1

r1 −−→
fi2

r2 −−→
fi3

· · · −−→
fip

r, (3.9)

where fij ∈ S. This sequence of reductions is briefly denoted by f −→
S

r.

Definition 12. We say that a series f ∈ F(a) is irreducible with respect to a weakly solvable set S if
iv(f) ∩ O(lt S) = ∅, where

ltS = {lt f : f ∈ S}.

Definition 13. A series r ∈ F(a) is called the normal form of a series f ∈ F(a) with respect to a

weakly solvable subset S ⊂ F(a) if f −→
S

r and r is a series irreducible with respect to S.

The normal form of a series f with respect to S is denoted by NF(f ↓ S).

Lemma 2. Let S be a weakly solvable subset in F(a). Then the series f ∈ F(a) is either reducible to

the normal form NF(f ↓ S) with respect to S or irreducible with respect to S.

Proof. If iv(f) ∩ O(lt S) = ∅, then f cannot be reduced with respect to S. We now suppose that
iv(f) ∩ O(lt S) �= ∅ and show that f reduces to the normal form NF(f ↓ S) with respect to S.

For any γ ∈ Γ and any φ ∈ F(a), we introduce the set

Vγ(φ) = O(lt S) ∩ iv(φ) ∩ Uγ .

This set is either finite or empty because iv(φ) is finite. We define an element

γ1 = max{γ ∈ Γ: Vγ(f) �= ∅}.

Let the set Vγ1(f) consist of mγ1 elements. We consider an arbitrary element y ∈ Vγ1(f). According to
our supposition, there exists g ∈ S such that y ∈ O(lt g). Consequently, f is one-step reducible to some
r ∈ Fγ1(a) with respect to g, and r is therefore independent of y, and Vγ1(r) ⊂ Vγ1(g),because S is a weakly
solvable set.

If Vγ1(r) �= ∅, then we chose an arbitrary element ỹ ∈ Vγ1(r) and a series g̃ ∈ S such that ỹ ∈ O(lt g̃)
and apply the one-step reduction of r with respect to g̃ to some r̃ such that ỹ /∈ iv(r̃) and Vγ1(r̃) ⊂ Vγ1(r).
In mγ1 steps, we reduce f to some rmγ1

with respect to S, and the set Vγ1(rmγ1
) is therefore empty.
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If there is an element γ such that Vγ(rmγ1
) �= ∅, then we set

γ2 = max{γ ∈ Γ: Vγ(rmγ1
) �= ∅}.

Following the above steps, we reduce rmγ1
to some rmγ2

with respect to S, and therefore Vγ2(rmγ2
) = ∅.

Continuing this process, we obtain a strictly decreasing sequence of elements γ1 > γ2 > . . . . This sequence
cannot be infinite, because any subset in the well-ordered set Γ has a minimum element. Consequently, f

in this case reduces to the normal form NF(f ↓ S).

The proof of Lemma 2 includes a method for transforming a convergent differential series to the normal
form. In the general case, the normal form of a series f is not unique; nevertheless, the following statement
holds for passive sets.

Proposition 1. Let S be a weakly solvable passive set in F(a) such that ltS = stS. If f ∈ F(a) and

iv(f) ∩ O(lt S) �= ∅, then f reduces to a unique normal form with respect to S.

Proof. Because iv(f) ∩ O(lt S) �= ∅, the existence of the reduction to the normal form follows from
the Lemma 2. We show the uniqueness of the normal form. Let r1 and r2 be two different normal forms of
the series f with respect to S. Then the differences f − r1, f − r2, and r1 − r2 belong to the ideal 〈〈S〉〉.
According to the Lemma 1, the difference r1 − r2 depends on at least one element of the orbit O(lt S).
On the other hand, because r1 and r2 are normal forms, they are independent of the elements of the orbit
O(lt S). Consequently, iv(r1 − r2) ∩ O(lt S) = ∅, and we obtain a contradiction.

We notice that a similar uniqueness property of the normal form in the case of the Buchberger poly-
nomial ring [10] is used in the definition of the Gröbner basis.

We introduce the binary operation

α � β = (μ1, . . . , μn), where μi = max(αi, βi) − αi,

on the semigroup N
n.

Definition 14. Let two convergent differential series in F(a) be given:

f1 = ui
α + h1, f2 = ui

β + h2, (3.10)

where ui
α = lt f1 and ui

β = lt f2. We then call the difference

Dα�βf1 − Dβ�αf2 (3.11)

the τ -series of f1 and f2 and let τ(f1, f2) denote it.

Using the τ -series, we obtain the passivity criterion.

Lemma 3. Let S be a weakly solvable subset in F(a). The set S is passive and stS = lt S if and only

if the series τ(f1, f2) reduces to zero with respect to S for all pairs f1, f2 ∈ S.
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Proof. We suppose that S is a passive set. Because f1, f2 ∈ S, τ(f1, f2) ∈ 〈〈S〉〉. If the series τ(f1, f2)
is nonzero, then it depends on the elements of the orbit O(lt S) according to Lemma 1. According to
Proposition 1, this τ -series reduces to the normal form with respect to S. This normal form is independent
of the elements of the orbit O(lt S) and belongs to the ideal 〈〈S〉〉. Consequently, it is zero.

We now suppose that the series τ(f1, f2) reduces to zero with respect to S for all pairs f1, f2 ∈ S.
According to relations (3.5), (3.6), and (3.9), this means that there exists a finite sequence of the series
{ri}p+1

i=1 ∈ F(a) related by the equalities

ri = qiD
δigi + ri+1, (3.12)

and the series qi, gi, ri ∈ F(a) moreover satisfy the conditions

r0 = τ(f1, f2), rp+1 = 0, qi � ri, Dδigi � ri, ri+1 � ri. (3.13)

Therefore, the series τ(f1, f2) can be represented in the form

τ(f1, f2) =
p∑

i=1

qiD
δigi. (3.14)

By (3.3), it is easily seen that the relation � is such that h1 � h and h2 � h imply h1h2 � h, where
h1, h2, h ∈ F(a). It then follows from formulas (3.13), (3.14), and (3.3) that

qiD
δigi � ri, qiD

δigi � τ(f1, f2).

Consequently, S is a passive set according to Theorem 1 in [20].

Definition 15. A passive set S ⊂ F(a) is called the canonical set if each series f ∈ S is irreducible
with respect to S \ f .

Lemma 4. Let S be a weakly solvable passive set in F(a) and ltS = stS. Then there is a unique

canonical set R in F(a) such that 〈〈S〉〉 = 〈〈R〉〉.

Proof. The existence of the canonical set can be proved by direct construction. Because S is a finite
set, there exist elements γ1 < γ2 < · · · < γp such that

S = Sγ1 ∪ Sγ2 ∪ · · · ∪ Sγp ,

where Sγj = S ∩ Φγj and the blocks Φγj are given by formula (3.1). We consider the set Sγ1 . Because S

is a passive set and γ1 = min{γ ∈ Γ: S ∩ Φγ �= ∅}, any f ∈ Sγ1 is independent of elements of the orbit
O(lt(S \ f)).

For each j (where 2 ≤ j ≤ p), we introduce the two sets

Qj = Rγ1 ∪ · · · ∪ Rγj ,

Rγj = {NF(fi ↓ Qj−1) �= ∅ : fi ∈ Sγj} ∪ {fi ∈ Sγj : fi �Qj−1},

where the notation fi �Qj−1 means that fi is irreducible with respect to Qj−1. Moreover, we assume that
Rγ1 = Sγ1 . We show that Qp is a canonical set in F(a). We must show that any g ∈ Qp is irreducible with
respect to Qp \ g.
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Let a series g belong to Rγj . Obviously, this series is irreducible with respect to R \ Rγj . We note
that if the series ri = NF(fi ↓ Qj−1) (where fi ∈ Sj) is nonzero, then it belongs to Φγj . In fact, if ri ∈ Φγ′

(where γ′ < γj), then iv(ri) ∩ O(lt S) = ∅. On the other hand, any element in 〈〈S〉〉 depends on at least
one element in O(lt S) according to Lemma 1. We obtain a contradiction. Consequently, Rγj ⊂ Φγj .

We now show that if g, h ∈ Rγj and lt g = lth, then g = h. We suppose that this is not the case.
Then g − h �= 0 and g − h ∈ Φγ′ , where γ′ < γj . Because the series g and h are irreducible with respect to
Qj−1, their difference is also irreducible with respect to Qj−1. According to Lemma 1, any element in 〈〈S〉〉
depends on at least one element in O(lt S). Therefore, g − h = 0, and the existence is proved.

It remains to prove the uniqueness. We suppose that there is a canonical set R̃ distinct from R. By
the condition, S is a passive set and 〈〈R〉〉 = 〈〈R̃〉〉 = 〈〈S〉〉. Consequently, the equalities

O(lt S) = O(lt R) = O(lt R̃), ltR = lt R̃

hold. We take two elements g ∈ R and g̃ ∈ R̃ such that lt g = lt g̃ and show that g = g̃. We first suppose
that this is false. Then g− g̃ �= 0 and iv(g− g̃)∩O(lt S) �= ∅ according to Lemma 1. Because the sets R and
R̃ are canonical, the series g and g̃ are independent of the elements of the orbits O(lt(R\g)) = O(lt(R̃\ g̃)).
Consequently, the difference g − g̃ is independent of the elements of the orbit O(lt(R \ g)). Obviously, the
formulas

O(lt S) = O(lt R) = O(lt(R \ g)) ∪ O(lt g), iv(g − g̃) ∩ O(lt g) = ∅

hold. Therefore, iv(g − g̃) ∩ O(lt S) = ∅.

4. Construction of passive sets and examples of differential
systems

If a set S ⊂ F(a) is not passive, then the problem of constructing a passive set P ⊂ F(a) such that
〈〈S〉〉 = 〈〈P 〉〉 arises. We need a convenient existence criterion for a passive set of a given differential ideal.
Such problems have been considered in both classical and modern papers but apparently were not ultimately
resolved. We describe a scheme for constructing a passive set, note problems in realizing it, and give some
examples.

We first prove a statement that can be used to study passivity. We let Kn(c) denote the algebra of
convergent power series (with the center at the point c ∈ K

n) depending on n variables x1, . . . , xn. The set

mn(c) = {f ∈ Kn(c) : f(c) = 0}

forms the maximal ideal of the algebra Kn(c). We need the following refinement of the implicit function
theorem.

Proposition 2. Let f1, . . . , fk ∈ mn(c) and the Jacobian ∂(f1,...,fk)
∂(x1,...,xk) (c) be nonzero. Then there exist

series g1, . . . , gk ∈ mn(c) of the form

gi = xi + hi (4.1)

and a kth-order square matrix A with elements in Kn(c) such that

(f1, . . . , fk) = (g1, . . . , gk)A, A(c) =
(

∂fj

∂xl

)
(c), (4.2)

where j, l ∈ Nk, and the series hi are independent of x1, . . . , xk.
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Proof. It follows from the conditions in the proposition and the implicit function theorem that there
exist series g1, . . . , gk ∈ mn(c) of form (4.1) such that

fi(−h1, . . . ,−hk, xk+1, . . . , xn) = 0, i ∈ Nk. (4.3)

The Weierstrass division theorem [18] implies the representation [20]

fj =
k∑

i=1

giaji + rj , j ∈ Nk, (4.4)

where rj , ai,j ∈ Kn(c) and iv(rj) ∩ {x1, . . . , xk} = ∅. We substitute the series −h1, . . . ,−hk for x1, . . . , xk

in (4.4). It then follows from relations (4.1) and (4.3) that the series rj are zero. Consequently, the first
formula in (4.2) holds.

We prove the validity of the second formula in (4.2). Differentiating equality (4.4) with respect to xl

(at r = 0, l ∈ Nk), we obtain
∂fj

∂xl
=

k∑

i=1

∂gi

∂xl
aji +

k∑

i=1

gi
∂aji

∂xl
. (4.5)

Because the equalities

gi(c) = 0,
∂gi

∂xl
(c) = δi

l

hold for all i, l ∈ Nk (where δi
l is the Kronecker symbol), it follows from (4.5) that ∂fj

∂xl
(c) = ajl(c). This

proves the second formula in (4.2).

We return to studying the properties of the algebra F(a).

Definition 16. We say that the blocks �f 1, �f 2 ∈ Fk(a) are similar if there is a kth-order square matrix
A nondegenerate at the point a with elements in F(a) such that �f 1 = �f 2A. Two sets R1, R2 ⊂ F(a) of k

elements are said to be equivalent if the blocks �f 1, �f 2 ∈ Fk(a) composed of the elements of the respective
sets R1 and R2 are similar.

Obviously, equivalent sets generate coinciding differential ideals. In certain cases, we can use equivalent
sets to solve the problem of constructing a passive set for a given differential ideal generated by the finite
subsets in F(a). We present the scheme for constructing a passive set.

Let F̂ be a stratified N
n
−0-set. We assume that S = {f1, . . . , fk} is not a weakly solvable set in F and

there is a point c where all series in S vanish and the rank of the Jacobi matrix (∂fj/∂zi)(c) is equal to
p > 0 (here zi are the variables on which the series fj ∈ S depend). Then there is a nonzero minor

∂(fi1 , . . . , fip)
∂(zi1 , . . . , zip)

(c).

According to Proposition 2, there exist series of the form

g1 = zi1 + h1, . . . , gp = zip + hp

such that the blocks (fi1 , . . . , fip) and g1 . . . , gp are similar. If h1 ≺ zi1 , . . . , hp ≺ zip , then the set S̃ =
{g1, . . . , gp} is weakly solvable. We verify that any series f ∈ S reduces to zero with respect to S̃. We
then reduce all τ -series of form (3.11) composed of all pairs f1, f2 ∈ S̃ to the normal forms with respect to
S̃. We let S1 denote the set of normal nonzero forms. If the set S1 is not weakly solvable, then we apply
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the procedure described above to it and obtain the weakly solvable set S̃1. We next check whether the set
S̃∪ S̃1 is passive by reducing the τ -series to the normal forms with respect to S̃∪ S̃1. If S̃∪ S̃1 is not passive,
then using the described method, we obtain the set S̃2 and the set S̃ ∪ S̃1 ∪ S̃2. We then check whether the
last set is passive, and so on. As we show below, we obtain a passive set after a finite number of steps.

To prove that the number of steps in the scheme described above is finite, we consider the ring M
of polynomials K[x1, . . . , xn] and the vector space KU over K generated by the set U given by (2.2). It
is simple to prove [20] that KU can be equipped with the structure of a left M-module and this module
is isomorphic to the Noether module Mn. We let Qi denote the union S̃ ∪ S̃1 ∪ · · · ∪ S̃i and Q0 denote
S̃. We assume that the set Qi for any i is strictly contained in Qi+1. This strictly increasing chain of sets
corresponds to the strictly increasing chain of highest terms

ltQ0 ⊂ ltQ1 ⊂ · · · ⊂ lt Qi ⊂ . . . .

The inclusions in this chain are strict because S̃i consists of normal forms with respect to Qi−1. In turn,
the last chain corresponds to the chain of submodules

[ltQ0] ⊂ [ltQ1] ⊂ · · · ⊂ [lt Qi] ⊂ . . . ,

where [ltQi] is the submodule of the M-module KU generated by the set Qi. Because the module KU is
Noether, it cannot have a strictly increasing infinite chain of submodules. We obtain a contradiction.

In the general case, we cannot guarantee that the scheme described above works, because the conditions
of Proposition 2 might not be be satisfied.

We give examples of constructing passive sets.

Example 1. Let K = R be the field of real numbers m = 1, n = 2. We consider the set S = {f1, f2} ⊂
F consisting of two convergent differential series

f1 = u(1,1) − sin u(0,0), f2 = u(0,3) +
1
2
u3

(0,1).

The set U can be separated into the subsets Ui = {uα : |α| = i} and becomes a stratified N
2
−0-set. We want

to find a passive set Q ⊂ F(a) such that 〈〈Q〉〉 = 〈〈S〉〉. Restrictions on the point a ∈ K
n+∞ appear in the

course of the calculations.
Below, we use the more familiar notation

Dt = D1, Dx = D2, u = u(0,0), ut = u(1,0), ux = u(0,1), utx = u(1,1).

The set S corresponds to the system of partial differential equations

utx − sin u = 0, uxxx +
1
2
u3

x = 0. (4.6)

We calculate the τ -set of f1 and f2:

τ(f1, f2) = D2
xf1 − Dtf2 = u2

x sin u − uxx cosu − 3
2
utxu2

x.

Obviously, the set τ(f1, f2) reduces to the normal form

f3 = −uxx cosu − 1
2
u2

x sin u
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with respect to S. Consequently, the set S is not passive according to Lemma 1. If cosu �= 0, then f3 is
equivalent to the series f̃3 = uxx + u2

x tan(u)/2.
We must now check the set S1 = {f1, f2, f̃3} for passivity. Computing the τ -series

τ(f1, f̃3) = Dx(utx − sinu) − Dt

(
uxx +

u2
x

2
tan u

)
= −ux cosu − utxux tanu − utu

2
x

2 cos2 u

and reducing it to its normal form with respect to S1, we obtain

f4 = − ux

2 cos2 u
(utux + 2 cosu).

If ux �= 0, then f4 is equivalent to the series

f̃4 = ut +
2 cosu

ux
.

It can be easily calculated that the series f1 and f2 belong to the ideal 〈〈f3, f4〉〉 and the series τ(f̃3, f̃4)
reduces to zero with respect to the set {f̃3, f̃4}.

Therefore, {f̃3, f̃4} is the required passive set. This passive set generates the same differential ideal as
the original set {f1, f2}. It can be used to find solutions of system (4.6). For this, it suffices to integrate
the system

f̃3 = 0, f̃4 = 0. (4.7)

We first consider the first equation

uxx +
u2

x

2
tan u = 0

of system (4.7). We divide this equation by ux and find the first integral

ux√
cosu

= c,

where c is still an arbitrary function of t. Substituting the first integral in the second equation of the
system, Eq. (4.7), we obtain the first-order system

ux − c
√

cosu = 0, ut +
2
√

cosu

c
= 0. (4.8)

Composing the τ -series of the left parts of the system (4.8) and reducing it to the normal form, we see that
the normal form is equal to zero only if c = const. In this case, the implicit solution of system (4.8) is

∫
du√
cosu

= cx − 2t

c
+ c1,

where c1 is an arbitrary constant. The obtained solution of the sine-Gordon equation is invariant under the
dilatation and translation transformations.

Example 2. We consider the acoustic equation in a nonhomogeneous medium [22] as the second
example:

ptt

ρc2
=

(
px

ρ

)

x

+
(

py

ρ

)

y

+
(

pz

ρ

)

z

, (4.9)
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where p is the pressure, ρ is the density, and c is the speed of sound. The pressure is the sought function,
while the density and the speed of sound are given functions of x, y, and z. We first assume that ρ and c

are arbitrary positive functions. If we introduce a new function P = p/
√

ρ, then Eq. (4.9) becomes

Ptt = c2(ΔP + qP ). (4.10)

Here, Δ is the three-dimensional Laplacian, and the function q is expressed in terms of ρ:

q = −
Δ(

√
ρ)

√
ρ

.

We want to find some solutions of Eq. (4.10). We assume that P satisfies the additional equation

Pt = aPx + bPy, (4.11)

regarding a, b, and c as functions of only x.
Equations (4.10) and (4.11) correspond to the two differential series

e0 = Ptt − c2(ΔP + qP ), e1 = Pt − aPx − bPy.

The set S = {e0, e1} is not passive for arbitrary functions a, b, and c. We obtain conditions such that the
set S becomes passive if they are satisfied. For this, we reduce e0 to the normal form with respect to e1,
i.e., eliminate the term Ptt in e0. It can be easily seen that the normal form is

e2 = e0 − Dte1 − aDxe1 − be1 =

= (a2 − c2)Pxx + a(a′ + 2b)Px − c2(Pyy + Pzz) + (ab′ + b2 − qc2)P.

We now assume that c = a and b = −a′/2. Then e2 is considerably simplified:

e2 = −a2(Pyy + Pzz) +
(
−aa′′

2
+

(a′)2

4
− qa2

)
P.

For a �= 0, the series e2 is equivalent to

ẽ3 = Pyy + Pzz +
(

aa′′

2a
+

(a′)2

4a2
− q

)
P.

We now assume that

q = −aa′′

2a
+

(a′)2

4a2
+ h,

where h depends only on y and z. The series ẽ3 is then

ẽ3 = Pyy + Pzz + hP.

It is easy to see that the manifold S1 = {e1, ẽ3} is passive and

e0 = Dte1 + aDxe1 + be1 − a2ẽ3.
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Consequently, some solutions of Eqs. (4.10) can be found by solving the system

e1 = 0, ẽ3 = 0. (4.12)

Solving the first equation

Pt − aPx + a′ P

2
= 0 (4.13)

in system (4.12) reduces to integrating the ordinary differential equations

dt

1
=

dx

a
= −2

dP

a′P
.

Consequently, the general solution of Eq. (4.13) has the form

P =
√

a(x)f
(

t −
∫

dx

a(x)
, y, z

)
.

According to the second equation of system (4.12), the function f must satisfy the equation

fyy + fzz + hf = 0. (4.14)

If h = 0, then we obtain the Laplace equation. For a special choice of the function h, Eq. (4.14) reduces
to the Laplace equation [23]. If the functions f and h are independent of z, then (4.14) becomes the linear
ordinary equation

f ′′ + hf = 0,

which can be explicitly integrated for a special choice of h [24].
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