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NEW APPROACH TO THE QUANTIZATION OF THE YANG–MILLS

FIELD

A. A. Slavnov∗

We review papers on a new method for quantizing the Yang–Mills field applicable both in perturbation

theory and beyond it. We show that in the modified formulation of the Yang–Mills theory leading to

a formal perturbation theory that coincides with the standard one, there exist soliton solutions of the

classical equations of motion.
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1. Introduction

Progress in physics is as a rule related to introducing a new symmetry. Very few problems of high
energy physics can be solved exactly. But based on symmetry, we can make some predictions, which can
be checked experimentally. Gauge field theory illustrates this thesis well. The classical Faraday–Maxwell
electrodynamics is completely described by the electromagnetic stress tensor Fμν . But if we want to
describe the interaction of the electromagnetic field with matter fields, with an electron for example, we
discover that it is impossible to construct a local Hermitian Hamiltonian describing this interaction using
only the stress tensor Fμν . Therefore, the electromagnetic field is described by the four-vector Aμ, in
terms of which the stress tensor can be expressed. The vector Aμ has more components than needed for
describing the experiment: it is known that the electromagnetic field is three-dimensionally transverse, i.e.,
the electric and magnetic polarization vectors are perpendicular to the three-dimensional momentum. From
the experimental standpoint, it is necessary to know only the three-dimensionally transverse components
of Aμ. But Aμ, in addition to the transverse components, also has the timelike component A0 and the
component parallel to the three-dimensional momentum, which is usually denoted by A3. Clearly, the
theory based on the vector Aμ has more components than necessary. But a new symmetry—gradient
(gauge) invariance—is introduced simultaneously with Aμ. This invariance provides the decoupling of A0

and A3 from the transverse components, and observables are independent of A0 and A3. The same idea
can be illustrated by the models based on non-Abelian gauge groups. The simplest version of such a
theory is based on the group SU(2) and was proposed by Yang and Mills [1]. After the transition to the
quantum theory in the Yang–Mills model, in addition to the unphysical components of the vector field, the
anticommuting scalar fields c̄ and c—Faddeev–Popov ghosts—arise [2], [3]. It can be shown [4], [5] that
the components A0 and A3 and the Faddeev–Popov ghosts decouple from the transverse components and
observables are independent of unphysical particles.

The same idea underlies the renormalizable description of the Higgs model [6]–[8], which allows intro-
ducing the mass term for the vector field without breaking the gauge invariance. In this case, the complete
spectrum of the theory, in addition to Ai and Faddeev–Popov ghosts, also includes the Goldstone particles
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Ba. As before, it can be shown that the component A0, Faddeev–Popov ghosts c̄ and c, and Goldstone
fields decouple from the physical components of the vector field Ai, i = 1, 2, 3, and observables depend on
only these components.

In these examples, we observe the following law: for a consistent description of observables, the spec-
trum of the theory must be extended by introducing unphysical excitations. Of course, we should care about
the new symmetry arising in the theory, leading to the decoupling of the unphysical degrees of freedom
from the physical ones.

We use this observation to construct a scheme for quantizing non-Abelian gauge fields applicable beyond
perturbation theory. We also show that the Yang–Mills theory in the modified formulation, leading to the
same formal perturbation theory in the quantum case as the standard formulation, has soliton solutions of
the classical equations of motion. This contradicts the generally accepted view that the classical Yang–Mills
theory does not have soliton solutions and agrees with the view that the confinement of color objects is
related to the existence of quasiparticle solutions of classical equations with a localized finite energy.

Speaking about the quantization of gauge fields beyond perturbation theory, we have in mind the
problem of the nonuniqueness of quantization, first noted by Gribov [9]. It is known that to quantize
the gauge field, some gauge condition selecting a unique representative in the class of gauge-equivalent
configurations must be imposed. In the Maxwell theory, this means that the gauge condition (e.g., the
Coulomb gauge)

∂iAi = 0 (1)

has only a trivial solution for the function Φ, where gauge-equivalent configurations are

Ai + ∂iΦ. (2)

Indeed, if condition (1) is satisfied, then the function by which two gauge-equivalent configurations differ
must satisfy the equation

ΔΦ = 0, (3)

i.e., must be a harmonic function. It is known that a harmonic function has an extremal value at the
boundary. Because Φ(x) must vanish at the spatial infinity, we conclude that this function is identically
zero. Therefore, in the case of an Abelian gauge group, the Coulomb gauge selects a unique representative
in the class of gauge-equivalent configurations.

But in the case of the simplest non-Abelian gauge group SU(2), the equation corresponding to (3) is

ΔΦa + g ∂i(εabcAb
iΦ

c) = 0. (4)

This equation has nontrivial solutions even if Φ(x) → 0 as |x| → ∞. In the framework of the perturbation
theory in the coupling constant, the solution of Eq. (4) is trivial. Indeed, if we seek the solution for Φ as a
formal series

Φ = Φ0 + gΦ1 + g2Φ2 + . . . , (5)

then in the perturbation theory framework, we obtain

Φ0 = Φ1 = Φ2 = · · · = 0. (6)

For large g, Eq. (4) has nontrivial solutions that tend to zero at spatial infinity. Therefore, the Faddeev–
Popov–De Witt quantization scheme, based on the assumption that the Coulomb gauge condition selects
a unique representative in the class of gauge-equivalent configurations, is strictly speaking inapplicable
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beyond the perturbation theory. If we try to use it for large g, then this leads to singularities appearing in
the path integral for the scattering matrix. Singer generalized this result to any differential gauge [10].

We can hope that it is possible to use so-called algebraic gauges, for example, the Hamiltonian gauge
A0 = 0. In these cases, the problem of the gauge choice uniqueness does not arise. But setting A0 = 0
in the Lagrangian, we lose the constraint DiP

a
i = 0, which must be satisfied for the observable quantities.

This condition cannot be imposed on the fields, which are assumed to be independent in the quantization
process. This condition can be imposed on the allowed state vectors

̂Di
̂Pi|Φ〉 = 0. (7)

This condition can be solved in perturbation theory, but the question about the existence of solutions
of (7) beyond perturbation theory is open. Analogous problems arise in other algebraic gauges. Moreover,
from the practical standpoint, these gauges are unsatisfactory because they destroy the manifest Lorentz
invariance, which complicates calculations considerably. We hence see that quantizing non-Abelian gauge
fields in the standard formulation is possible only in the perturbation theory framework. A possible way
out of this situation was proposed in papers by Zwanziger [11].

Here, we use another possibility. We show that by the mechanism described above, i.e., by expanding
the spectrum of unphysical fields and introducing a new symmetry, we can quantize the non-Abelian gauge
theory beyond perturbation theory. The modified theory coincides with the standard theory in the formal
perturbation theory framework but has soliton solutions of the classical equation of motions of the type of
the ’t Hooft–Polyakov magnetic monopole [12], [13].

2. The modified Yang–Mills theory

We begin by considering the modified SU(2) theory described by the Lagrangian

L = −1
4
F i

μνF i
μν + (Dμϕ+)i(Dμϕ−)i + i(Dμb)i(Dμe)i. (8)

Here, F i
μν is the usual stress tensor for the Yang–Mills field, and Dμ denotes the covariant derivative. The

fields ϕ±, b, and e are Hermitian and have zero spin. The fields ϕ± and b, e are respectively commuting
and anticommuting elements of the Grassmann algebra. The fields ϕ±, b, and e belong to the adjoint
representation of the group SU(2).

We first consider the topologically trivial sector. Shifting the fields ϕ− along the third axis,

ϕ−
i → ϕ−

i − μ̂, μ̂ = δi3mg−1, (9)

we obtain the Lagrangian

L = −1
4
F i

μνF i
μν + (Dμϕ+)i(Dμϕ−)i + i(Dμb)i(Dμe)i − (Dμϕ+)i(Dμμ̂)i. (10)

This Lagrangian is obviously invariant under the “shifted” gauge transformations

δAi
μ = ∂μηi + gεijkAj

μηk,

δϕ+
i = gεijkϕ+

j ηk, δϕ−
i = −mεi3kηk + gεijkϕ−

j ηk,

δbi = gεijkbjηk, δei = gεijkejηk

(11)
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(here i, j, k = 1, 2, 3). Lagrangian (10) is also invariant under the supersymmetry transformation

δϕ−
i = ibiε, δei = ϕ+

i ε, δbi = δϕ+
i = 0. (12)

This is a new symmetry, which was absent in the standard Yang–Mills Lagrangian and which plays the
main role in the proof that the unphysical fields ϕ±, b, and e decouple from the physical components of
Atr

μ .
We note that the transformations shift the fields ϕ−

1,2 by arbitrary functions. Therefore, as in the Higgs
model, the new gauge field ϕ−

1,2 arises in addition to the gauge field Aμ. We choose the gauge

ϕ−
1,2 = 0. (13)

This gauge is obviously algebraic and does not require introducing Faddeev–Popov ghosts. At the same
time, condition (13) is manifestly Lorentz invariant. In this model, we thus succeeded in introducing a
manifestly Lorentz-invariant algebraic gauge and, as is seen, in preserving the renormalizability of the
theory. The remaining gauge invariance, related to rotations around the third axis in the charge space, is
Abelian and does not produce the Gribov ambiguity.

Nevertheless, the gauge ϕ−
1,2 = 0 is still not unique. Applying gauge transformations (11) to the fields

ϕ−
1,2, we obtain equations that must be satisfied by the gauge function to provide the uniqueness of the

gauge:
(m + gϕ−

3 )η2 = 0, (m + gϕ−
3 )η1 = 0. (14)

We note that in perturbation theory, with ηa = ηa
0 + gηa

1 + . . . , the only solution of Eqs. (14) is η1,2 = 0.
But for the values of ϕ−

3 for which m − gϕ−
3 = 0, the choice of the gauge is not unique, as before.

To eliminate this nonuniqueness, we change the variables in the classical Lagrangian:

ϕ−
3 = −m

g

(

exp
{

gh

m

}

− 1
)

, ϕ+
3 = M−1ϕ̃+

3 ,

ϕ−
1,2 = Mϕ̃−

1,2, ϕ+
1,2 = M−1ϕ̃+

1,2,

e = M−1ẽ, b = Mb̃,

(15)

where

M =
(

1 +
g

m
ϕ−

3

)

= exp
{

gh

m

}

. (16)

Instead of the gauge ϕ−
1,2 = 0, we impose the condition

ϕ̃−
1,2 = 0. (17)

We thus obtain
δϕ̃−

1,2 = ±mη1,2. (18)

As can be seen, the nonuniqueness of the gauge fixing is completely absent. The effective Lagrangian in
gauge (17) is

Leff = − 1
4
F i

μνF i
μν + ∂μh ∂μϕ̃+

3 − g

m
∂μh ∂μh ϕ̃+

3 −

−
[

Dμb̃ +
g

m
b̃ ∂μh

]i[

Dμẽ − g

m
ẽ ∂μh

]i

+

+ mg(Aa
μ)2ϕ̃+

3 + g ∂μh Aa
μϕ̃+

a , mε3abϕ̃+
a ∂μAb

μ. (19)
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where a, b = 1, 2 and i = 1, 2, 3. The free propagators determined by Lagrangian (19) are

Δtr(Aa
μAb

ν) = −iδab Tμν

p2
, Δ(Aa

μϕ̃+
b ) = ε3ab pμ

mp2
,

Δ(b̃iẽj) = iδij 1
p2

, Δ(hϕ̃+
3 ) =

1
p2

,

(20)

where Tμν is the transverse projector. The remaining propagators corresponding to the Abelian subgroup
of rotations around the third axis can be set equal to

Δ(A3
μA3

ν) = −i
Tμν

p2
. (21)

It is easy to calculate the divergence index of an arbitrary diagram, which is equal to

n = 4 − 2Lϕ̃+
3
− 2Lϕ̃+

a
− LA − Le − Lb − Lh. (22)

where Lc denotes the number of external lines of the field c. Because the interaction Lagrangian includes
only trilinear vertices with one derivative and four linear vertices without derivatives, the theory is obviously
renormalizable.

3. Unitarity of the theory in the physical space

The spectrum of our theory includes several unphysical particles. They are the zeroth and third com-
ponents of Ai

μ, the fields ϕ±
a , ϕ+

3 , and h, and the anticommuting fields bi and ei. We recall that the original
Lagrangian was invariant under gauge transformations (11) and supersymmetry transformations (12). The
asymptotic gauge transformations are unchanged in terms of the new variables, and the supersymmetry
transformations are changed as

δϕ̃−
a = ib̃aε, δh = ib̃3ε, δẽi = ϕ̃+

i . (23)

The remaining components of the asymptotic fields are not transformed. We say nothing about the Abelian
gauge transformations related to rotations around the third axis. These transformations do not introduce
any complications.

We fix the gauge corresponding to rotation about the first and second axes by adding the expression

s1

∫

d4x c̄aϕ̃−
a =

∫

d4x[λaϕ̃−
a + c̄aca] (24)

to the effective action, where s1 is the nilpotent operator, similar to the usual BRST operator, determined
by the gauge transformation. This leaves effective Lagrangian (19) written in terms of the transformed
variables invariant, and the action of s1 on the ghost fields and the field λ is defined by the formula

(s1c)a = 0, (s1c̄)a = λa, (s1λ)a = 0. (25)

The gauge-fixed effective action is

Aeff =
∫

d4x
(

L(x) + λaϕ̃−
a + mc̄aca − c̄ab̃a

)

, (26)

589



where L denotes Lagrangian (19), invariant under simultaneous gauge transformations and supersymmetry
transformations written in terms of λ, h, ϕ̃±, Aμ, ϕ̃+

3 , b̃, and ẽ. The canonical gauge fixing does not include
the term c̄ab̃a, but this term can be easily generated by the change of variables c → c − b̃m−1. Explicitly
integrating over c̄a and ca, we obtain an action that is invariant under simultaneous BRST transformations
and supersymmetry transformations with the change c → b̃m−1.

According to the Noether theorem, an invariance of the effective action leads to the existence of a
conserved charge Q, which allows separating physical excitations by requiring their annihilation by the
asymptotic charge

Q0|Φ〉ph
as = 0, (27)

where Q0 is the asymptotic operator acting on the asymptotic fields as

Q0Ai
μ = i

∂μb̃iε

m
, Q0b̃a = 0, Q0b̃3 = 0,

Q0h = i b̃3ε, Q0ϕ̃+
a = 0, Q0ϕ̃+

3 = 0,

Q0ẽa = ϕ̃+
a ε, Q0ẽ3 = ϕ̃+

3 ε.

(28)

It can be seen from formula (28) that unphysical fields enter in the form of BRST doublets. If we identify
the field ẽa with the antighost field c̄ and the field b̃am−1 with the ghost field c, then these transformations
provide the decoupling of the fields ϕ̃+

a , ẽa, and b̃a and the unphysical components of the Yang–Mills field
from the transverse components. The remaining transformations provide the decoupling of the components
ẽ3, b̃3, h, and ϕ̃+

3 . Also fixing the Abelian degree of freedom of the vector field, we conclude that all
unphysical fields decouple from the transverse fields.

We have thus shown that the modified Lagrangian containing additional unphysical degrees of freedom
leads to the same result as does the standard Yang–Mills Lagrangian. The nonuniqueness of the gauge
fixing does not arise in quantizing this Lagrangian, and it can be used both in the perturbation theory
framework and beyond it. The results presented in this review were first obtained in [14]–[18]. Of course, a
complete study of the model includes the question whether renormalization preserves the model symmetry;
this was investigated in [17].

Up to now, we considered Yang–Mills fields with a zero mass. This theory is the basis of quantum
chromodynamics (QCD). Modern QCD uses one more essential postulate, the color confinement hypothesis.
The confinement of color objects cannot be explained in the framework of the perturbation theory in the
coupling constant. Lattice simulations are commonly used to explain quark confinement. The models used
for this as a rule contain quasiparticle excitations, which we call solitons. On the other hand, it is known
that the classical equation of motions in the standard formulation of the Yang–Mills theory have no soliton
solutions [19]–[21]. But the arguments forbidding the existence of solitons in the Yang–Mills theory are
inapplicable to the modified formulation presented above. In the following sections, we show that classical
solutions of the soliton type indeed exist in the QCD based on the modified formulation of the Yang–Mills
theory.

4. Expansion in the coupling constant

We choose the original Lagrangian in the form

L = −1
4
F i

μνF i
μν +

1
2
(Dμϕ)i(Dμϕ)i − 1

2
(Dμχ)i(Dμχ)i + i(Dμb)i(Dμe)i. (29)

As before, for simplicity, we consider the group SU(2). Instead of the fields ϕ± in this formula, we explicitly
introduce the fields χ, which have negative energy. The fields ϕ and χ commute, and the fields b and e

anticommute. All these fields belong to the adjoint representation of the group SU(2).
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We assume that the fields ϕ and χ have a nontrivial asymptotic behavior:

|ϕ| →
r→∞

∣

∣

∣

∣

m

g

∣

∣

∣

∣

, |χ| →
r→∞

∣

∣

∣

∣

mα

g

∣

∣

∣

∣

, r = |x|. (30)

The parameter |α| ≤ 1, and α → 1 as g → 0. For example,

α =
g−n − gn

g−n + gn
= 1 − g2n + . . . , (31)

and hence α = 1 − O(g2n). Choosing a sufficiently large n, we obtain results in the formal perturbation
theory coinciding with the standard Yang–Mills theory to an arbitrary order in g. In Eq. (30), m is a
constant with the dimension of mass.

We call the power series in the coupling constant independently of whether it converges the formal
perturbation theory. Separate terms in this series might not even exist in the limit when some intermediate
regularization is removed. In QCD, the limit for separate terms of the series may not exist because of
infrared divergences. Numerous attempts to construct the Yang–Mills theory analogously to quantum
electrodynamics failed because of the nonlinear interaction of the Yang–Mills quanta.

If the coupling constant is small, as in electrodynamics, then the usual relations of the type of unitarity
or causality conditions are satisfied in the formal perturbation theory at any order in the coupling constant.
But in QCD, the coupling constant is not small, and separate terms in the formal perturbation theory
might not even exist because of infrared singularities. Nevertheless, in the formal perturbation theory
for the Yang–Mills field, fulfillment of the unitarity and causality conditions is usually required. This
standpoint is supported by the observation of jets, which is evidence that QCD is based on some non-
Abelian gauge theory. But no rigorous statements can be made, because the hadronization process, which
plays an important role in the formation of jets, is essentially nonperturbative.

The only sensible object in the perturbative quantum theory of the Yang–Mills field can be the gen-
erating functional for gauge-invariant operators. Below, we show that this functional in our formulation
coincides with the standard expression.

We first consider the topologically trivial sector corresponding to the perturbation theory. In this case,
we can choose the direction in which the fields do not vanish as the third axis in the charge space. Shifting
the variables ϕ and χ as

ϕi = ϕ̃i + δi3mg−1, χi = χ̃i − δi3mαg−1, (32)

we obtain the Lagrangian in which ϕ̃ = 0 and χ̃ = 0 at infinity, which is necessary for constructing
the perturbation theory. We want to prove that the scattering matrix obtained after the shift in the
perturbation theory framework (in the limit α → 1) coincides with the standard scattering matrix in the
Yang–Mills theory. If α �= 1, then we can speak about the coincidence of the scattering matrices up to
an arbitrary order of the formal perturbation theory. Of course, the on-shell scattering matrix does not
exist strictly speaking, because of infrared singularities, but we can speak about the vanishing of the matrix
elements corresponding to transitions between the states containing only physical excitations and the states
containing some unphysical excitations. In both cases, the physical excitations correspond to the transverse
components of the Yang–Mills field.

In the topologically trivial sectors, our theory differs from the standard theory: the Yang–Mills theory
in the standard formulation has no soliton excitations, but the modified formulation describes classical
solitons.

For now, we are interested in only the perturbation theory results and can therefore set the parameter
α = 1 because α = 1 − O(g2n), where n is an arbitrary number. Clearly, no mass term arises for the
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Yang–Mills field in this case: the contributions of the terms depending on the fields ϕ and χ mutually
cancel because they have different signs.

The Lagrangian describing the modified theory after shift (32) is

L = − 1
4
F i

μνF i
μν + Dμϕ̃i

+ Dμϕ̃i
− + iDμb̃i Dμẽi +

+ m
1 + α√

2
Dμϕ̃i

+ εij3Aj
μ + m

1 − α√
2

Dμϕ̃i
− εij3Aj

μ +
m2(1 − α2)

2
Aa

μAa
μ. (33)

Here, we use the obvious notation

ϕ̃i
± =

ϕ̃i ± χ̃i

√
2

, i = 1, 2, 3. (34)

This Lagrangian for any α is invariant under the “shifted” gauge transformations

δAi
μ = ∂μηi + gεijkAj

μηk,

δϕ̃1
− = −1 + α√

2
mη2 + gε1jkϕ̃j

−ηk, δϕ̃1
+ = −1 − α√

2
mη2 + gε1jkϕ̃j

+ηk,

δϕ̃2
− =

1 + α√
2

mη1 + gε2jkϕ̃j
−ηk, δϕ̃2

+ =
1 − α√

2
mη1 + gε2jkϕ̃j

+ηk,

δϕ̃3
− = gε3jkϕ̃j

−ηk, δϕ̃3
+ = gε3jkϕ̃j

+ηk,

δb̃i = gεijk b̃jηk, δẽi = gεijkẽjηk.

(35)

The Gribov ambiguity is absent from the perturbation theory, and we can therefore choose the gauge
∂μAμ = 0, simultaneously introducing the Faddeev–Popov ghosts c̄ and c.

We can write the scattering matrix at α = 1 as a path integral

S =
∫

dμ exp
{

i
[∫

d4x

(

−1
4
F i

μνF i
μν + Dμϕ̃i

+ Dμϕ̃i
− +

+ λi∂μAi
μ + i ∂μc̄i Dμci + i Dμb̃i Dμẽi + m

√
2Dμϕ̃i

+ εij3Aj
μ

)]}

, (36)

where the integration measure dμ is the product of differentials of all the fields in the Lagrangian.
For α = 1, Lagrangian (33) is invariant under the supersymmetry transformation

δϕ̃i
− = b̃iε, δẽi = ϕ̃i

+ε, δb̃i = δϕ̃i
+ = 0. (37)

It is easy to see that these transformations are nilpotent:

δ2ϕ̃i
− = 0, δ2ẽi = 0. (38)

This invariance provides the decoupling of excitations corresponding to the fields ϕ̃±, b̃, and ẽ. As in
the preceding section, the invariance of the effective action under the BRST transformations and the
supersymmetry transformations according to the Noether theorem generates the conserved charges QB and
QS, and we can choose the asymptotic states such that they satisfy the equations

Q0
B|ψ〉ph = 0, Q0

S|ψ〉ph = 0, [Q0
B, Q0

S]+ = 0, (39)
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where Q0
B and Q0

S are asymptotic charges. Any vector satisfying Eqs. (39) has the form

|ψ〉ph = |ψ〉tr + |N〉, (40)

where |ψ〉tr is a vector containing only transverse quanta of the Yang–Mills field and |N〉 is a vector with
a zero norm. It hence follows that the scattering matrix in our formulation coincides with the scattering
matrix in the Yang–Mills theory.

But this proof is formal: because of infrared singularities, the scattering matrix does not exist in the
Yang–Mills theory. Nevertheless, we can speak about the vanishing of the matrix elements corresponding
to the transitions between physical and unphysical states.

The only sensible nontrivial objects in the perturbative Yang–Mills theory are the correlation functions
of gauge-invariant operators. It is easy to see that these correlation functions coincide in the standard and
modified formulation up to an arbitrary order of the perturbation theory. Indeed, we can repeat the
considerations presented above and show that these correlation functions are given by the path integral

Z =
∫

dμ

{

exp
[

i
∫

dx

(

−1
4
F i

μνF i
μν + Dμϕ̃i

+ Dμϕ̃i
− + m

√
2Dμϕ̃i

+ εij3Aj
μ +

+ λi ∂μAi
μ + i ∂μc̄i Dμci + i Dμbi Dμei + J(x)O(x)

)]}

, (41)

where J(x) is a source and O(x) is a gauge-invariant operator depending only on Aμ(x). The boundary
conditions for all the fields in (41) correspond to vacuum states.

In generating functional (41) for m = 0, we can integrate explicitly over the fields ϕ̃±, e, and b. The
determinants arising after such an integration compensate each other, because the fields ϕ̃± and b, e obey
different statistics, and for the generating functional of the correlation functions of gauge-invariant operators
in the Yang–Mills theory, we obtain the expression

Z =
∫

dμ̃

{

exp
[

i
∫

dx

(

−1
4
F i

μνF i
μν + λi∂μAi

μ + i ∂μc̄i Dμci + J(x)O(x)
)]}

, (42)

where the integration measure dμ̃ is the product of differentials

dμ̃ = dAi
μ dλj dc̄k dcl. (43)

We would draw the same conclusion if we worked in a gauge applicable beyond perturbation theory, for
example, ϕ̃a

− = 0, a = 1, 2, ∂μA3
μ = 0. Starting from this gauge, we can pass to any admissible gauge. In

the next section, we consider the classical theory in the Hamiltonian gauge A0 = 0.

5. Soliton excitations in the modified Yang–Mills theory

In this section, we show that the model constructed above has nontrivial soliton excitations of the
’t Hooft–Polyakov magnetic monopole type. In our presentation, we follow [22]. All indices now range
1, 2, 3.

We consider classical solutions for action (29) and classical solitons with the asymptotic forms

ϕi →
r→∞

xim

rg
, χi →

r→∞
−ximα

rg
. (44)

We treat stationary solutions in the gauge A0 = 0.
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We work in a topologically nontrivial sector and seek the nonperturbative soliton solutions of the
classical equations of motion:

DiF
a
ij + gεalm(Djϕ)lϕm − gεakn(Djχ)kχn = 0, Aa

i →
r→∞

εaij xj

gr2
,

Di(Diϕ)n = 0, ϕn(x) →
r→∞

xnm

gr
,

Di(Diχ)n = 0, χn(x) →
r→∞

−αxnm

gr
.

(45)

The chosen asymptotic conditions yield rapidly decreasing covariant derivatives of the fields ϕ and χ, which
is important for a finite soliton energy. With the same goal in mind, we consider only solutions that are
nonsingular as r → 0. We cannot now neglect the terms that are small in the formal perturbation theory,
because we seek soliton solutions that are unobtainable in the perturbation theory. We also note that the
coupling constant is not small in QCD, and the conclusions drawn in the formal perturbation theory might
therefore be wrong.

We use the ’t Hooft–Polyakov ansatz

Ai
a(x) = εaij xj

r
W (r), A0(x) = 0,

ϕi(x) = δai xa

r
F (r), χi(x) = δai xa

r
G(r),

W (r) →
r→∞

(gr)−1, F (r) →
r→∞

F cosh γ, G(r) →
r→∞

F sinh γ,

F cosh γ =
m

g
, F sinh γ = −α

m

g
.

(46)

If g is small and α → 1, as happens in the electroweak models based on the Brout–Englert–Higgs mechanism,
then ϕ(x) � χ(x), and the equation for the Yang–Mills field has the same form as in the standard Yang–
Mills theory. This equation has no soliton solutions. But we can also consider the theories in which the
constant g is not small (e.g., QCD).

We can rewrite Eqs. (45) in terms of the functions

K(r) = 1 − grW (r), J(r) = F (r)rg, Y (r) = G(r)rg, (47)

and we then have

r2 d2K

dr2
= (K2 + J2 − Y 2 − 1)K(r), K(r) →

r→∞
0,

r2 d2J

dr2
= 2K2J, J(r) →

r→∞
Frg cosh γ,

r2 d2Y

dr2
= 2K2Y, Y (r) →

r→∞
Frg sinh γ = −αFrg cosh γ.

(48)

Following [23], we choose the ansatz

J(r) = Λ(r) cosh γ, Y (r) = Λ(r) sinh γ,

Λ(r) cosh γ →
r→∞

Frg cosh γ, Λ(r) sinh γ →
r→∞

Frg sinh γ.
(49)
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Equations (48) then become

r2 d2K

dr2
= (K2 + Λ2 − 1)K, K →

r→∞
0,

r2 d2Λ
dr2

= 2K2Λ, Λ(r) →
r→∞

Frg.

(50)

The solutions of this system are well known [24], [25]:

K(r) =
rgF

sinh rgF
, Λ(r) =

rgF

tanh grF
− 1. (51)

It is easy to calculate the energy corresponding to this solution. This energy is obviously positive and
bounded. It is equal to the energy of the magnetic monopole

E =
∫

d3x

[

1
4
F i

lmF i
lm +

1
2
(Dlϕ)i(Dlϕ)i − 1

2
(Dlχ)i(Dlχ)i

]

=

=
∫

d3x

[

1
4
F i

lmF i
lm +

1
2
(DlΛ)a(DlΛa)

]

. (52)

We can also calculate the magnetic field created by this solution. Using the gauge-invariant definition
of the electromagnetic stress tensor, we obtain

Fμν = Λ̂aF a
μν − g−1εabcΛ̂a(DμΛ̂)b(Dν Λ̂)c, Λ̂a =

Λa

|Λ| , |Λ|2 =
∑

a

ΛaΛa. (53)

We find that the considered excitation is a magnetic monopole, creating the magnetic field

Bi(x) =
xi

gr3
. (54)

It can be seen that even for large g, the mass and magnetic field of the monopole are independent of γ and
are determined by the constants F and g.

6. Results

In this review, we have demonstrated that many facts regarded as firmly established in the Yang–Mills
theory (the impossibility of quantizing the theory beyond perturbation theory, the unavoidable breaking of
the manifest Lorentz invariance of the theory by an algebraic renormalizable gauge, the absence of classical
solutions with a finite bounded energy) are in fact related to a specific formulation of the theory. An
alternative formulation of the theory is possible that gives the same results in the formal perturbation
theory as the standard formulation and allows overcoming these difficulties. This formulation follows the
general tendency of the development of gauge fields, introducing new unphysical degrees of freedom and
enlarging the symmetry group of the theory. In particular, it is thus possible to quantize the Yang–Mills
theory beyond perturbation theory. Naturally, this does not solve the problem of calculations beyond
perturbation theory, but it does show that the absence of soliton excitations, which are generally thought
necessary to yield the color confinement, is not an unavoidable feature of the theory. As shown, this theory
allows an alternative formulation that leads to the existence of soliton solutions of the classical equations.
This formulation also allows constructing an infrared regularization that preserves the manifest gauge and
Lorentz invariance [18].
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