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MAJORIZATION AND ADDITIVITY FOR MULTIMODE BOSONIC

GAUSSIAN CHANNELS

V. Giovannetti,∗ A. S. Holevo,† and A. Mari∗

We obtain a multimode extension of the majorization theorem for bosonic Gaussian channels, in particular,

giving sufficient conditions under which the Glauber coherent states are the only minimizers for concave

functionals of the output state of such a channel. We discuss direct implications of this multimode

majorization for the positive solution of the famous additivity problem in the case of Gaussian channels.

In particular, we prove the additivity of the output Rényi entropies of arbitrary order p > 1. Finally, we

present an alternative, more direct derivation of a majorization property of the Husimi function established

by Lieb and Solovej.
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1. Introduction

The longstanding Gaussian optimizer conjecture in quantum information theory was recently proved
for the class of bosonic Gaussian gauge-covariant or contravariant channels [1]. The conjecture states that
the minimum output entropy of a bosonic Gaussian channel is attained on the vacuum state (and also on
any coherent state). This result was strengthened in [2] for one-mode channels by establishing that the
output for the vacuum or coherent input majorizes the output for any other input, in that it minimizes
a broad class of concave functionals of the output states. A detailed discussion of the motivation and of
applications of these advances to quantum optics and communications can be found in [1], [2].

Here, we obtain further results in this direction. In Sec. 2, we give the multimode extension of the
result in [2] and, in particular, a precise formulation of sufficient conditions under which the coherent
states are the only minimizers. We also discuss direct implications of this multimode majorization for the
positive solution of one more famous conjecture, namely, the additivity problem for Gaussian channels. In
particular, we demonstrate the additivity of the output Rényi entropies of arbitrary order p > 1, which
generalizes a result of Giovannetti and Lloyd [3] for integer p and special channels.

In Sec. 4, based on the method in [1], we generalize the majorization result of Lieb and Solovej [4].
Wehrl [5] introduced the classical entropy of a quantum state ρ by the formula

Scl(ρ) = −
∫

Cs

〈z|ρ|z〉 log〈z|ρ|z〉 d2sz

πs
,

where 〈z|ρ|z〉 is the Husimi function, |z〉 are the Glauber coherent vectors, and s is the number of modes.
Lieb [6] used exact constants in the Hausdorff–Young inequality (Fourier transform) and Young inequality
(convolution) to prove the Wehrl conjecture [5]: Scl(ρ) is minimized by any coherent state ρ = |ζ〉〈ζ|. Lieb
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and Solovej [4] recently gave another derivation based on the limit version of a similar result for Bloch spin
coherent states. Moreover, they could thus establish the majorization property of the Glauber coherent
states. In Sec. 4, we suggest yet a different (and perhaps most natural) approach to the proof of this
property and its generalization motivated by the recent solution of the Gaussian optimizers problem [1].

2. Majorization for gauge-covariant channels

We start by presenting some definitions and notation from [1], restricting to the case of channels
with identical input and output spaces. We consider an s-dimensional complex Hilbert space Z that can
be regarded as a 2s-dimensional real space equipped with the symplectic form z, z′ → 2 Im z∗z′. We
regard vectors in Z as s-dimensional complex column vectors, in which case (complex-linear) operators in
Z are represented by complex s×s matrices, and the superscript asterisk denotes Hermitian conjugation.
The gauge group acts in Z as multiplication by eiφ, where φ is a real number called the phase. The Weyl
quantization is described by the unitary displacement operators D(z) acting irreducibly in the representation
space H and satisfying the canonical commutation relation

D(z)D(z′) = e−i Im z∗z′
D(z + z′). (1)

Introducing the annihilation–creation operators of the system aj , a†
j , j = 1, . . . , s, which satisfy the com-

mutation relations [aja
†
k] = δjkI, we can express the operator D(z) as

D(z) = exp
[ s∑

j=1

(zja
†
j − z̄jaj)

]
. (2)

The gauge group has the unitary representation φ → Uφ = eiφN in H, where N =
∑s

j=1 a†
jaj is

the total number operator. The representation of the gauge group in H acts according to the relation
U∗

φ D(z)Uφ = D(eiφz), φ ∈ [0, 2π]. A state ρ is then said to be gauge invariant if it commutes with all
Uφ or, equivalently, if its characteristic function φ(z) = Tr ρD(z) is invariant under the action of the gauge
group. In particular, Gaussian gauge-invariant states are given by a characteristic function of the form

φ(z) = e−z∗αz , (3)

where α is a complex correlation matrix satisfying α ≥ I/2, where I is the unit s×s matrix. The vacuum
state |0〉〈0| corresponds to α = I/2.

A channel Φ in H is a completely positive trace-preserving map of the Banach space of trace-class
operators in H (see, e.g., [7] for details). The channel is said to be gauge covariant if

Φ[UφρU∗
φ ] = UφΦ[ρ]U∗

φ . (4)

In the Heisenberg picture, a bosonic Gaussian gauge-covariant channel Φ [1] is described by the action of
its adjoint Φ∗ onto the displacement operators as

Φ∗[D(z)] = D(K∗z)e−z∗μz, (5)

where K is a complex matrix and μ is a Hermitian matrix satisfying the inequality

μ ≥ ±1
2
(I − KK∗). (6)

285



A gauge-covariant channel is quantum-limited if μ is a minimal solution of inequality (6). Special cases
of maps (5) are provided by the attenuator and amplifier channels characterized by a matrix K satisfying
the respective inequalities KK∗ ≤ I and KK∗ ≥ I. We are particularly interested in the quantum-limited

attenuator, which corresponds to

KK∗ ≤ I, μ =
1
2
(I − KK∗), (7)

and the quantum-limited amplifier,

KK∗ ≥ I, μ =
1
2
(KK∗ − I). (8)

These channels are diagonalizable: using the singular value decomposition K = VBKdVA where VA and
VB are unitaries and Kd is a diagonal matrix with nonnegative values on the diagonal, we have KK∗ =
VBKdK

∗
dV ∗

B and
Φ[ρ] = UBΦd[UAρU∗

A]U∗
B, (9)

where

Φd =
s⊗

j=1

Φj (10)

is a tensor product of one-mode quantum-limited channels defined by the matrix Kd and UA and UB are
the canonical unitary transformations acting on H such that

U∗
B D(z)UB = D(V ∗

Bz), U∗
A D(z)UA = D(V ∗

Az)

(we note that UA|0〉 = |0〉 and UB|0〉 = |0〉).

Theorem 1. 1. Let Φ be a Gaussian gauge-covariant channel and f be a concave function on [0, 1]
such that f(0) = 0. Then

Tr f(Φ[ρ]) ≥ Tr f(Φ[|ζ〉〈ζ|]) = Tr f(Φ[|0〉〈0|]) (11)

for all states ρ and any coherent state |ζ〉〈ζ| (the value on the right is the same for all coherent states by

the displacement covariance property of a Gaussian channel [7]).
2. If f is strictly concave and the channel Φ satisfies one of the two conditions

a. K is invertible and1

μ >
1
2
(KK∗ − I), (12)

b. KK∗ > I and μ = (KK∗ − I)/2 (hence Φ is a quantum-limited amplifier),

then the equality in (11) is attained only when ρ is a coherent state.

Such a result was obtained in [2] in the case of one mode. Our goal here is to generalize it to the case
of many modes, in particular by making the conditions in statement 2 in Theorem 1 precise.

Proof. 1. By the concavity of f , it suffices to prove (11) for pure states ρ = |ψ〉〈ψ|. As shown in [1]
(also see Proposition 2 in Appendix A), any gauge-covariant channel can be represented as a concatenation
Φ = Φ2 ◦ Φ1 of a quantum-limited attenuator Φ1 with an operator K1 and a quantum-limited amplifier

1For Hermitian matrices M and N , the strict inequality M > N means that M − N is positive definite.
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Φ2 with an operator K2. An argument similar to [2] then shows that it suffices to prove (11) only for the
amplifier Φ2. Indeed, if

Tr f(Φ2[|ψ〉〈ψ|]) ≥ Tr f(Φ2[|0〉〈0|]) (13)

for any state vector |ψ〉, then we can consider the spectral decomposition

Φ1[|ψ〉〈ψ|] =
∑

j

pj |φj〉〈φj |,

where pj > 0. Then

Tr f(Φ[|ψ〉〈ψ|]) = Tr f(Φ2[Φ1[|ψ〉〈ψ|]]) ≥

≥
∑

j

pj Tr f(Φ2[|φj〉〈φj |]) ≥

≥ Tr f(Φ2[|0〉〈0|]) =

= Tr f(Φ2[Φ1[|0〉〈0|]]) = Tr f(Φ[|0〉〈0|]) (14)

because the vacuum is an invariant state of a quantum-limited attenuator.
We now prove (13). Because

min
ρ

Tr f(Φ2[ρ]) = min
ρ

Tr f(UBΦd[U∗
AρUA]U∗

B) = min
ρ

Tr f(Φd[ρ]),

it suffices to consider the diagonal amplifier. The proof for a one-mode quantum-limited amplifier is based on
the fact that the complementary channel has the representation (also based on Proposition 2 in Appendix A)

Φ̃2 = T ◦ Φ2 ◦ Φ′
1, (15)

where T is transposition defined by the relation T[D(z)] = D(−z̄), z̄ is the complex conjugate vector, and

Φ′
1 is another quantum-limited attenuator defined by the operator K ′

1 =
√

I − K−2
2 . But for a diagonal

multimode amplifier, the expression for the complementary channel and also representation (15) (with a
diagonal Φ′

1) follows from the results for each mode.
Representation (15) implies that nonzero spectra of the density operators Φ2[ρ] and Φ2 ◦Φ′

1[ρ] coincide
for pure inputs ρ = |ψ〉〈ψ| [1]. Then similarly to (14),

Tr f(Φ2[|ψ〉〈ψ|]) = Tr f(Φ2[Φ′
1[|ψ〉〈ψ|]]) ≥

≥
∑

j

p′j Tr f(Φ2[|φ′
j〉〈φ′

j |]), (16)

where
Φ′

1[|ψ〉〈ψ|] =
∑

j

p′j |φ′
j〉〈φ′

j |, p′j > 0, (17)

is the spectral decomposition of the output of the quantum-limited attenuator Φ′
1. For the moment, we as-

sume that f is strictly concave. We then conclude that for any pure minimizer ρ = |ψ〉〈ψ| of Tr f(Φ2[|ψ〉〈ψ|]),
sum (17) necessarily contains only one term, i.e.,

Φ′
1[|ψ〉〈ψ|] = |φ′〉〈φ′|. (18)

Indeed, otherwise the inequality in (16) by the strict concavity of f is strict, contradicting the assumption
that |ψ〉〈ψ| is a minimizer of Tr f(Φ2[|ψ〉〈ψ|]) (strict concavity of f also excludes nonpure minimizers).
Next, we first consider the amplifier with K2 > I. The associated attenuator Φ′

1 is then defined by the

operator K ′
1 =

√
I − K−2

2 such that 0 < K ′
1 < I. We then apply the following lemma.
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Lemma 1. Let Φ′
1 be the diagonal quantum-limited attenuator defined by an operator K ′

1 such that

0 < K ′
1 < I. Then (18) implies that |ψ〉〈ψ| is a coherent state.

For one mode, this is Lemma 2 in [2], which implies that any pure input ρ such that Φ′
1[ρ] is also a pure

state is a coherent state. The proof is based on the explicit expression for the complementary channel Φ̃′
1.

By using this expression for each mode, we can generalize the proof to the case of a diagonal multimode
channel Φ′

1.
This proves (13) for a strictly concave f and for the amplifiers Φ2 with K2 > I. An arbitrary concave

f can then be monotonically approximated by strictly concave functions by setting fε(x) = f(x)− εx2 and
passing to the limit ε ↓ 0 in (13).

In the case of a diagonal amplifier Φ2 with K2 ≥ I, we take any sequence of diagonal operators K(n) > I,
K(n) → K2, and consider the corresponding diagonal amplifiers Φ(n)

2 . Then ‖Φ(n)
2 [ρ] − Φ2[ρ]‖1 → 0 and

Tr f(Φ(n)
2 [ρ]) → Tr f(Φ2[ρ]) for any concave polygonal function f on [0, 1] such that f(0) = 0. This follows

because any such function is Lipschitz, |f(x) − f(y)| ≤ κ|x − y|, and hence

|Tr f(Φ(n)
2 [ρ]) − Tr f(Φ2[ρ])| ≤ κ‖Φ(n)

2 [ρ] − Φ2[ρ]‖1.

This implies that (13) holds for polygonal concave functions f and all quantum-limited amplifiers. Hence,
by (14), the inequality (11) with such f holds for for all Gaussian gauge-covariant channels. For an arbitrary
concave f on [0, 1], there is a monotonically nondecreasing sequence of concave polygonal functions fm

converging to f pointwise. Passing to the limit m → ∞ gives the first statement.
2. Case a: We note that the conditions on the channel Φ imply that the attenuator Φ1 in the decom-

position Φ = Φ2 ◦Φ1 is defined by an operator K1 such that 0 < K∗
1K1 < I (see Remark 1 in Appendix A).

Applying the argument involving relations (16) with a strictly concave f to relations (14), we find that for
any pure minimizer ρ = |ψ〉〈ψ| of Tr f(Φ[|ψ〉〈ψ|]), the output of the quantum-limited attenuator Φ1[|ψ〉〈ψ|]
is necessarily a pure state. Applying Lemma 1 to the attenuator Φ1, we conclude that |ψ〉〈ψ| is necessarily
a coherent state.

Case b: In case b, we just apply the argument involving relations (16) with strictly concave f to the
quantum-limited amplifier Φ = Φ2. �

Theorem 1 can be extended to a Gaussian gauge-contravariant channel satisfying Φ[UφρU∗
φ ] =U∗

φΦ[ρ]Uφ

instead of (4). The proof follows because the complement Φ̃2 of the diagonal quantum-limited amplifier Φ2

is just a diagonal quantum-limited gauge-contravariant channel (see [1] for details).

3. Implications for the additivity

For any p > 1, the output purity of a channel Φ is defined as

νp(Φ) = sup
ρ∈S(H)

Tr Φ[ρ]p.

Corollary 1. For any Gaussian gauge-covariant channel Φ, the output purity is equal to νp(Φ) =
TrΦ[|0〉〈0|]p. The multiplicativity property

νp(Φ ⊗ Ψ) = νp(Φ)νp(Ψ) (19)

holds for any two Gaussian gauge-covariant channels Φ and Ψ.
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Proof. The first statement follows from Theorem 1 by taking f(x) = −xp such that

νp(Φ) = −min
ρ

Tr f(Φ[ρ]).

The second statement then follows because the channel Φ ⊗ Ψ is also gauge-covariant and from the multi-
plicativity of the vacuum state. �

The output purity for channel (5) can be computed explicitly as

νp(Φ) = det
[(

μ +
KK∗

2
+

I

2

)p

−
(

μ +
KK∗

2
− I

2

)p ]
.

The formula follows because the state Φ[|0〉〈0|] is Gaussian with the covariance matrix μ + KK∗/2 and
from the expression for the spectrum of a Gaussian density operator [8].

The minimal output Rényi entropy of a channel Φ is expressed via its output purity as

Řp(Φ) =
1

1 − p
log νp(Φ),

and multiplicativity property (19) can be rewritten as the additivity of the minimal output Rényi entropy:

Řp(Φ ⊗ Ψ) = Řp(Φ) + Řp(Ψ). (20)

In the limit p ↓ 1 (or taking f(x) = −x log x), we recover the additivity of the minimal output von Neumann
entropy established in [1]:

min
ρ12

H((Φ ⊗ Ψ)[ρ12]) = min
ρ1

H(Φ[ρ1]) + min
ρ2

H(Φ[ρ2]).

The additivity result in [1] is more general in that it allows the case where one of the channels is gauge-
covariant, while the other is contravariant. On the other hand, the proof in [1] is restricted to states with
finite second moments, while the present proof does not require this.

4. Majorization for quantum–classical Gaussian channel

It is helpful to regard the map ρ → 〈z|ρ|z〉 as a “quantum–classical Gaussian channel” transforming
Gaussian density operators into Gaussian probability densities. We consider a more general transformation

ρ → pρ(z) = Tr ρ D(z) ρ0 D(z)∗,

where D(z) are the displacement operators and ρ0 is the Gaussian gauge-invariant state with the quantum
characteristic function φ0(z) = e−z∗α0z, where α0 ≥ I/2. We note that pρ(z) = 〈z|ρ|z〉 if ρ0 is the vacuum
state corresponding to α0 = I/2.

The function pρ(z) is bounded by 1 and is a continuous probability density, and the normalization
follows from the resolution of the identity operator in H,

∫
Cs

D(z) ρ0 D(z)∗
d2sz

πs
= IH.

Proposition 1. Let f be a concave function on [0, 1] such that f(0) = 0. Then for an arbitrary

state ρ, ∫
Cs

f(pρ(z))
d2sz

πs
≥

∫
Cs

f(p|ζ〉〈ζ|(z))
d2sz

πs
. (21)
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Proof. For any c > 0, we consider the “measure-reprepare” channel Φc defined by the relation

Φc[ρ] =
∫

d2sz

πsc2s
Tr[ρ D(c−1z) ρ0 D∗(c−1z)] D(z) ρ′0 D∗(z), (22)

where ρ′0 is another gauge-invariant Gaussian state with the characteristic function φ′
0(z) = e−z∗α′

0z.
Map (22) is a gauge-covariant bosonic Gaussian channel that acts on D(z) in the Heisenberg represen-
tation as

Φ∗
c [D(z)] = D(cz) e−z∗(α′

0+c2α0)z

(cf. [1]). Therefore, by Theorem 1,

Tr f(Φc[ρ]) ≥ Tr f(Φc[|ζ〉〈ζ|]) (23)

for all states ρ and any coherent state |ζ〉〈ζ|. We prove the proposition by taking the limit c → ∞.
In the proof, we also use a simple generalization of the Berezin–Lieb inequalities [9],

∫
Cs

f(p(z))
d2sz

πs
≤ Tr f(σ) ≤

∫
Cs

f(p̄(z))
d2sz

πs
, (24)

which holds for any quantum state admitting the representation

σ =
∫

Cs

p(z)D(z) ρ′0 D(z)∗
d2sz

πs

with a probability density p(z). In the right-hand side of (24),

p̄(z) = TrσD(z) ρ′0 D∗(z).

The original inequalities refer to the case where ρ0 is a pure state, but the proof applies to the more general
case (see Appendix B). In inequalities (24), we must assume that f is defined on [0,∞) (in fact, p(z) can
be unbounded). We assume this for now.

Taking σ = Φc[ρ], we obtain

p(z) =
1

c2s
Tr ρ D(c−1z) ρ0 D∗(c−1z) =

1
c2s

pρ(c−1z)

from (22), while

p̄(z) = TrΦc[ρ] D(z) ρ′0 D(z)∗ =
∫

Cs

p(w)Tr ρ′0 D(z − w) ρ′0 D(z − w)∗
d2sw

πs
. (25)

Using the quantum Parceval formula [10], we obtain

π−s Tr ρ′0 D(z) ρ′0 D(z)∗ =
∫

Cs

φ′
0(w)2e2i Im z∗w d2sw

π2s
=

= π−s det(2α′
0)

−1e−z∗[α′
0]−1z/2 ≡ qα′

0
(z),
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which is the probability density of a Gaussian distribution. Substituting this in (25), we obtain

p̄(z) =
∫

d2sw p(w) qα′
0
(z − w) =

=
∫

d2sw′ pρ(w′) qα′
0
(z − cw′) =

=
1

c2s
pρ ∗ qα′

0/c2(c−1z). (26)

Here, qα′
0/c2(z) = c2sqα′

0
(cz) is the probability density of a Gaussian distribution tending to the δ-function

as c → ∞.
With the change of the integration variable c−1z → z, inequalities (24) become

∫
Cs

f(c−2spρ(z))
d2sz

πs
≤ c−2s Tr f(Φc[ρ]) ≤

∫
Cs

f
(
c−2spρ ∗ qα′

0/c2(z)
) d2sz

πs
.

Substituting ρ = |ζ〉〈ζ|, we obtain
∫

Cs

f
(
c−2sp|ζ〉〈ζ|(z)

)d2sz

πs
≤ c−2s Tr f(Φc[|ζ〉〈ζ|]) ≤

∫
Cs

f
(
c−2sp|ζ〉〈ζ| ∗ qα′

0/c2(z)
) d2sz

πs
.

Combining the last two displayed formulas with (23), we obtain
∫

Cs

g(pρ(z))
d2sz

πs
−

∫
Cs

g(p|ζ〉〈ζ|(z))
d2sz

πs
≥

≥
∫

Cs

g(pρ(z))
d2sz

πs
−

∫
Cs

g
(
pρ ∗ qα′

0/c2(z)
) d2sz

πs
, (27)

where we set g(x) = f(c−2sx), which is again a concave function. Moreover, an arbitrary concave polygonal
function g on [0, 1] satisfying g(0) = 0 can be thus obtained by defining

f(x) =

⎧⎨
⎩

g(c2sx), x ∈ [0, c−2s],

g(1) + g′(1)(x − c−2s), x ∈ [c−2s,∞),

and (27) hence holds for any such function. The right-hand side of inequality (27) then tends to zero as
c → ∞. Indeed, for a polygonal function, we have |g(x) − g(y)| ≤ κ|x − y|, and the asserted convergence
follows from the convergence pρ ∗ qα′

0/c2 −→ pρ in L1: if p(z) is a bounded continuous probability density,
then

lim
c→∞

∫
Cs

|p ∗ qα′
0/c2(z) − p(z)| d2sz = 0.

We thus obtain (21) for concave polygonal functions f . But for an arbitrary concave f on [0, 1], there is
a monotonically nondecreasing sequence of concave polygonal functions fn converging to f . Applying the
Beppo–Levy theorem, we obtain the statement. �

Appendix A

The concatenation Φ = Φ2 ◦ Φ1 of two Gaussian gauge-covariant channels Φ1 and Φ2 obeys the rule

K = K2K1, (28)

μ = K2μ1K
∗
2 + μ2. (29)
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Proposition 2 [1]. Any bosonic Gaussian gauge-covariant channel Φ is a concatenation of a quantum-

limited attenuator Φ1 and a quantum-limited amplifier Φ2.

Proof. Substituting

μ1 =
1
2
(I − K1K

∗
1 ) =

1
2
(I − |K∗

1 |2), μ2 =
1
2
(K2K

∗
2 − I) =

1
2
(|K∗

2 |2 − I)

in (29) and using (28), we obtain

|K∗
2 |2 = K2K

∗
2 = μ +

1
2
(KK∗ + I) ≥

⎧⎨
⎩

I,

KK∗
(30)

from inequality (6). Using the operator monotonicity of the square root, we obtain

|K∗
2 | ≥ I, |K∗

2 | ≥ |K∗|.

The first inequality in (30) implies that choosing

K2 = |K∗
2 | =

√
μ +

1
2
(KK∗ + I) (31)

and the corresponding μ2 = (|K∗
2 |2 − I)/2, we obtain a (diagonalizable) quantum-limited amplifier.

With
K1 = |K∗

2 |−1K, (32)

taking the second inequality in (30) into account, we then obtain

K∗
1K1 = K∗|K∗

2 |−2K = K∗
[
μ +

1
2
(KK∗ + I)

]−1

K ≤ I, (33)

which implies K∗
1K1 ≤ I. Hence, K1 with the corresponding μ1 = (I − K1K

∗
1 )/2 gives a quantum-limited

attenuator.

Remark 1. Inequality (12) via (33) implies K∗
1K1 < I. The invertibility of K implies K∗

1K1 > 0.

Appendix B

For completeness, we sketch the proof of the required generalization of the Berezin–Lieb inequalities.
Let X be a measurable space with a σ-finite measure μ, and let P (x) be a weakly measurable function on
X whose values are density operators in a separable Hilbert space H such that

∫
X

P (x)μ(dx) = IH,

where the integral converges in the sense of weak operator topology. Let ρ be a density operator in H
admitting the representation

ρ =
∫
X

p(x)P (x)μ(dx),
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where p(x) is a bounded probability density. We set p̄(x) = Tr ρP (x), which is a probability density
uniformly bounded by 1. For a concave function f defined on [0,∞) and satisfying f(0) = 0, we then have

∫
X

f(p(x))μ(dx) ≤ Tr f(ρ) ≤
∫
X

f(p̄(x))μ(dx). (34)

We set k = max{1, supx p(x)} and consider the restriction of f to [0, k]. Then there is a monotonically
nondecreasing sequence of concave polygonal functions fn converging to f pointwise on [0, k] and satisfying
fn(0) = 0. Because |fn(x)| ≤ κn|x|, the integrals and the trace in (34) with f replaced with fn are finite for
all n. We prove (34) for concave polygonal functions fn and then take the limit n → ∞. This also shows
that the integrals and trace in (34) are well defined although they may take the value +∞.

The second inequality follows from Tr f(ρ)P (x) ≤ f(Tr ρP (x)), which is a consequence of the Jensen
inequality applied together with the spectral decomposition of ρ. To prove the first inequality, we consider
the positive operator-valued measure

M(B) =
∫

B

P (x)μ(dx), B ⊆ X ,

and its Naimark dilation to a projection-valued measure {E(B)} in a larger Hilbert space H̃ ⊇ H. We
consider the bounded operator R =

∫
X p(x)E(dx) in H̃. Then

f(R) =
∫
X

f(p(x))E(dx)

and
ρ = PRP, Pf(R)P =

∫
X

f(p(x))μ(dx),

where P is the projection from H̃ onto H. The required inequality then follows from the more general fact
TrPf(R)P ≤ Tr f(PRP ) [11].
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