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A COUPLE OF METHODOLOGICAL COMMENTS ON THE

QUANTUM YANG–MILLS THEORY

L. D. Faddeev∗

We present methodological proposals regarding the definition of the notion of the effective action, the

coupling constant renormalization, and the interpretation of dimensional transmutation. We show that

the divergences that arise when quantizing a Yang–Mills field can be eliminated and lead to violation of

the scaling invariance of the classical theory.
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1. Introduction

It is already 35 years since the book written by Andrei Slavnov and myself was published [1]. That
was the first book on quantum field theory where the presentation was based on Feynman’s functional
integral. But in hindsight, I think that we were insufficiently radical: a number of points could have been
improved. In Feynman’s spirit, we should not use Green–Schwinger functions but rely only on the S-matrix.
Incidentally, the same ideology was also shared by N. N. Bogoliubov. The background field method must
be formulated having its application to the definition of the S-matrix in mind.

In the effective action method, it is especially simple to describe the renormalization of a single pa-
rameter of the classical theory, the coupling constant g2, which enters the formalism as a coefficient of
the classical action. Divergent coefficients in the effective action are collected in a renormalized coupling
constant g2

r .
I have already made methodological remarks at various conferences, whose proceedings have been

published [2], [3], but they have not yet appeared in scientific journals except [4].

2. Effective action

We use the following notation. The Yang–Mills field Aμ(x) takes values in the Lie algebra of the gauge
group. The curvature Fμν is given by

Fμν = ∂μAν − ∂νAmu + [Aμ, Aν ],

and the classical action has the form
A(x) =

1
4g2

tr F 2
μν ,

where g plays the role of the classical coupling constant.
In the definition of the S-matrix in terms of the functional integral proposed in [1], the functional

exp
{

i

∫
d4xA(x)

}
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is integrated over the fields Aμ(x) with a fixed asymptotic behavior at large times,

Aμ → Ain,out
μ , t → ∓∞,

where the free fields Ain
μ and Aout

μ have the respective prescribed incoming wave A−
μ and outgoing wave A+

μ .
The S-matrix becomes a functional of A−

μ and A+
μ , i.e., a generating function for the S-matrix elements.

In the functional integral, we must integrate over classes of gauge-equivalent fields, which is realized by
introducing the appropriate ghosts.

To calculate the S-matrix, it is convenient to use the background field formalism. We set

Aμ = Bμ + gaμ,

where the gauge field Bμ satisfies the same asymptotic conditions as Aμ and the vector field aμ has no
incoming waves as t → −∞ and no outgoing waves as t → ∞. These conditions uniquely define the
quadratic form operator � = ∇2

μ.
Gauge fixing is achieved by imposing the condition ∇μaμ = 0 or by adding the term (1/2) tr(∇μaμ)2

to the action. The corresponding ghost term has the form

tr
(
∇μc̄(∇μ + gaμ)c

)
.

As a result, we must integrate a functional containing quadratic forms
(
M1(B)a, a

)
and (M0(B)c̄, c

)
, where

M0(B)c = ∇2
μc, M1(B)aν = ∇2

μaν + 2[Fμν , aμ],

and also vertices of the first, third, and fourth orders:

Γ1(B) =
1
g

∫
d4x tr(∇μFμνaν),

Γ3(B) = g

∫
d4x tr∇μaν [aμ, aν ],

Γ4(B) = g2

∫
d4x tr[aμ, aν ]2,

Ω(B) = g

∫
d4x tr∇μc̄[aμ, c].

The S-matrix is represented as a functional of the effective action:

S = exp{iW (B)}.

In calculating W (B), it is customarily assumed that the vertex Γ1(B) vanishes. In other words, the
background field is subjected to the condition

∇μFμν(B) = 0,

which is the classical equation of motion. In the case of finite-dimensional integrals, this is a natural setting
of the stationary phase method. But we suggest imposing another condition on Bμ, which has the graphic
representation

+ = 0, (1)
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where the block is the sum of strongly connected diagrams with one external leg. The asymptotic
condition can be imposed on the solution of this equation.

The term “strongly connected” is synonymous with “1-particle-irreducible.” At the level of playing
with words, we can say that Eq. (1) determines the self-action of asymptotic particles.

Under that condition, we can write the functional W (B) in the form

W (B) =
1

4g2

∫
F 2

μνd4x − 1
2

log detM1 + log detM0 +
∞∑

n=1

g2nWn(B), (2)

where Wn(B) is the sum of strongly connected diagrams with n+1 loops.
We make a brief remark. The notion of the effective action is the subject of a vast literature. Within

the commonly accepted method, we must start with the functional for Green’s functions, and the external
field is introduced via the Legendre transformation. The external current is a nuisance in the Yang–Mills
theory because it violates the manifest gauge invariance. The method proposed here is more direct and
better suits the Yang–Mills theory.

3. Renormalization of the coupling constant

In the effective action formalism, renormalization amounts to redefining the coupling constant g2.
Following Landau, we regard it as a function of the regularization parameter ε and verify that the con-
tribution of divergent integrals in expansion (2) contains expressions of the type Ck(g, ε)

∫
d4xF 2

μν , whose
combination with the classical contribution to the action gives the renormalized charge:

1
g2
r

=
1

g2(ε)
+

∑
Ck(g, ε).

In the terminology of the preceding section, we already described the entire procedure in [4]. Here, we only
describe the one-loop contribution in greater detail than in [4], showing all the characteristic features of the
renormalization procedure. After the (infinite) constant W0(0) is subtracted, this contribution becomes

W0(B) − W0(0) = −1
2

log det
M1(B)
M1(0)

+ log det
M0(B)
M0(0)

.

To calculate these determinants, it is natural to use the proper time method, which can be traced back to
Fock [5]:

log det
A

B
= −

∫ ∞

0

ds

s
Tr(e−sA − e−sB).

The operators e−M1(B)s and e−M0(B)s are integral operators with the kernels Dμν(x, y; s) and D(x, y; s) and
with values in the gauge algebra. The behavior of these kernels as s → 0 is given by the known expansion

D(x, y; s) = a−1(x, y)s−2 + a0(x, y)s−1 + a1(x, y) + a2(x, y)s + . . . , (3)

where the coefficients ai(x, y), i = −1, 0, 1, 2, . . . , can be evaluated explicitly (a procedure that returns us
to the early 20th century). In our case, the first term in (3) cancels under subtraction of the contribution
from e−M(0)s. Next, we have

tr a0(x, x) = 0,

and the expression for tr D(x, x; s) hence starts with the term tr a1(x, x), which is proportional to trF 2
μν

(which in fact follows from locality and the dimension count). Hence, we have

W0 =
∫ ∞

0

ds

s
D(B, s), (4)
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where
D(B, s) = β

∫
d4x trF 2

μν + O(s)

as s → 0. We regularize the integral in (4):

∫ ∞

0

ds

s
( · ) =

∫ μ

ε

ds

s
( · ) +

∫ ∞

μ

ds

s
( · ),

which yields

W−1(B) + W0(B) =
(

1
4g2

+ β log
μ

ε

) ∫
d4x trF 2

μν +

+
∫ μ

0

ds

s

(
D(B, s) − β

∫
d4x tr F 2

μν

)
+

∫ ∞

μ

ds

s
D(B, s). (5)

All the divergences are contained in the first term in the right-hand side. In the process of regularizing, we
introduced an auxiliary value μ, and the renormalized charge acquires a dependence on it:

1
g2
r (μ)

=
1

g2(ε)
+ 4β log

μ

ε
. (6)

The renormalized charge is customarily called the running coupling constant.
Expression (5) is obviously independent of μ. Therefore, the notion of a running coupling constant

loses meaning, and we replace it with a dimensional constant m that plays the role of a separator constant
in (6):

1
g2(ε)

= 4β log εm2,
1

g2
r (μ)

= 4β log μm2. (7)

We see that the renormalized and nonrenormalized charges are the values of the same function g2(s) at the
respective renormalization point s = μ and regularization point s = ε. The constant β is easy to evaluate
(see, e.g., [6]); it is negative and, apart from twos and factors of π, contains the celebrated value 11/3.
This remarkable property means that formula (7) does make sense: the quantity g(ε) must tend to zero as
ε → 0, and g(μ) has a meaning if μm2 < 1. The role of the only parameter in the theory is now taken by
m, which has the dimension of mass. The replacement g2 → m is called dimensional transmutation. But it
would be incorrect to assume that the quantum Yang–Mills theory is nontrivially parameterized by m. In
fact, m is merely a scaling parameter.

Renormalization in higher loops does not change our argument. The independence of physical answers
from the normalization μ is guaranteed by the Gell-Mann–Low equation. Along the lines of the presentation
in this paper, we described this in [4].

4. Conclusions

In conclusion, if Andrei and I had attempted yet another re-edition of our book, I would have insisted
on introducing the notion of effective action as a generating functional for the S-matrix and describing
renormalization within that formalism. It would also be important to emphasize that divergences are not
a deficiency of quantum theory. They only violate the scaling invariance of the classical theory and result
in the quantum theory becoming a dynamical model free of arbitrary parameters.

The main unsolved problem in Yang–Mills theory is to describe excitations. We must confess that in
defining the scattering matrix, we explicitly used asymptotic conditions based on free motion. Just this
allows uniquely defining the operators inverse to M1 and M0. Alternatively, we could resort to the Euclidean
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formulation and the definition of asymptotic states under the reverse transition to the formulation with a
chosen time direction. I believe that it would then be important to understand the role of the quantum
equations of motion introduced in Sec. 2. In particular, as a result of the appearance of the dimensional
parameter m, the existence of soliton solutions becomes possible, which must then be the true one-particle
excitations. Speculations on this subject can be found in [7].
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