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DETERMINANT REPRESENTATIONS FOR FORM FACTORS IN

QUANTUM INTEGRABLE MODELS WITH THE GL(3)-INVARIANT

R-MATRIX

S. Z. Pakuliak,∗ E. Ragoucy,† and N. A. Slavnov‡

We obtain determinant representations for the form factors of the monodromy matrix elements in quantum

integrable models solvable by the nested algebraic Bethe ansatz and having the GL(3)-invariant R-matrix.

These representations can be used to calculate correlation functions in physically interesting models.
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1. Introduction

The form-factor approach is one of the most effective methods for calculating correlation functions of
quantum integrable models. Therefore, finding explicit and compact representations for the form factors is
an important task. There are currently several methods for studying form factors of integrable systems. One
of the first methods developed was the so-called form factor bootstrap approach, which has been successfully
applied to integrable quantum field theory [1]–[7]. This method is closely related to the method based on
conformal field theory and its perturbation [8]–[11]. We also mention the approach developed in [12]–[14],
where the form factors were studied via the representation theory of quantum affine algebras. All the
methods listed above deal with quantum integrable models in an infinite volume. Form factors of models
in a finite volume were studied in [15], [16] using the algebraic Bethe ansatz [17]–[20]. In particular, this
method was found to be very effective for quantum spin chain models, for which the solution of the quantum
inverse scattering problem is known [16], [21]. Determinant representations for form factors obtained in
this framework were successfully used to calculate correlation functions [22]–[25].

The results listed above mostly concern models based on the GL(2) symmetry or its q-deformation.
Models with a higher-rank symmetry have been studied much less. At the same time, such models play
an important role in various applications. For instance, integrability was proved to be a very effective tool
for calculating scattering amplitudes in super-Yang–Mills theories [26]–[28]. Calculating these amplitudes
can be related to calculating scalar products of Bethe vectors. In particular, in the SU(3) subsector of the
theory, we need the SU(3)-invariant Bethe vectors. Hence, knowing the form factors in this context is very
essential.

Form factors of integrable models with higher-rank symmetries also appear in condensed matter physics,
in particular, in a two-component Bose (or Fermi) gas and in studying models of cold atoms (e.g., ferro-
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magnetism or phase separation). We can also mention two-band Hubbard models (mostly in the half-filled
regime) in the context of strongly correlated electron systems. In this case, the symmetry increases when
spin and orbital degrees of freedom are assumed to play a symmetric role, leading to an SU(4) or even an
SO(8) symmetry (see, e.g., [29], [30]). All these studies require seeking integrable models with an SU(N)
symmetry, the first step being the SU(3) case. In this context, we mention [31], where the form factors in
the model of a two-component Bose gas were studied.

Here, we give determinant representations for form factors in GL(3)-invariant quantum integrable
models solvable by the nested algebraic Bethe ansatz [32]–[34]. More precisely, we calculate matrix elements
of the monodromy matrix operators Tij(z) between on-shell Bethe vectors (i.e., between eigenstates of the
transfer matrix). The determinant representations that we give here are based on formulas obtained in [35]–
[37]. But there we had slightly different representations for the form factors of the diagonal elements Tii(z)
and of the elements Tij(z) with |i − j| = 1. Furthermore, in the case of the operators Tii(z), we had to
consider two different cases depending on whether two Bethe vectors coincided or differed. Here, we give
more uniform determinant representations for all form factors. We also announce determinant formulas for
the form factors of the operators T13(z) and T31(z). To derive these formulas, we used a new approach,
which requires a detailed description to be given in a separate publication.

This paper is organized as follows. In Sec. 2, we introduce the model under consideration. In Sec. 3,
we recall the results for form factors in the models with GL(2) symmetries. In Sec. 4, we present our main
results. In Sec. 5, we briefly describe the methods for deriving them and, in particular, introduce the notion
of a twisted transfer matrix, which seems very effective for calculating form factors of diagonal elements.
In Sec. 6, we present a proof of some determinant representations given in Sec. 4. In Sec. 7, we discuss
some prospects. The appendix contains several summation identities needed for proving the determinant
representations.

2. Bethe vectors and form factors

In this section, we describe the model under consideration, introduce the necessary notation, and define
the object of our study.

2.1. Generalized GL(3)-invariant model. The models considered below are described by the
GL(3)-invariant R-matrix acting in the tensor product of two auxiliary spaces V1 ⊗ V2, where Vk ∼ C3,
k = 1, 2:

R(x, y) = I + g(x, y)P, g(x, y) =
c

x − y
. (2.1)

In this definition, I is the identity matrix in V1 ⊗ V2, P is the permutation matrix that exchanges V1 and
V2, and c is an arbitrary nonzero constant.

The monodromy matrix T (w) satisfies the algebra

R12(w1, w2)T1(w1)T2(w2) = T2(w2)T1(w1)R12(w1, w2). (2.2)

Equation (2.2) holds in the tensor product V1 ⊗ V2 ⊗H, where Vk ∼ C3, k = 1, 2, are the auxiliary linear
spaces and H is the Hilbert space of the Hamiltonian of the model. The matrices Tk(w) act nontrivially in
Vk ⊗H.

The trace in the auxiliary space V ∼ C3 of the monodromy matrix, tr T (w), is called the transfer
matrix. It is a generating functional of integrals of motion of the model. The eigenvectors of the transfer
matrix are called on-shell Bethe vectors (or simply on-shell vectors). They can be parameterized by sets of
complex parameters satisfying Bethe equations (see Sec. 2.3).
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2.2. Notation. We use the same notation and conventions as in [36]. In addition to the function
g(x, y), we also introduce the function

f(x, y) = 1 + g(x, y) =
x − y + c

x − y
. (2.3)

We also use two other auxiliary functions

h(x, y) =
f(x, y)
g(x, y)

=
x − y + c

c
, t(x, y) =

g(x, y)
h(x, y)

=
c2

(x − y)(x − y + c)
. (2.4)

Because of the obvious property g(−x,−y) = g(y, x), all the functions introduced above have similar
properties:

f(−x,−y) = f(y, x), h(−x,−y) = h(y, x), t(−x,−y) = t(y, x). (2.5)

Before describing the Bethe vectors, we formulate a convention for the notation. We designate sets of
variables by a bar: w̄, ū, v̄, etc. Individual elements of the sets are denoted by subscripts, wj , uk, etc., and
ūi and v̄i, for example, respectively mean ū \ ui and v̄ \ vi.

To avoid too cumbersome formulas, we use a shorthand notation for products of functions g, f , and
h. Namely, if these functions depend on sets of variables, then the product is taken over the corresponding
set. For example,

h(z, w̄) =
∏

wj∈w̄

h(z, wj), g(ui, ūi) =
∏

uj∈ū,
uj �=ui

g(ui, uj), f(ū, v̄) =
∏

uj∈ū

∏

vk∈v̄

f(uj, vk).

We also use a special notation Δ′
n(x̄) and Δn(x̄) for the products

Δ′
n(x̄) =

n∏

j<k

g(xj , xk), Δn(x̄) =
n∏

j>k

g(xj , xk). (2.6)

2.3. Bethe vectors. We now describe Bethe vectors. Generic Bethe vectors are denoted by Ba,b(ū; v̄).
They are parameterized by two sets of complex parameters ū = u1, . . . , ua and v̄ = v1, . . . , vb with a, b =
0, 1, . . . . Dual Bethe vectors are denoted by Ca,b(ū; v̄). They also depend on two sets of complex parameters
ū = u1, . . . , ua and v̄ = v1, . . . , vb. The state with ū = v̄ = ∅ is called a pseudovacuum vector |0〉. Similarly,
the dual state with ū = v̄ = ∅ is called a dual pseudovacuum vector 〈0|. These vectors are annihilated by
the operators Tij(w), where i > j for |0〉 and i < j for 〈0|. At the same time, both vectors are eigenvectors
for the diagonal elements of the monodromy matrix,

Tii(w)|0〉 = λi(w)|0〉, 〈0|Tii(w) = λi(w)〈0|, (2.7)

where λi(w) are some scalar functions. In the framework of the generalized model, λi(w) remain free
functional parameters. In fact, we can always normalize the monodromy matrix T (w) → λ−1

2 (w)T (w) such
that we deal with only the ratios

r1(w) =
λ1(w)
λ2(w)

, r3(w) =
λ3(w)
λ2(w)

. (2.8)
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If the parameters ū and v̄ of a Bethe vector1 satisfy a special system of equations (Bethe equations),
then the vector becomes an eigenvector of the transfer matrix (on-shell Bethe vector). The system of Bethe
equations can be written in the form

r1(ui) =
f(ui, ūi)
f(ūi, ui)

f(v̄, ui), i = 1, . . . , a,

r3(vj) =
f(v̄j , vj)
f(vj , v̄j)

f(vj , ū), j = 1, . . . , b,

(2.9)

and we recall that ūi = ū \ ui and v̄j = v̄ \ vj .
If ū and v̄ satisfy system (2.9), then

tr T (w) B
a,b(ū; v̄) = τ(w|ū, v̄) B

a,b(ū; v̄),

C
a,b(ū; v̄) tr T (w) = τ(w|ū, v̄) C

a,b(ū; v̄),
(2.10)

where
τ(w) ≡ τ(w|ū, v̄) = r1(w)f(ū, w) + f(w, ū)f(v̄, w) + r3(w)f(w, v̄). (2.11)

Remark 1. We note that system of Bethe equations (2.9) is equivalent to the statement that the
function τ(w|ū, v̄) in (2.11) has no poles at the points w = ui and w = vj .

Form factors of the monodromy matrix elements are defined as

F (i,j)
a,b (z) ≡ F (i,j)

a,b (z|ūC, v̄C ; ūB, v̄B) = C
a′,b′(ūC; v̄C)Tij(z)Ba,b(ūB; v̄B), (2.12)

where both Ca′,b′(ūC; v̄C) and Ba,b(ūB; v̄B) are on-shell Bethe vectors and

a′ = a + δi1 − δj1, b′ = b + δj3 − δi3. (2.13)

We use the superscripts B and C here to distinguish the sets of parameters in these two vectors. In other
words, unless explicitly specified, the variables {ūB; v̄B} in Ba,b and {ūC; v̄C} in Ca,b are not assumed to be
related. The parameter z is an arbitrary complex number. Acting with the operator Tij(z) on Ba,b(ūB; v̄B)
via formulas obtained in [38], we reduce the form factor to a linear combination of scalar products in which
Ca′,b′(ūC; v̄C) is an on-shell vector.

2.4. Relations between form factors. Obviously, there exist nine form factors of Tij(z) in models
with the GL(3)-invariant R-matrix; they are not all independent. In particular, because the R-matrix is
invariant under transposition with respect to both spaces, the map2

ψ : Tij(u) �→ Tji(u) (2.14)

defines an antimorphism of algebra (2.2). Acting on the Bethe vectors, this antimorphism sends them into
the dual ones, and vice versa,

ψ(Ba,b(ū; v̄)) = C
a,b(ū; v̄), ψ(Ca,b(ū; v̄)) = B

a,b(ū; v̄). (2.15)

1For simplicity here and hereafter, we do not distinguish between vectors and dual vectors.
2For simplicity, maps (2.14), (2.15), and (2.16) acting on the operators, vectors, and form factors are denoted by the same

letter ψ. The same holds for maps (2.17), (2.18), and (2.19) below.
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Therefore, we have
ψ(F (i,j)

a,b (z|ūC, v̄C ; ūB, v̄B)) = F (j,i)
a′,b′(z|ūB, v̄B ; ūC, v̄C), (2.16)

and the form factor F (i,j)
a,b (z) can hence be obtained from F (j,i)

a,b (z) using the replacements {ūC, v̄C} ↔
{ūB, v̄B} and {a, b} ↔ {a′, b′}.

One more relation between form factors arises because of the map ϕ,

ϕ : Tij(u) �→ T4−j,4−i(−u), (2.17)

which defines an isomorphism of algebra (2.2) [38]. This isomorphism implies the Bethe vector transforma-
tion

ϕ(Ba,b(ū; v̄)) = B
b,a(−v̄;−ū), ϕ(Ca,b(ū; v̄)) = C

b,a(−v̄;−ū). (2.18)

Because the map ϕ relates the operators T11 and T33, it also leads to the replacement of functions r1 ↔ r3.
Hence,

ϕ(F (i,j)
a,b (z|ūC, v̄C; ūB, v̄B)) = F (4−j,4−i)

b,a (−z| − v̄C ,−ūC;−v̄B,−ūB)
∣∣
r1↔r3

. (2.19)

In total, we are left with not more than four independent form factors, for example, the form factors of the
operators T11(z), T22(z), T12(z), and T13(z).

3. Form factors in GL(2)-based models

Before giving our main results, we recall the determinant representations for form factors previously
obtained in the integrable models with the GL(2)-invariant R-matrix [15], [16]. In fact, these results can
be treated as particular cases of form factors in the models with the GL(3)-invariant R-matrix, which
correspond to special Bethe vectors with a = 0 or b = 0. Below, we set b = 0 for definiteness. Let

C
a(ū) = C

a,0(ū; ∅), B
a(ū) = B

a,0(ū; ∅). (3.1)

Bethe vectors (3.1) become on-shell if the parameters ū satisfy the system of Bethe equations

r1(ui) =
f(ui, ūi)
f(ūi, ui)

= (−1)a−1 h(ui, ū)
h(ū, ui)

, i = 1, . . . , a. (3.2)

Then (
T11(w) + T22(w)

)
B

a(ū) = τ2(w|ū) B
a(ū),

C
a(ū)

(
T11(w) + T22(w)

)
= τ2(w|ū) C

a(ū),
(3.3)

where
τ2(w) ≡ τ2(w|ū) = r1(w)f(ū, w) + f(w, ū). (3.4)

The form factors of the monodromy matrix elements in the GL(2)-based models are defined as

F (i,j)
a (z) ≡ F (i,j)

a (z|ūC; ūB) = C
a′

(ūC)Tij(z)Ba(ūB), (3.5)

where both vectors are on-shell. For brevity, we use the notation a′ = a + j − i.
All the representations for the form factors of the operators Tij(z), i, j = 1, 2, are based on the

determinant formula for the scalar product of an on-shell Bethe vector and a generic Bethe vector [39].
This formula immediately implies such representations for F (1,2)

a (z) and F (2,1)
a (z). Namely, let x̄ = {ūB, z}.

Then
F (1,2)

a (z) = Δ′
a′(ūC)Δa′(x̄) det

a′
njk, (3.6)
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where

njk =
c

g(xk, ūC)
∂τ2(xk|ūC)

∂uC

j

. (3.7)

The result for F (2,1)
a (z) can be obtained from (3.6) and (3.7) by replacing ūC ↔ ūB and a′ ↔ a:

F (2,1)
a (z) = Δ′

a(ūB)Δa(ȳ) det
a

(
c

g(yk, ūB)
∂τ2(yk|ūB)

∂uB

j

)
, (3.8)

where ȳ = {ūC, z}.
There are several equivalent formulas for form factors of the diagonal elements Tss(z), s = 1, 2. Here,

we give representations in the form of determinants of matrices of the size (a + 1) × (a + 1). We have

F (s,s)
a (z) = Δ′

a(ūC)Δa+1(x̄) det
a+1

n
(s)
jk , s = 1, 2, (3.9)

where x̄ = {ūB, z}. The elements n
(s)
jk of the matrices n(s) in the first a rows (j = 1, . . . , a) coincide with

the elements of matrix (3.7). But we note that the number of elements in the set ūC in (3.7) is equal to
a + 1 while we have # ūC = a for the form factor F (s,s)

a (z). We can say that # ūC = a′ in both cases. In
the last row, we have

n
(1)
a+1,k = (−1)ar1(xk)h(ūB, xk), n

(2)
a+1,k = h(xk, ūB). (3.10)

Remark 2. We note that by virtue of Bethe equations (3.2), we have

n
(1)
a+1,k + n

(2)
a+1,k = 0 for k = 1, . . . , a

(i.e., if xk ∈ ūB). Therefore, the form factor of the transfer matrix T11(z)+T22(z) reduces to the eigenvalue
τ(z|ūB) multiplied by the scalar product of the vectors Ca(ūC) and Ba(ūB). This result, of course, follows
immediately from the definition of on-shell Bethe vectors.

Replacing ūC ↔ ūB in (3.9) and (3.10), we obtain alternative determinant representations for the form
factors of the operators Tss(z). Despite the very different appearance of these two types of representations,
their equivalence can be proved (see, e.g., [40]).

Therefore, we see that the form factors of the monodromy matrix elements in the GL(2)-based models
are proportional to the Jacobians of the eigenvalues τ2(w) on the left or right Bethe vector (up to a possible
modification of one row).

4. Main results

The results given in Sec. 3 suggest their possible generalization to models with the GL(3)-invariant
R-matrix. Indeed, it seems quite reasonable to expect that the form factors of the monodromy matrix
elements in such models are also proportional to the Jacobians of the transfer matrix eigenvalue. But this
conjecture is only partly confirmed. In this section, we show that determinant representations of form
factors of the operators Tij(z) in the GL(3)-based models are more sophisticated.

4.1. Form factors of off-diagonal elements. The determinant representations of form factors of
the operators Tij(z) with |i − j| = 1 have the simplest structure. They were calculated in [37]. We start
our exposition with the form factor F (1,2)

a,b (z):

F (1,2)
a,b (z) ≡ F (1,2)

a,b (z|ūC, v̄C ; ūB, v̄B) = C
a′,b′(ūC ; v̄C)T12(z)Ba,b(ūB; v̄B), (4.1)
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where both Ca′,b′(ūC; v̄C) and Ba,b(ūB; v̄B) are on-shell Bethe vectors. As in the GL(2) case, we use the a′

and b′ notation, whose definition depends on the form factor we consider. For F (1,2)
a,b (z), we have a′ = a +1

and b′ = b.
To describe the determinant representation for this form factor, we introduce a set of variables x̄ =

{x1, . . . , xa′+b} as the union of three sets x̄ = {ūB, v̄C , z} and define a scalar function Ha′,b as

Ha′,b =
h(x̄, ūB)h(v̄C , x̄)

h(v̄C , ūB)
Δ′

a′(ūC)Δ′
b(v̄

B)Δa+b+1(x̄). (4.2)

The following proposition was proved in [37].

Proposition 4.1. The form factor F (1,2)
a,b (z) admits the determinant representation

F (1,2)
a,b (z) = Ha′,b det

a′+b
N , (4.3)

where the (a′+b)×(a′+b) matrix N has the elements

Nj,k =
c

f(xk, ūB)f(v̄C, xk)
g(xk, ūB)
g(xk, ūC)

∂τ(xk|ūC, v̄C)
∂uC

j

, j = 1, . . . , a′, (4.4)

Na′+j,k =
−c

f(xk, ūB)f(v̄C , xk)
g(v̄C, xk)
g(v̄B , xk)

∂τ(xk|ūB, v̄B)
∂vB

j

, j = 1, . . . , b. (4.5)

We see that this representation involves two eigenvalues of the transfer matrix. Namely, the elements
in the first a+1 rows of N are proportional to the derivatives of the eigenvalue τ(xk|ūC, v̄C) on the left
vector, while the elements in the last b rows of N are proportional to the derivatives of the eigenvalue
τ(xk|ūB, v̄B) on the right vector. Hence, as mentioned at the beginning of this section, this determinant
representation is not a straightforward generalization of formula (3.6). Nevertheless, it can be easily seen
that Eq. (4.3) at b = 0 reproduces result (3.6).

Determinant representations for other form factors F (i,j)
a,b (z) with |i− j| = 1 can be derived from (4.3)

by maps (2.16) and (2.19). First, we give explicit formulas for the form factor of the operator T23:

F (2,3)
a,b (z) ≡ F (2,3)

a,b (z|ūC, v̄C ; ūB, v̄B) = C
a′,b′(ūC ; v̄C)T23(z)Ba,b(ūB; v̄B), (4.6)

where we now have a′ = a and b′ = b + 1.
We introduce a set of variables ȳ = {y1, . . . , ya+b′} as the union of three sets, ȳ = {ūC, v̄B, z}, and a

function

H̃a,b′ =
h(ȳ, ūC)h(v̄B , ȳ)

h(v̄B, ūC)
Δ′

a(ūB)Δ′
b′(v̄

C)Δa+b+1(ȳ). (4.7)

The following proposition was also proved in [37].

Proposition 4.2. The form factor F (2,3)
a,b (z) admits the determinant representation

F (2,3)
a,b (z) = H̃a,b′ det

a+b′
Ñ , (4.8)

where the (a+b′)×(a+b′) matrix Ñ has the elements

Ñj,k =
c

f(yk, ūC)f(v̄B, yk)
g(yk, ūC)
g(yk, ūB)

∂τ(yk|ūB, v̄B)
∂uB

j

, j = 1, . . . , a, (4.9)

Ña+j,k =
−c

f(yk, ūC)f(v̄B, yk)
g(v̄B, yk)
g(v̄C , yk)

∂τ(yk|ūC, v̄C)
∂vC

j

, j = 1, . . . , b′. (4.10)
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Using (2.5), we can easy verify that the representation of F (2,3)
a,b (z) can be obtained from the one for

F (1,2)
a,b (z) by replacing

ūC ↔ −v̄C, ūB ↔ −v̄B, r1 ↔ r3, a ↔ b, (4.11)

as prescribed by isomorphism (2.19).
At the same time, we can see that the formulas for these two form factors are also related by the

replacements
{ūC, v̄C} ↔ {ūB, v̄B}, {a, b} ↔ {a′, b′}. (4.12)

But care is necessary in doing these transformations: the definition of a′ and b′ changes when going from
F (1,2)

a,b (z) to F (2,3)
a,b (z) (and vice versa).

Applying map (2.16) to representations (4.3) and (4.8), we obtain the following proposition [37].

Proposition 4.3. The form factor F (3,2)
a,b (z) admits the determinant representation

F (3,2)
a,b (z) = Ha′,b det

a′+b
N , (4.13)

where Ha′,b and N are respectively given by (4.2) and (4.3).
The form factor F (2,1)

a,b (z) admits the determinant representation

F (2,1)
a,b (z) = H̃a,b′ det

a+b′
Ñ , (4.14)

where H̃a,b′ and Ñ are respectively given by (4.7) and (4.8).

Remark 3. We again emphasize that although representations (4.13) and (4.14) formally coincide
with (4.3) and (4.8), the values of a′ and b′ differ in these formulas. Indeed, we have a′ = a + 1 and b′ = b

in (4.3), while a′ = a and b′ = b − 1 in (4.13). Similarly, a′ = a and b′ = b + 1 in (4.8), while a′ = a − 1
and b′ = b in (4.14). Therefore, in particular, the matrices N and Ñ have the size (a + b + 1)× (a + b + 1)
in (4.3) and (4.8) and (a + b) × (a + b) in (4.13) and (4.14).

4.2. Form factors of diagonal elements. The form factors of diagonal elements of the monodromy
matrix,

F (s,s)
a,b (z) ≡ F (s,s)

a,b (z|ūC, v̄C; ūB, v̄B) = C
a,b(ūC; v̄C)Tss(z)Ba,b(ūB; v̄B), (4.15)

were calculated in [36]. Here, we give different representations for them. In a sense, they are analogous to
the determinant formulas for form factors in the GL(2)-based models (see Sec. 3). Namely, they are based
on the determinant of the matrix N given by (4.4) and (4.5), but one row of this matrix should be modified.

As before, we combine the sets ūB and v̄C and the parameter z into the set x̄ = {ūB, v̄C , z}. We also
introduce three (a+b+1)-component vectors Y (s), s = 1, 2, 3, as

Y
(s)
k = δs2 − δs1 +

uB

k

c
(δs1 − δs3)

(
f(v̄B, uB

k )
f(v̄C , uB

k )
− 1

)
, k = 1, . . . , a,

Y
(s)
a+k = δs2 − δs3 +

vC

k + c

c
(δs1 − δs3)

(
f(vC

k , ūC)
f(vC

k , ūB)
− 1

)
, k = 1, . . . , b.

(4.16)

The values of Y
(s)
a+b+1 are essential only in the case where Ca,b(ūC; v̄C) = (Ba,b(ūB; v̄B))†, i.e., ūB = ūC = ū

and v̄B = v̄C = v̄. We define them as

Y
(1)
a+b+1 =

r1(z)f(ū, z)
f(v̄, z)f(z, ū)

, Y
(2)
a+b+1 = 1, Y

(3)
a+b+1 =

r3(z)f(z, v̄)
f(v̄, z)f(z, ū)

. (4.17)

We can here set v̄ = v̄C or v̄ = v̄B and also ū = ūC or ū = ūB.
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Proposition 4.4. We define an (a+b+1)×(a+b+1) matrix N (s) as

N (s)
j,k = Nj,k, j = 1, . . . , a + b,

N (s)
a+b+1,k = Y

(s)
k .

(4.18)

Here, the matrix N is given by (4.4) and (4.5). Then

F (s,s)
a,b (z) = (−1)bHa′,b det

a+b+1
N (s), (4.19)

where Ha′,b is given by (4.2).

Remark 4. It should be remembered that a′ = a in the case of F (s,s)
a,b (z) and a′ = a + 1 in the case of

F (1,2)
a,b (z). Therefore, the function Ha′,b in (4.19) is given by (4.2), where a′ = a should be set. The same

remark concerns the elements of the matrix N (s).

We prove Proposition 4.4 in Sec. 6, reducing representation (4.19) to the formulas obtained in [36].
But before we do this, we mention that similarly to the GL(2)-case representation, (4.19) implies several
alternative determinant formulas for the form factors of the diagonal elements of the monodromy matrix.
They can be obtained from (4.19) via morphisms (2.16) and (2.19).

We also mention that
3∑

s=1

Y
(s)
k = 0, k = 1, . . . , a + b,

3∑

s=1

Y
(s)
a+b+1 =

τ(z|ū, v̄)
f(z, ū)f(v̄, z)

.

(4.20)

Therefore, the form factor of the transfer matrix reduces to its eigenvalue τ(z|ū, v̄) multiplied by the
minor of the matrix N (s) built on the first a+b rows and columns. This minor vanishes if Ca,b(ūC; v̄C) �=
(Ba,b(ūB; v̄B))† (see [35] and Sec. 6.1), and the form factor of the transfer matrix between different states is
therefore equal to zero, as it should be. Otherwise, if Ca,b(ūC; v̄C) = (Ba,b(ūB; v̄B))†, then the form factor
of the transfer matrix is equal to the eigenvalue τ(z|ū, v̄) multiplied by square of the norm of Bethe vector
(see Sec. 6.2).

4.3. Form factor of T13(z). The form factor of the matrix element T13(z) is defined as

F (1,3)
a,b (z) ≡ F (1,3)

a,b (z|ūC, v̄C ; ūB, v̄B) = C
a′,b′(ūC ; v̄C)T13(z)Ba,b(ūB; v̄B), (4.21)

where a′ = a+1 and b′ = b+1. As already mentioned, calculating this form factor relies on a new method,
which will be presented elsewhere. But to have a complete overview here of the form factors in the GL(3)
case, we preview the result. The determinant representation of the T13(z) form factor is similar to the
ones for the form factors of the diagonal elements Tss(z). We again combine the sets ūB and v̄C and the
parameter z into the set x̄ = {ūB, v̄C , z}. But this set now contains a′ + b′ (i.e., a + b + 2) elements. We
also introduce the (a′+b′)-component vector Y (1,3) as

Y
(1,3)
k = (−1)b′ r3(xk)h(xk, v̄B)

f(xk, ūB)h(v̄C , xk)
+

h(v̄B, xk)
h(v̄C , xk)

. (4.22)
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Proposition 4.5. We define an (a′+b′)×(a′+b′) matrix N (1,3) as

N (1,3)
j,k = Nj,k, j = 1, . . . , a′ + b,

N (1,3)
a′+b′,k = Y

(1,3)
k .

(4.23)

Here, the matrix N is given by (4.4) and (4.5). Then

F (1,3)
a,b (z) = (−1)b′Ha′,b det

a′+b+1
N (1,3), (4.24)

where Ha′,b is given by (4.2).

We note that an alternative determinant representation for the form factor F (1,3)
a,b (z) can be obtained by

applying map (2.19) to result (4.24). In turn, applying antimorphism (2.16) to (4.24) leads to a determinant
representation for the form factor F (3,1)

a,b (z).

5. Calculation of form factors

As already mentioned, the determinant representation for the scalar product of an on-shell Bethe vector
and a generic Bethe vector plays a key role in calculating form factors in GL(2)-based models. An analogue
of such a determinant representation is unknown in the case of the GL(3) group. Therefore, calculating the
form factor becomes much more involved. Details of these calculations can be found in [35]–[37]. Here, we
only give a general description of the method used in those papers.

Studying form factors is based on an explicit representation for the scalar products of Bethe vectors
obtained in [41]–[43]. The scalar product is defined as

Sa,b ≡ Sa,b(ūC , v̄C; ūB, v̄B) = C
a,b(ūC; v̄C)Ba,b(ūB; v̄B). (5.1)

Here, the Bethe parameters {ūC, v̄C} and {ūB, v̄B} are assumed to be generic complex numbers. The
representation obtained in [41] describes the scalar product as a sum over partitions of Bethe parameters
into subsets (the so-called sum formula). This representation is not generally reducible to a more compact
form. But when calculating the form factors, we deal with very particular scalar products in which most of
the parameters satisfy Bethe equations (2.9). In such cases, this sum over partitions is reducible to a single
determinant.

As an example, we consider the form factor of the operator T12(z). The action of T12(z) on Ba,b(ūB; v̄B)
is (see [38])

T12(z)Ba,b(ūB; v̄B) = f(v̄B, z) B
a+1,b({ūB, z}; v̄B) +

+
b∑

i=1

g(z, vB

i )f(v̄B

i , vB

i ) B
a+1,b({ūB, z}; {v̄B

i , z}). (5.2)

Hence, the form factor of T12(z) is equal to

F (1,2)
a,b (z) = f(v̄B, z)Sa+1,b(ūC, v̄C ; {ūB, z}, v̄B) +

+
b∑

i=1

g(z, vB

i )f(v̄B

i , vB

i )Sa+1,b(ūC, v̄C ; {ūB, z}, {v̄B

i , z}), (5.3)
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and we reduce the original problem to calculating the scalar products, where only z is an arbitrary complex
number and the other variables satisfy Bethe equations (2.9).

Formally, other form factors can be calculated similarly. It was proved in [38] that the action of the
monodromy matrix elements on Bethe vectors reduces to a linear combination of the last ones. Therefore,
the form factors of Tij(z) can always be expressed in terms of a linear combination of scalar products. But
each specific case has its own peculiarities. In particular, as explained above, there is no need to especially
consider the other form factors F (i,j)

a,b (z) with |i − j| = 1, because they can all be obtained from F (1,2)
a,b (z)

via maps (2.16) and (2.19).
The form factors of the diagonal operators Tss(z) can also be calculated in the framework of the scheme

described above. But the action of Tss(z) on Ba,b(ūB; v̄B) is much more involved than (5.2). In particular,
it contains a double sum over the Bethe parameters. This fact makes a straightforward calculation of
F (s,s)

a,b (z) technically very complicated. Therefore, in the case of form factors of the diagonal elements of
the monodromy matrix, it is more convenient to apply a special trick based on using the twisted transfer

matrix. We describe this method in the next subsection.
Finally, calculating the form factors F (i,j)

a,b (z) with |i − j| = 2 should also be included in the general
scheme. But we could not reduce the summation over partitions to a single determinant in this case, because
of technical problems. This seems rather strange because the action of the operator T13(z) on the Bethe
vectors is the simplest,

T13(z)Ba,b(ūB; v̄B) = B
a+1,b+1({ūB, z}; {v̄B, z}), (5.4)

and the form factor of T13(z) is therefore given by a single scalar product:

F (1,3)
a,b (z) = Sa+1,b+1(ūC , v̄C; {ūB, z}, {v̄B, z}). (5.5)

Nevertheless, despite this simplicity, the method for calculating the sums over partitions of the Bethe
parameters arising in (5.5) is not yet developed. We therefore use another approach for studying the form
factors F (i,j)

a,b (z) with |i − j| = 2, which will be described in a separate publication. Here we only mention

that the form factors F (1,3)
a,b (z) and F (3,1)

a,b (z) are related by map (2.16).

5.1. Twisted transfer matrix. The GL(3)-invariance of R-matrix (2.1) means that [κ̂1κ̂2, R12] = 0
for arbitrary κ̂ ∈ GL(3). It is easy to see [41], [44]–[46] that because of this property, a twisted monodromy

matrix κ̂T (w) satisfies algebra (2.2). If the matrix κ̂T (w) has the same pseudovacuum and dual pseudovac-
uum vectors as the original matrix T (w), then we can apply all the tools of the nested algebraic Bethe ansatz
to the twisted monodromy matrix. In particular, we can find the spectrum of the twisted transfer matrix
tr κ̂T (w). Its eigenvectors are called twisted on-shell Bethe vectors (or simply twisted on-shell vectors).

We consider a matrix κ̂ = diag(κ1, κ2, κ3), where κi are arbitrary complex numbers. Obviously, the
corresponding twisted monodromy matrix has the same pseudovacuum and dual pseudovacuum vectors.
Actually, multiplying T (w) by κ̂ reduces to replacing the original eigenvalues λi(w) given by (2.7) with
κiλi(w). Therefore, like the standard on-shell vectors, the twisted on-shell vectors can be parameterized
by a set of complex parameters satisfying the twisted Bethe equations, which have form (2.9) with rk(z)
replaced with rk(z)κk/κ2. Below, we need these equations in a logarithmic form. Namely, let

Φj = log r1(uj) − log
f(uj, ūj)
f(ūj, uj)

− log f(v̄, uj), j = 1, . . . , a, (5.6)

Φa+j = log r3(vj) − log
f(v̄j , vj)
f(vj , v̄j)

) − log f(vj , ū), j = 1, . . . , b. (5.7)
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The system of twisted Bethe equations then has the form

Φj = log κ2 − log κ1 + 2πi
j, j = 1, . . . , a,

Φa+j = log κ2 − log κ3 + 2πimj, j = 1, . . . , b,
(5.8)

where 
j and mj are some integers. The Jacobian of (5.6) and (5.7) is closely related to the norm of the
on-shell Bethe vector and the expectation values of the operators Tss(z) [36].

Using the notion of the twisted transfer matrix, we can calculate the form factors of the diagonal
elements of the monodromy matrix. We consider the expectation value

Qκ̄(z) = C
a,b
κ̄ (ūC; v̄C)

(
tr κ̂T (z)− tr T (z)

)
B

a,b(ūB; v̄B), (5.9)

where C
a,b
κ̄ (ūC; v̄C) and Ba,b(ūB; v̄B) are respectively twisted and standard on-shell vectors. Here and

hereafter, we set κ̄ = {κ1, κ2, κ3}. Obviously,

Qκ̄(z) = C
a,b
κ̄ (ūC; v̄C)

3∑

j=1

(κj − 1)Tjj(z)Ba,b(ūB; v̄B), (5.10)

and therefore
dQκ̄(z)

dκs

∣∣∣∣
κ̄=1

= C
a,b
κ̄ (ūC; v̄C)

∣∣∣∣
κ̄=1

Tss(z)Ba,b(ūB; v̄B). (5.11)

Here, κ̄ = 1 means that κi = 1 for i = 1, 2, 3. We see that after we set κ̄ = 1, the vector C
a,b
κ̄ (ūC; v̄C) becomes

the standard on-shell vector Ca,b(ūC; v̄C). Hence, we obtain the form factor of Tss(z) in the right-hand side
of (5.11),

dQκ̄(z)
dκs

∣∣∣∣
κ̄=1

= F (s,s)
a,b (z|ūC, v̄C; ūB, v̄B). (5.12)

On the other hand,

Qκ̄(z) =
(
τκ̄(z|ūC; v̄C) − τ(z|ūB; v̄B)

)
C

a,b
κ̄ (ūC; v̄C)Ba,b(ūB; v̄B), (5.13)

where τ(z|ūB; v̄B) is the eigenvalue of trT (z) in (2.11) and τκ̄(z|ūC; v̄C) is the eigenvalue of the twisted
transfer matrix tr κ̂T (z):

τκ̄(z) ≡ τκ̄(z|ū, v̄) = κ1r1(z)f(ū, z) + κ2f(z, ū)f(v̄, z) + κ3r3(z)f(z, v̄). (5.14)

We thus obtain

F (s,s)
a,b (z) =

d

dκs

[(
τκ̄(z|ūC; v̄C) − τ(z|ūB; v̄B)

)
C

a,b
κ̄ (ūC; v̄C)Ba,b(ūB; v̄B)

]
κ̄=1

, (5.15)

and we see that the form factors F (s,s)
a,b (z) can be calculated as κs-derivatives of the scalar product of twisted

on-shell and standard on-shell vectors.

6. Proof of Proposition 4.4

In this section, we prove Proposition 4.4. More precisely, we show that the determinant representations
given by Proposition 4.4 are equivalent to those obtained in [36].

Dealing with the form factors of diagonal elements Tss(z), we should distinguish two cases:

• Ca,b(ūC; v̄C) �= (Ba,b(ūB; v̄B))†,

• C
a,b(ūC; v̄C) = (Ba,b(ūB; v̄B))†.

We consider these two cases separately.
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6.1. Proof for different states. In this section, Ca,b(ūC; v̄C) �= (Ba,b(ūB; v̄B))†. This means that
there exists at least one w ∈ {ūC, v̄C} such that w /∈ {ūB, v̄B}. Then

C
a,b
κ̄ (ūC ; v̄C)Ba,b(ūB; v̄B)

∣∣
κ̄=1

= 0 (6.1)

as a product of two eigenstates corresponding to the different eigenvalues of the transfer matrix. Hence,
the κs-derivative in (5.15) should be applied only to this scalar product. We obtain

F (s,s)
a,b (z) =

(
τ(z|ūC; v̄C) − τ(z|ūB; v̄B)

) d

dκs
C

a,b
κ̄ (ūC; v̄C)Ba,b(ūB; v̄B)

∣∣∣∣
κ̄=1

. (6.2)

The κs-derivatives of the scalar product of twisted on-shell and standard on-shell vectors were calculated
in [36]. We describe this result.

First, we introduce an (a+b)-component vector Ω as

Ωj =
g(uC

j , ūC
j )

g(uC

j , ūB)
, j = 1, . . . , a,

Ωa+j =
g(vB

j , v̄B

j )
g(vB

j , v̄C)
, j = 1, . . . , b.

(6.3)

It is easy to see that because Ca,b(ūC; v̄C) �=
(
Ba,b(ūB; v̄B)

)†, this vector has at least one nonzero component.
Without loss of generality, we assume that Ωa+b �= 0. The result for the κs-derivative of the scalar product
is then

d

dκs
C

a,b
κ̄ (ūC ; v̄C)Ba,b(ūB; v̄B)

∣∣∣∣
κ̄=1

= Ω−1
a+bHa,b N̂a+b,a+b+1, (6.4)

where

Ha,b =
(−1)bHa,b

f(z, ūB)f(v̄C, z)
=

h(w̄, ūB)h(v̄C , w̄)
h(v̄C, ūB)

Δ′
a(ūC)Δ′

b(v̄
B)Δa+b(w̄), (6.5)

Ha,b is given by (4.2), and w̄ = {ūB, v̄C}. The factor N̂a+b,a+b+1 in (6.4) is the cofactor to the element
N (s)

a+b,a+b+1 of the matrix N (s) given by (4.18),

N̂a+b,a+b+1 = − det
j �=a+b,

k �=a+b+1

N (s)
j,k . (6.6)

We reproduce this result starting from determinant representation (4.19). First, we give the elements
of the matrix N more explicitly:

Nj,k = (−1)a′−1t(uC

j , xk)
r1(xk)h(ūC, xk)

f(v̄C, xk)h(xk, ūB)
+ t(xk, uC

j )
h(xk, ūC)
h(xk, ūB)

, j = 1, . . . , a′, (6.7)

Na′+j,k = (−1)b−1t(xk, vB

j )
r3(xk)h(xk, v̄B)

f(xk, ūB)h(v̄C , xk)
+ t(vB

j , xk)
h(v̄B , xk)
h(v̄C , xk)

, j = 1, . . . , b. (6.8)

We note that a′ = a and b′ = b in the case under consideration. But we use the symbol a′ in (6.7) and (6.8)
because these equations in this form still hold for the form factor F (1,2)

a,b (z), where a′ = a + 1.
Let

S(xk) =
a′∑

j=1

Ωj Nj,k +
b∑

j=1

Ωa′+j Na′+j,k. (6.9)
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Using (A.1), we can then easily obtain

S(xk) =
τ(xk|ūC, v̄C) − τ(xk |ūB, v̄B)

f(v̄C, xk)f(xk, ūB)
. (6.10)

It is straightforward to verify that S(uB

k ) = S(vC

k ) = 0 because of the Bethe equations. In fact, this
can be seen without any calculations. Indeed, the Bethe equations are equivalent to the statement that
the function τ(xk|ū, v̄) has no poles at the points xk = uj and xk = vj (see Remark 1). The factor
f−1(v̄C , xk)f−1(xk, ūB) then immediately yields the equalities S(uB

k ) = S(vC

k ) = 0.
We now multiply the first a+b−1 rows of the matrix N (s) by the factors Ωj/Ωa+b and add them to

the (a+b)th row. We then obtain a modified (a+b)th row with the components

N (s),mod
a+b,k = 0, k = 1, . . . , a + b,

N (s),mod
a+b,a+b+1 = Ω−1

a+b

τ(z|ūC, v̄C) − τ(z|ūB, v̄B)
f(v̄C, z)f(z, ūB)

.
(6.11)

The determinant detN (s) reduces to the product of the element N (s),mod
a+b,a+b+1 times the corresponding co-

factor, and we obtain

det
a+b+1

N (s) = Ω−1
a+b

τ(z|ūC , v̄C) − τ(z|ūB, v̄B)
f(v̄C , z)f(z, ūB)

N̂a+b,a+b+1. (6.12)

We draw attention to the fact that the matrix element Y
(s)
a+b+1 has disappeared from the game. Substituting

this result in (4.19), we immediately reproduce (6.4).

6.2. Proof for the same states. In this section, C
a,b(ūC; v̄C) =

(
Ba,b(ūB; v̄B)

)†, and we set ūC =
ūB = ū and v̄C = v̄B = v̄. In this case,

τκ̄(z|ūC; v̄C) − τ(z|ūB; v̄B) = 0 for κ̄ = 1, ūC = ūB = ū, v̄C = v̄B = v̄, (6.13)

and the κs-derivative in (5.15) should hence act only on the difference of the eigenvalues τκ̄ and τ . We then
find

F (s,s)(z|ū, v̄; ū, v̄) = ‖B
a,b(ū; v̄)‖2 dτκ̄(z|ūC; v̄C)

dκs

∣∣∣∣
κ̄=1

, (6.14)

and we should set ūC = ū and v̄C = v̄ after taking the derivative of τκ̄(z|ūC; v̄C) with respect to κs. Below in
this section, we always assume that the condition κ̄ = 1 automatically yields ūC = ūB = ū and v̄C = v̄B = v̄.

The squared norm of the on-shell Bethe vector ‖Ba,b(ū; v̄)‖2 was calculated in [41], [35]. It is propor-
tional to the minor of the matrix N (s) built on the first a+b rows and columns:3

‖B
a,b(ū; v̄)‖2 = Ha,b det

a+b
N , (6.15)

where Ha,b is given by (6.5) for ūC = ūB = ū and v̄C = v̄B = v̄.
We present the elements of N explicitly in the case ūC = ūB = ū and v̄C = v̄B = v̄ (see [41], [35]). For

j, k = 1, . . . , a, we have

Nj,k = δjk

(
−c log′ r1(uk) −

a∑

�=1

2c2

u2
k� − c2

+
b∑

m=1

t(vm, uk)
)

+
2c2

u2
jk − c2

, (6.16)

3It is important that this minor is independent of s.
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where uk� = uk − u�. The elements of the second diagonal block are

Na+j,a+k = δjk

(
c log′ r3(vk) −

b∑

m=1

2c2

v2
km − c2

+
a∑

�=1

t(vk, u�)
)

+
2c2

v2
jk − c2

, (6.17)

where vkm = vk − vm and j, k = 1, . . . , b. The antidiagonal blocks have a simpler structure,

Nj,a+k = t(vk, uj), j = 1, . . . , a, k = 1, . . . , b, (6.18)

Na+j,k = t(vj , uk), j = 1, . . . , b, k = 1, . . . , a. (6.19)

We note that the matrix N is symmetric: Njk = Nkj . It is also easy to verify (see [35]) that

Nj,k = −c
∂Φj

∂uk
, j = 1, . . . , a + b, k = 1, . . . , a,

Nj,a+k = c
∂Φj

∂vk
, j = 1, . . . , a + b, k = 1, . . . , b,

(6.20)

where Φj is given by (5.6) and (5.7).
We reproduce result (6.14) starting from representation (4.19). The elements of the matrix N (s)

j,k with
j, k = 1, . . . , a + b coincide with those defined in (6.16)–(6.19). In the last row, we have

N (s)
a+b+1,k = Y

(s)
k = δs2 − δs1, k = 1, . . . , a,

N (s)
a+b+1,k = Y

(s)
k = δs2 − δs3, k = a + 1, . . . , a + b.

(6.21)

Finally, the last column has the components

N (s)
j,a+b+1 =

c

f(z, ū)f(v̄, z)
∂τ(z|ū, v̄)

∂uj
, j = 1, . . . , a,

N (s)
a+j,a+b+1 = − c

f(z, ū)f(v̄, z)
∂τ(z|ū, v̄)

∂vj
, j = 1, . . . , b,

N (s)
a+b+1,a+b+1 =

1
f(z, ū)f(v̄, z)

∂τκ̄(z|ūC, v̄C)
∂κs

∣∣∣∣
κ̄=1

.

(6.22)

We have thus described the (a+b+1)×(a+b+1) matrix N (s) in the limit ūC = ūB = ū and v̄C = v̄B = v̄.
We show that detN (s) is reducible to the determinant of the (a+b)×(a+b) block of this matrix given
by (6.16)–(6.19). For this, we introduce three (a+b)-component vectors Ω̃(s)

j as

Ω̃(s)
j =

1
c

duC
j

dκs

∣∣∣∣
κ̄=1

, j = 1, . . . , a,

Ω̃(s)
a+j = −1

c

dvC

j

dκs

∣∣∣∣
κ̄=1

, j = 1, . . . , b.

(6.23)

It is easy to show that
a+b+1∑

j=1

Ω̃(s)
j N (s)

j,k = 0, k = 1, . . . , a + b. (6.24)
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Indeed, differentiating system of twisted Bethe equations (5.8) with respect to κs at κ̄ = 1, we obtain

a∑

�=1

∂Φj

∂u�

duC

�

dκs

∣∣∣∣
κ̄=1

+
b∑

m=1

∂Φj

∂vm

dvC
m

dκs

∣∣∣∣
κ̄=1

= Y
(s)
k . (6.25)

Taking (6.20) and the symmetry of N (s)
j,k for j, k = 1, . . . , a + b into account, we immediately obtain (6.24).

Adding all other rows times the coefficients Ω̃(s)
j to the last row of N (s)

j,k , we thus obtain zeros everywhere
except the element j, k = a + b + 1, where we have

a+b+1∑

j=1

Ω̃(s)
j N (s)

j,a+b+1 =
1

f(z, ū)f(v̄, z)

{
∂τ(z|ūC, v̄C)

∂κs

∣∣∣∣
κ̄=1

+

+
a∑

�=1

∂τ(z|ū, v̄)
∂u�

duC

�

dκs

∣∣∣∣
κ̄=1

+
b∑

m=1

∂τ(z|ū, v̄)
∂vm

dvC
m

dκs

∣∣∣∣
κ̄=1

}
=

=
1

f(z, ū)f(v̄, z)
dτ(z|ūC , v̄C)

dκs

∣∣∣∣
κ̄=1

. (6.26)

We thus obtain

F (s,s)
a,b (z|ū, v̄; ū, v̄) =

dτ(z|ū, v̄)
dκs

∣∣∣∣
κ̄=1

· Ha,b det
a+b

N . (6.27)

Comparing (6.27) and (6.15), we obtain representation (6.14).

7. Discussion

We have considered the form factors of the monodromy matrix elements in models with the GL(3)-
invariant R-matrix and obtained determinant representations for them. The question arises of generalizing
the obtained results to models with a higher-rank symmetry group. For this, it is useful to compare the
structure of the determinant formulas for the models with GL(2) and GL(3) symmetries.

For GL(3)-based models, all the representations have a similar structure and are based on the deter-
minants of the matrices N or Ñ (the latter can be obtained from N by replacing {ūC, v̄C} ↔ {ūB, v̄B}). In
these matrices, all rows and columns are associated with one of the Bethe parameters or with the external
variable z. For example, in N , the first a columns correspond to the set ūB, the next b columns correspond
to the set v̄C, and the last column is associated with the variable z. The rows of this matrix are associated
with the parameters ūC and v̄B . For the form factor of the diagonal elements and also for the operator
T13(z), the matrix N has an additional row.

It is hardly possible to predict such a structure based on the results obtained for the models with the
GL(2) symmetry. For example, we could expect that the columns of the matrices should correspond to
the parameters of one Bethe vector (e.g., {ūB, v̄B}) while the rows should correspond to the parameters of
another Bethe vector (in this case, {ūC, v̄C}). But we see that this is not the case, and we should “mix”
the parameters from different Bethe vectors to label the rows and the columns. Such mixing of the Bethe
parameters makes it very problematic to generalize our results straightforwardly to models with a GL(N)
symmetry with N > 3. There is also one more argument ruling out a simple generalization of these results
to of higher-rank symmetry groups. We see that the matrix whose determinant describes form factors has
a block structure

N =

⎛

⎜⎝
N�

Nr

⎞

⎟⎠ , where

(N�)j,k ∼ ∂τ(xk|ūC, v̄C)
∂uC

j

,

(Nr)j,k ∼ ∂τ(xk|ūB, v̄B)
∂vB

j

.

(7.1)
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The upper and lower blocks are proportional to the Jacobians of the transfer matrix eigenvalues on the
respective left and right Bethe vectors. On the other hand, the block structure is also related to the fact
that Bethe vectors depend on two sets of parameters. But the Bethe vectors depend on N−1 sets of
variables in the case of the GL(N) group [32]. Hence, it is natural to expect that if there are determinant
representations for form factors in the models with the symmetry group GL(4), for example, then the
corresponding matrices should have a 3×3 block structure. At the same time, we still have only two vectors
and hence only two eigenvalues.

Of course, the arguments above do not mean that determinant representations for form factors do
not exist in models with a GL(N)-invariant R-matrix. These arguments can only tell that a determinant
representations based on the Jacobians of the transfer matrix eigenvalues are hardly possible for models with
a higher symmetry group. Nevertheless, on the other hand, we cannot exclude the existence of determinant
representations with a different structure.

Concluding this paper, we say a few words about possible applications. One application immediately
arises for the quantum models admitting an explicit solution of the quantum inverse scattering prob-
lem [16], [21]. In particular, we have the representation

Eα,β
m = (tr T (0))m−1Tβα(0)(tr T (0))−m (7.2)

for the local operators in the SU(3)-invariant XXX Heisenberg chain. Here, Eα,β
m , α, β = 1, 2, 3, is an

elementary unit ((Eα,β)jk = δjαδkβ) associated with the mth site of the chain. Because the action of
the transfer matrix tr T (0) on on-shell Bethe vectors is trivial, we see that the form factors of Eα,β

m are
proportional to those of Tβα,

C
a′,b′(ūC; v̄C)Eα,β

m B
a,b(ūB; v̄B) =

τm−1(0|ūC, v̄C)
τm(0|ūB, v̄B)

F (β,α)
a,b (0|ūC, v̄C; ūB, v̄B). (7.3)

Therefore, if we have explicit, compact representations for the form factors of Tβ,α, then we can study the
problem of two-point and multipoint correlation functions, expanding them in series in the form factors.

Appendix: Summation formulas

In this section, we prove several identities for the vector Ω introduced in (6.3).

Proposition 7.1. Let Ω be defined as in (6.3). Then

a∑

j=1

t(uC

j , z)Ωj =
h(ūB, z)
h(ūC, z)

(
1 − f(ūC, z)

f(ūB, z)

)
,

a∑

j=1

t(z, uC

j )Ωj =
h(z, ūB)
h(z, ūC)

(
f(z, ūC)
f(z, ūB)

− 1
)

,

b∑

j=1

t(vB

j , z)Ωj+a =
h(v̄C, z)
h(v̄B , z)

(
1 − f(v̄B , z)

f(v̄C , z)

)
,

b∑

j=1

t(z, vB

j )Ωj+a =
h(z, v̄C)
h(z, v̄B)

(
f(z, v̄B)
f(z, v̄C)

− 1
)

.

(A.1)

All the identities above can be proved similarly. As an example, we consider the first identity.
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Proof. Let
a∑

j=1

t(uC

j , z)Ωj = W (z). (A.2)

The sum in the left-hand side of (A.2) can be computed using an auxiliary integral

I =
1

2πi

∮

|ω|=R→∞

c dω

(ω − z)(ω − z + c)

a∏

�=1

ω − uB

�

ω − uC

�

. (A.3)

The integral is taken over the counterclockwise-oriented contour |ω| = R, and we consider the limit R → ∞.
Then I = 0 because the integrand behaves as 1/ω2 for ω → ∞. On the other hand, the same integral is
equal to the sum of residues inside the integration contour. Obviously, the sum of the residues at ω = uC

�

gives W (z). There are also two additional poles at ω = z and ω = z − c. We then have

I = 0 = W (z) −
a∏

�=1

z − uB

� − c

z − uC

� − c
+

a∏

�=1

z − uB

�

z − uC

�

, (A.4)

whence we obtain the first identity in (A.1).
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