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STRONG-COUPLING PHASES OF PLANAR N=2∗

SUPER-YANG–MILLS THEORY

K. L. Zarembo∗

The N=2∗ theory (mass deformation of the N=4 super-Yang–Mills theory) undergoes an infinite number

of quantum phase transitions in the large-N limit. The phase structure and critical behavior can be

analyzed using supersymmetric localization, which reduces the problem to an effective matrix model. We

study this model in the strong-coupling phase.
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1. Introduction

The maximally supersymmetric N=4 Yang–Mills (SYM) theory is very rich mathematically, not least
because it has a well-defined string description via the AdS/CFT correspondence. The closest relative of the
N=4 SYM theory with the conformal symmetry explicitly broken is the N=2∗ theory. This theory obviously
has fewer symmetries and more complicated dynamics, but some nonperturbative results do extend from
N = 4 to N = 2∗. One of them is the exact computation of the path integral on S4 by supersymmetric
localization [1]. The path integral on S4 reduces to a zero-dimensional matrix model in any gauge theory
with the N=2 supersymmetry. In the N=4 case, this matrix model is just Gaussian [1]–[3].

The localization matrix model of the N=2∗ SYM theory [1] is not Gaussian and has a very rich
phase structure at large N (the regime where the gauge/string duality operates most simply) [4], [5]. The
model is not completely solvable, except in some corners of the parameter space [5], [6]. In particular, its
asymptotic strong-coupling solution is known and allows nontrivial tests of the holographic duality beyond
AdS/CFT [6]. The free energy and the Wilson loop expectation values in the matrix model can be directly
compared with the geometric data from the known supergravity dual of the N=2∗ SYM theory [7] and its
compactification on S4 [8].

Another interesting regime is the decompactification limit. Compactification on S4 can be viewed as a
formal means for selecting the unique vacuum and making the path integral well-defined without imposing
boundary conditions (this standpoint was articulated in [9]). The radius R of the four-sphere can then
be viewed as an IR regulator, to be sent to infinity at the end of the calculation. Interestingly, the phase
structure of the N=2∗ SYM theory in an infinite volume is quite nontrivial. As the ’t Hooft coupling
changes from zero to infinity, the theory undergoes an infinite number of quantum phase transitions [4].
Phase transitions are a common feature of matrix models [10], [11], but those in the N=2∗ theory are novel
and have not been previously studied [5].

The exact solution of the localization matrix model in the weak-coupling phase was obtained in [4]
following methods developed in [12], [13], while the strong-coupling phase has only been analyzed in an
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infinitesimal vicinity of the phase transition [5]. Our goal here is to study the strong-coupling phases (more
precisely, phase) in more detail. A phase structure similar to that of the N=2∗ SYM theory was found
in three-dimensional massive theories amenable to localization [14], where the matrix model can be solved
analytically [15]. We use a similar method in four dimensions. Although not leading to a full analytic
solution, this method can be used to study the vacuum structure in detail across the entire phase diagram.

2. Localization matrix model

The field content of the N=2∗ SYM theory consists of the gauge fields Aμ, their scalar superpartners
Φ and Φ′, the complex scalars Z and ˜Z from the hypermultiplet, and four Majorana fermions. All fields are
in the adjoint representation of the SU(N) gauge group. The Lagrangian includes explicit mass terms for
the complex scalars and their superpartners. When the mass deformation is switched off, the Lagrangian
of the N=2∗ theory becomes that of the N=4 SYM theory.

The SU(N) symmetry of N=2∗ theory is spontaneously broken by the expectation value of the scalar
from the vector multiplet,

〈Φ〉 = diag(a1, . . . , aN), (2.1)

and almost all the fields obtain masses via the Higgs mechanism. Exceptions are gauge bosons of the
unbroken U(1)N−1. The masses of the components of the fields in the vector multiplet (i and j are the
color indices) are |ai−aj |, while the hypermultiplet masses are |ai−aj±M |, where M is the mass parameter
in the Lagrangian. The eigenvalues ai and aj separated by the distance M therefore form a resonance;
there is a massless hypermultiplet associated with them. The phase transitions in the matrix model are
due to precisely these resonances.

The path integral of the N=2∗ theory on S4 localizes to an eigenvalue integral over the Coulomb
moduli ai from (2.1) [1]:

Z =
ˆ

dN−1a
∏

i<j

(ai − aj)2H2(ai − aj)
H(ai − aj − M)H(ai − aj + M)

exp
[

−8π2N

λ

∑

i

a2
i

]

, (2.2)

where

H(x) ≡
∞
∏

n=1

(

1 +
x2

n2

)n

e−x2/n. (2.3)

The exact partition function also contains an instanton contribution, but it is exponentially suppressed at
large N [5] and can therefore be omitted. Localization allows calculating some special correlation functions,
among which is the Wilson loop for the big circle of S4 that maps to the exponential operator in the matrix
model [1]:

W (Circle) ≡
〈

1
N

tr P exp
˛

Circle

ds

(

iAμẋμ + Φ|ẋ|
)〉

loc=
〈

1
N

∑

i

e2πai

〉

. (2.4)

In the leading planar approximation, the eigenvalue integral can be evaluated in the saddle-point
approximation. After the eigenvalue density

ρ(x) =
〈

1
N

N
∑

i=1

δ(x − ai)
〉

(2.5)

is introduced, the saddle-point equations become a singular integral equation:

 μ

−μ

dy ρ(y)
(

1
x − y

−K(x − y) +
1
2
K(x − y + M) +

1
2
K(x − y − M)

)

=
8π2

λ
x, (2.6)
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where K = −H ′/H . This equation was studied in several papers [16], [4]–[6], [9], but its general analytic
solution is unknown.

The saddle-point equation is somewhat simplified in the decompactification limit R → ∞. In fact, the
above equations are written in the dimensionless variables with R = 1. The dependence on R is recovered by
rescaling ai → aiR, M → MR, x → xR, and y → yR. The argument of the kernel function K(Rx) becomes
large as R → ∞, and the function can be replaced with its asymptotic form at infinity: K(x) → x log x2.
Differentiating the resulting equations twice, we obtain

 μ

−μ

dy ρ(y)
(

2
x − y

− 1
x − y + M

− 1
x − y − M

)

= 0. (2.7)

This is the saddle-point of the decompactified theory that we study.
Wilson loop (2.4) in the decmpactification limit obeys the perimeter law:

log W (Circle) = 2πRμ. (2.8)

The perimeter law actually applies to any large contour, not just to the big circle of S4. This can be
verified using holography. The proportionality coefficient of the perimeter law calculated holographically
agrees with the solution of the matrix model in the strong-coupling limit [6].

The boundary conditions on the density in the decompactification limit differ from those usually applied
in matrix models [17]:

ρ(x) ∼ const√
μ ∓ x

, x → ±μ. (2.9)

The density should be unit-normalized, which is the condition that usually fixes the endpoints of the
eigenvalue distribution in terms of the coupling constant. In our case, the density satisfies homogeneous
equation (2.7), and the normalization condition does not impose additional constraints. Instead, the bound-
ary of the interval μ is determined by the integral form of (2.7) obtained from (2.6) by differentiating once.
Written at x = 0, this condition is

ˆ μ

−μ

dy ρ(y) log
|M2 − y2|

y2
=

8π2

λ
. (2.10)

It is in fact more convenient to regard M and μ (instead of M and λ) as independent variables. The
saddle-point equation in form (2.7) has a unique normalized solution for fixed M and μ. The coupling
constant, as a function of M and μ (more precisely, their dimensionless ratio), is then determined by
auxiliary condition (2.10).

The structure of the solution of (2.7) depends crucially on the relation between the width of the
eigenvalue distribution 2μ and the mass M . If M > 2μ, then Eq. (2.7) is of the Hilbert type with a
single pole in the integration domain) and can be solved in terms of elliptic integrals [4] using the method
developed in [12], [13]. This solution has a singularity at μ = M/2, which signals a transition to a new
phase. In terms of the ’t Hooft constant, the weak-coupling solution exists for λ < λc with λc 
 35.425 [4].
We are interested in the structure of the eigenvalue density for λ > λc.

The structure of the density in the infinitesimal vicinity of the phase transition was analyzed in [5]. It
was found that the density develops two cusps at x = ±(M − μ), which are the resonance images of the
endpoint positions. The cusps have a lambdalike shape such that the density approaches a finite limit from
the inside of the distribution and has an inverse-square-root singularity on the outside of the cusp. It was
also observed that the density can be written in terms of a single auxiliary function that has no singularities
at the resonance points. In the next section, we generalize these arguments to the case of a finite distance
from the phase transition point. We then find a more general ansatz valid in any phase with an arbitrary
number of resonances.
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a b

Fig. 1. Nonlocal map (3.1) induces additional singularities inside the interval (−μ, μ): (a) the

auxiliary function r(x) and (b) its image ρ(x).

3. Two-resonance phase

We first assume that 2μ > M but μ < M and there are hence exactly two resonances, at x = M − μ

and x = −M + μ. For the density, we take the following ansatz,1 which generalizes the structure found in
the vicinity of the phase transition at 2μ − M � M ,

1
C

ρ(x) =

⎧

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎩

r(x), x ∈ (−M + μ, M + μ),
4
3
r(x) +

2
3
r(x − M), x ∈ (M − μ, μ),

4
3
r(x) +

2
3
r(x + M), x ∈ (−μ,−M + μ).

(3.1)

The overall factor C is introduced for later convenience and is eventually fixed by the normalization condi-
tion. It is important that this ansatz is nonlocal. Because it is nonlocal, the endpoint singularities in r(x)
induce discontinuities of the density in the middle of the eigenvalue interval. Even if r(x) itself is a smooth
function between −μ and μ, the density ρ(x) has singularities at M − μ and −M + μ. These singularities
arise as images of the endpoints under the map x → x ± M , and are associated with resonances on nearly
massless hypermultiplets.

The coefficients in (3.1) are chosen such that after this ansatz is substituted in integral equation (2.7),
the resonance terms (i.e., those with poles at y = x ± M) cancel between different parts of the equation.
Collecting the remaining contributions, we obtain an integral equation of the Hilbert type for r(x):

 μ

−μ

dy r(y)
2

x − y
=

ˆ M−μ

−M+μ

dy r(y)
(

1
x − y − M

+
1

x − y + M

)

+

+
2
3

ˆ μ

M−μ

dy r(y)
(

2
x − y − M

+
1

x − y + 2M

)

+

+
2
3

ˆ M+μ

−μ

dy r(y)
(

2
x − y + M

+
1

x − y − 2M

)

. (3.2)

All three integrals in the right-hand side are proper and consequently define a smooth function on the
interval (−μ, μ). It follows from the basic theory of singular integral equations that the solution with the

1This ansatz was initially suggested to us by D. Volin.
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Fig. 2. The resonance points divide the eigenvalue interval into subintervals ak and bk on which the

density is nonsingular.

boundary conditions

r(x) → 1√
μ ∓ x

, x → ±μ, (3.3)

exists, is unique, and has no singularities in the integration domain. The function r(x) therefore has the
shape shown in Fig. 1a.

From ansatz (3.1), we then find that the density behaves as

ρ(x) → 4C

3
√

μ ∓ x
, x → ±μ, (3.4)

at the interval boundaries. As x approaches one of the resonance points from the outside, the density
diverges as

ρ(x) → 2C

3
√
±x − M + μ

, x → ±M ∓ μ ± 0. (3.5)

On the inside, the density approaches a finite value Cr(M − μ). This structure is illustrated in Fig. 1b.
Finally, the normalization constant C is determined by the condition

C

(ˆ μ

−μ

+
ˆ −M+μ

−μ

+
ˆ μ

M−μ

)

dx r(x) = 1. (3.6)

4. General structure

As μ increases, more resonances appear, which leads to secondary transitions each time 2μ becomes
equal to an integer multiple of M . There hence exist infinitely many phases, and each phase is characterized
by a different number of spikes in the eigenvalue density. The nth phase has 2n spikes. To enumerate the
different phases, it is convenient to introduce the variables

n =
[

2μ

M

]

, Δ =
{

2μ

M

}

, 2μ = nM + Δ, (4.1)

where [ · ] and { · } denote the respective integer and fractional parts.
The spikes are located at the resonance points −μ + kM and μ − kM = −μ + (n − k)M + Δ, which

divide the interval (−μ, μ) into 2n+1 subintervals ak and bk, as shown in Fig. 2:

ak =
(

−μ + (k − 1)M,−μ + (k − 1)M + Δ
)

, k = 1, . . . , n + 1,

bk = (−μ + (k − 1)M + Δ,−μ + kM), k = 1, . . . , n.
(4.2)

Our basic assumption is that the density can be obtained from a unique analytic function r(x) by
applying an appropriate shift operator. We hence choose an ansatz generalizing (3.1) to the case of an
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arbitrary number of subintervals:

ρ(x) =

⎧

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎩

n+1−k
∑

l=−k+1

Ak+l,lr(x + lM), x ∈ ak,

n−k
∑

l=−k+1

Bk+l,lr(x + lM), x ∈ bk,

(4.3)

where Amp and Bmp are numerical coefficients to be determined. Substituting this ansatz in saddle-point
equation (2.7), we obtain a linear combination of integrals of the forms

Imp =
 

ak

dy r(y)
x − y + pM

, Jmp =
 

bk

dy r(y)
x − y + pM

, (4.4)

namely,

 μ

−μ

dy ρ(y)
(

2
x − y

− 1
x − y + M

− 1
x − y − M

)

=

=
n+1
∑

m=1

m−1
∑

l=m−n−1

Aml(2Iml − Im,l+1 − Im,l+1) +

+
n

∑

m=1

m−1
∑

l=m−n

Bml(2Jml − Jm,l+1 − Jm,l+1).

This results in a singular integral equation for r(x). Our goal is to ensure that this equation is of the Hilbert
type by adjusting the coefficients Amp and Bmp. For this, we must eliminate all integrals that have singular
kernels except the unshifted Hilbert kernel 1/(x − y).

The dangerous integrals are Imp with m−n− 1 ≤ p ≤ m− 1, p �= 0, and Jmp with m−n ≤ p ≤ m− 1,
p �= 0. Imposing the condition that the coefficients of dangerous integrals cancel and normalizing the
coefficient of the Hilbert kernel to 2, we obtain a system of linear equations for Amp and Bmp:

2Amp − Am,p+1 − Am,p−1 = 2δp0, p = m − n − 1, . . . , m − 1,

2Bmp − Bm,p+1 − Bm,p−1 = 2δp0, p = m − n, . . . , m − 1.
(4.5)

Solving this system, we obtain

Amp =

⎧

⎪

⎨

⎪

⎩

2(n + 2 − m)(m − p)
n + 2

, p ≥ 0,

2m(n + 2 − m + p)
n + 2

, p ≤ 0,
(4.6)

and

Bmp =

⎧

⎪

⎨

⎪

⎩

2(n + 1 − m)(m − p)
n + 1

, p ≥ 0,

2m(n + 1 − m + p)
n + 1

, p ≤ 0.
(4.7)

It is easy to verify that we reproduce ansatz (3.1) at n = 1.
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Fig. 3. The eigenvalue density for n = 2.

The resulting integral equation for r(x) has the form

 μ

−μ

dy r(y)
2

x − y
=

1
n + 2

n+1
∑

m=1

ˆ
am

dy r(y)
[

m

x − y − (n + 2 − m)M
+

n + 2 − m

x − y + mM

]

+

+
1

n + 1

n
∑

m=1

ˆ
bm

dy r(y)
[

m

x − y − (n + 1 − m)M
+

n + 1 − m

x − y + mM

]

. (4.8)

The right-hand side is indeed an analytic function on (−μ, μ), and the solution of this equation with
asymptotic form (3.3) hence exists and is unique. The analogue of Eq. (3.6) is now

C

[ n+1
∑

m=1

m(n + 2 − m)
ˆ

am

+
n

∑

m=1

m(n + 1 − m)
ˆ

bm

]

dx r(x) = 1. (4.9)

Although we do not know how to solve for r(x) with n > 0, the qualitative structure of the density
and salient features of the critical behavior are mostly independent of the detailed form of this function and
can be inferred from map (4.3) and explicit solutions (4.6) and (4.7) for the coefficients Amp and Bmp. We
can therefore study the critical behavior without knowing the explicit form of r(x). It can be easily seen
that the density is nonsingular on all the b intervals and has singularities at both ends of the a intervals,
namely,

ρ(x) 
 2C(n + 1 − l)
(n + 2)

√
ε

, x = −μ + lM + ε,

ρ(x) 
 2Cl

(n + 2)
√

ε
, x = −μ + lM + Δ − ε,

(4.10)

as ε → 0, which is shown in Fig. 3.
In the phase with odd n (see Fig. 1b), the a intervals grow and the b integrals shrink as μ increases.

If n is even, as in Fig. 3, then the a intervals shrink and the b intervals grow as μ increases. There are
consequently two types of phase transitions, associated with either a or b intervals shrinking to zero size,
as shown in Fig. 4.

The coupling constant increases as μ increases, and when the coupling becomes large, the width of
the eigenvalue distribution is parametrically larger than the mass scale: μ � M . The density has a very
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a b

Fig. 4. Two types of critical behavior in the N=2∗ SYM theory: (a) with the a intervals shrinking

to zero size and (b) with the b intervals shrinking.

Fig. 5. The eigenvalue density in the strong-coupling limit: at small scales, the density has a

complicated spiky structure with a large number of singularities, but the average density is well

approximated by the Wigner semicircle, shown here by the dashed line.

irregular spiky shape in this limit. On the other hand, irregularities arise at small scales of the order of M .
When averaged over a sufficiently large interval, the density should approach the smooth strong-coupling
solution, which is just a simple Wigner semicircle [6]:2

ρ∞(x) =
2
√

μ2 − x2

πμ2
. (4.11)

That this is indeed the case can be seen in Fig. 5.

5. Conclusions

The N=2∗ SYM theory has a rich phase structure, which can be studied using supersymmetric lo-
calization. Although it is currently unknown how to solve the localization matrix model exactly in the

2An alternative derivation of the semicirle law that does not rely on S4 localization was given in [18].
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strong-coupling phase, we can obtain a sufficiently detailed picture of the eigenvalue density. The criti-
cal behavior is associated with mutations of the singularities of the density occurring as the width of the
eigenvalue distribution increases.

The description of such behavior in the framework of the holographic duality seems most interesting.
Because the majority of the phase transitions happen at the strong-coupling domain, the quantum regime of
the dual string theory might not be needed for this. In principle, the eigenvalue density can be investigated
more or less directly in the holographic framework by placing a D-brane in the dual geometry [19], [20].
But a classical D-brane is sensitive to the average density and apparently cannot resolve the complicated
singular structure at small scales [19], [6]. A string description of the phase transitions observed in the
matrix model remains an open problem.
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18. M. Billó, M. Frau, F. Fucito, A. Lerda, J. Morales, R. Poghossian, and D. Ricci Pacifici, “Modular anomaly

equations in N=2∗ theories and their large-N limit,” arXiv:1406.7255v1 [hep-th] (2014).

19. A. Buchel, A. W. Peet, and J. Polchinski, Phys. Rev. D, 63, 044009 (2001); arXiv:hep-th/0008076v1 (2000).

20. N. J. Evans, C. V. Johnson, and M. Petrini, JHEP, 0010, 022 (2000); arXiv:hep-th/0008081v2 (2000).

1530


	Strong-coupling phases of planar $\mathcal{N}=2^*$ super-Yang--Mills theory
	Abstract
	1. Introduction
	2. Localization matrix model
	3. Two-resonance phase
	4. General structure
	5. Conclusions
	Acknowledgments
	References


