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A MATRIX MODEL FOR HYPERGEOMETRIC HURWITZ NUMBERS

J. Ambjørn∗ and L. O. Chekhov†

We present multimatrix models that are generating functions for the numbers of branched covers of the

complex projective line ramified over n fixed points zi, i = 1, . . . , n (generalized Grothendieck’s dessins

d’enfants) of fixed genus, degree, and ramification profiles at two points z1 and zn. We sum over all

possible ramifications at the other n−2 points with a fixed length of the profile at z2 and with a fixed

total length of profiles at the remaining n−3 points. All these models belong to a class of hypergeometric

Hurwitz models and are therefore tau functions of the Kadomtsev–Petviashvili hierarchy. In this case, we

can represent the obtained model as a chain of matrices with a (nonstandard) nearest-neighbor interaction

of the type tr MiM
−1
i+1. We describe the technique for evaluating spectral curves of such models, which

opens the way for obtaining 1/N2-expansions of these models using the topological recursion method.

These spectral curves turn out to be algebraic.

Keywords: Hurwitz number, random complex matrix, Kadomtsev–Petviashvili hierarchy, matrix chain,
bipartite graph, spectral curve

1. Introduction

It is generally considered that Hurwitz numbers pertain to combinatorial classes of ramified maps
f : CP

1 → Σg of the complex projective line onto a genus-g Riemann surface. The notion of single or
double Hurwitz numbers correspond to the cases whose ramification profiles (defined by the corresponding
Young tableau λ or λ and μ) are respectively determined at one (∞) or two (∞ and 1) distinct points,
while we assume that m other distinct ramification points exist, which admit only simple ramifications.

Generating functions for Hurwitz numbers have long been considered in mathematical physics. Is-
sues of the integrability of character expansions were addressed in [1] (see a more recent paper for their
classification [2]).

We note that Okounkov and Pandharipande showed that the exponential of the generating function
for double Hurwitz numbers is a tau function of the Kadomtsev–Petviashvili (KP) hierarchy [3]. Orlov and
Shcherbin obtained the same result using the Schur function technique [4], [5]. The general conditions on
KP tau functions were formulated by Takasaki [6] and Goulden and Jackson [7] using Plucker relations.

Orlov and Shcherbin also addressed the case of the generating function in the case of Grothendieck
dessins d’enfants, where we have only three ramification points with multiple ramifications and the ramifica-
tion profile is fixed at one or two of these points [4]. In this case, they also concluded that the exponentials
of the corresponding generating functions must be tau functions of the KP hierarchy. In fact, the results
in [4] describe a wider class of generating functions for hypergeometric Hurwitz numbers (this term was
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coined there) in which we have a fixed number n of ramification points in CP
1 and we fix profiles at two

of these points and a sum over the profiles at all the other points with weights proportional to the lengths

of the remaining n−2 profiles. Harnad and Orlov recently demonstrated that all such generating functions
are in turn tau functions of the KP hierarchy [8].

The interest in Hurwitz numbers corresponding to Belyi pairs was revived by Zograf [9] (also see [10]),
who obtained recurrence relations for the generating function of the Grothendieck dessins d’enfants enumer-
ating the Belyi pairs (C, f), where C is a smooth algebraic curve and f a meromorphic function f : C → CP

1

ramified only over the points 0, 1,∞ ∈ CP
1. In [11], we proposed a matrix-model description of Belyi pairs,

clean Belyi morphisms, and two-profile Belyi pairs and thus again showed that all these cases are in the
category of KP tau functions. The corresponding matrix models are the standard Hermitian one-matrix
model or the Kontsevich–Penner matrix model [12] in the case of a single fixed profile and the generalized
Kontsevich model [13] in the two-profile case. Almost immediately, a multimatrix-model representation for
hypergeometric Hurwitz numbers was constructed in [14] but with a complicated interaction between the
matrices in the chain. Here, we propose a more standard description of hypergeometric Hurwitz numbers
in the case where we fix profiles at two ramification points, fix the length of the profile at a third point,
and fix the total length of profiles at the other n−3 points. In this case, we can obtain the spectral curve
equation in the framework of the 1/N2-expansion.

We recall some mathematical facts relating Belyi pairs to Galois groups.

Theorem 1 [15]. A smooth complex algebraic curve C is defined over the field of algebraic numbers

Q if and only if there is a nonconstant meromorphic function f defined on C (f : C → CP
1) and ramified

only over the points 0, 1,∞ ∈ CP
1.

For a Belyi pair (C, f), let g be the genus of C and d be the degree of f . If we take the preimage
f−1([0, 1]) ⊂ C of the real line segment [0, 1] ∈ CP

1, then we obtain a connected bipartite fat graph with d

edges with vertices being preimages of 0 and 1 and such that the cyclic ordering of edges entering a vertex
comes from the orientation of the curve C. This led Grothendieck to formulate the following lemma.

Lemma 1 [16]. There is a one-to-one correspondence between the isomorphism classes of Belyi pairs

and connected bipartite fat graphs.

A Grothendieck dessin d’enfant is therefore a connected bipartite fat graph representing a Belyi pair.
It is well known that we can naturally extend the dessin f−1([0, 1]) ⊂ C corresponding to a Belyi pair
(C, f) to a bipartite triangulation of the curve C. For this, we cut the complex plane along the (real)
line containing the points 0, 1,∞ and color the upper half-plane white and the lower half-plane gray. This
defines a partition of C into white and gray triangles such that white triangles have common edges only
with gray triangles. We then consider a dual graph with three types of edges.

In this paper, we consider generalized Belyi pairs, which are maps (f : C → CP
1) with allowed ramifi-

cations over n fixed points zi ∈ CP
1, i = 1, . . . , n. We then have the splitting of the curve C into bipartite

n-gons with edges of n colors (the corresponding fat graphs are then coverings of the basic graph shown
in Fig. 1 for n = 5): the color of an edge depends on which of n segments of RP

1 (f−1([∞−, z2]) ⊂ C,
f−1([z2, z3]) ⊂ C, . . . , f−1([zn−1, zn]) ⊂ C, f−1([zn,∞+]) ⊂ C) its image intersects (we identify z1 with
the point at infinity and let ∞± indicate the directions of approaching this point along the real axis in
CP

1). Each face of the dual partition then contains a preimage of exactly one of the points z1, . . . , zn, and
these faces are hence of n sorts (bordered by solid, dash-dotted, or dashed lines in the figure). We call such
a graph a generalized Belyi fat graph.
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Fig. 1. The generalized Belyi fat graph Γ1 corresponding to possible ramifications at n = 5 points

(commonly taken to be ∞, −(1 +
√

5)/2, 0, 1, and (3 +
√

5)/2, denoted here by small circles): this

graph describes the generalized Belyi pair (CP
1, id); ∞± indicate directions of approaching the point at

infinity in CP
1. The symbols Λ and Λ indicate the insertions of the external field in the matrix-model

formalism in Sec. 2. For example, this graph contributes the term N2γ1γ2γ
2
3t1 tr(ΛΛ).

The type of ramification at infinity is determined by the set of faces bounded by solid lines in a
generalized Belyi fat graph: the order of branching is r for a 2r-gon. We can therefore introduce a generating
function that distinguishes between different types of branching at infinity or at z1. Moreover, we also
distinguish between different types of ramifications at the nth point (the point (3 +

√
5)/2 in Fig. 1). This

situation is customarily called a two-profile generating function for Hurwitz numbers because we fix two
ramification patterns at two distinct branching points; each such pattern can be represented by its Young
tableau. We let ki denote the numbers of respective cycles (preimages of the points zi on the Riemann
surface C) and let k

(r)
1 and k

(r)
n denote the numbers of cycles of length 2r centered at preimages of the

respective points z1 and zn in a generalized Belyi fat graph.
As shown in [14] and [8], the exponential of the generating function

F [{tm}, {tr}, γ2, . . . , γn−1; N ] =
∑

Γ

1
|AutΓ|N

2−2g
∞∏

r=1

t
k
(r)
1

r

∞∏

s=1

t
k(s)

n
s

n−1∏

j=2

γ
kj

j (1.1)

is a tau function of the KP hierarchy in times tr or tr. Although a matrix-model description of this
generating function was proposed in those papers, the possibility of solving it in terms of a topological

recursion (see [17]–[19]) remained obscure. We construct a matrix model describing a subclass of generating
functions (1.1) with γ3 = γ4 = · · · = γn−1 and arbitrary γ2 > γ3.

Our goal here is therefore to construct and solve a matrix model whose free energy is the generating
function

F [{tm}, {tr}, γ2, γ3; N ] =
∑

Γ

1
|AutΓ|N

2−2g
∞∏

r=1

t
k
(r)
1

r

∞∏

s=1

t
k(s)

n
s γk2

2 γ
k3+···+kn−1
3 , (1.2)

where N , γ2, γ3, tr, and tr are formal independent parameters and the sum ranges all (connected) generalized
Belyi fat graphs. Below, we consider a matrix model with an external matrix field Λ = diag(λ1, . . . , λγ3N );
the corresponding times are

tr = tr[(ΛΛ)r]. (1.3)

Factors γk1
1 and γkn

n are sometimes added, but they can always be absorbed into the times tr and tr by
scaling tr → γ1tr and tr → γntr for all r.

The paper has the following structure. In Sec. 2, we show that generating function (1.2) is the free
energy of a special multimatrix model represented as a chain of matrices with somewhat nonstandard

1488



interaction terms tr MiM
−1
i+1. We express this model as an integral over eigenvalues of these matrices in a

form similar to that of the standard generalized Kontsevich model (GKM) [13]. We adapt the technique of
Eynard and Prats Ferrer [20] for evaluating spectral curves for chains of matrices with these nonstandard
interaction terms in Sec. 4. Although we derive the spectral curve only in the first nontrivial case n = 4
(i.e., in the case of one intermediate field), our technique can be straightforwardly generalized to all higher
n, which we will do in a separate publication. We conclude in Sec. 5 with the discussion of our results.

Throughout the entire text, we disregard all factors that are independent of the external fields and the
times tr; all equalities in the paper must therefore be understood modulo such irrelevant factors.

2. The model

To take the profile at the point at infinity into account, we first contract all solid cycles (centered at
preimages of ∞) assigning the time tr to each contracted cycle of length 2r. New interaction vertices arise
from the thus contracted solid cycles. For example, for a cycle of length four, we obtain the correspondence

∼ 1
2
Nt2 tr[(B2B3B4ΛΛB4B3B2)2],

where the factor 1/2 takes the cyclic symmetry of the four-cycle into account.

The matrix-valued fields Bi, i = 2, . . . , n − 1, are general complex-valued matrices such that B2 is
a rectangular matrix of the size γ2N × γ3N and we always assume that γ2 > γ3, and all other matrices
B3, . . . , Bn−1 are square matrices of the size γ3N × γ3N .

The matrix-model integral whose free energy is generating function (1.2) is

∫
DB2 · · ·DBn−1 exp

{
N

∞∑

r=1

tr
r

tr[(B2 · · ·Bn−1ΛΛ Bn−1 · · ·B2)r] −
n−1∑

j=2

N tr(BjBj)
}

. (2.1)

We next change the variable as

B2 = B2B3 · · ·Bn−1,

B3 = B3 · · ·Bn−1,

...

Bn−1 = Bn−1

(2.2)

and assume that all matrices B3, . . . ,Bn−1 are invertible (the matrix B2 remains rectangular). With the
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Jacobian of transformation (2.2) taken into account, integral (2.1) becomes

∫
DB2 · · ·DBn−1 exp

{
−γ2N tr log(B3B3) −

n−1∑

j=4

γ3N tr log(BjBj) +

+
∞∑

r=1

N
tr
r

tr[(B2|Λ|2B2)r] − N tr[B2B
−1
3 B

−1

3 B2] − N tr[B3B
−1
4 B

−1

4 B3] − · · ·

· · · − N tr[Bn−2B
−1
n−1B

−1

n−1Bn−2] − N tr[Bn−1Bn−1]
}

. (2.3)

Here it becomes clear why we require that all matrices except B2 be quadratic: we must be able to
invert them in order to write the corresponding generating function as a free energy of a chain of Hermitian
matrices, as we demonstrate below.

We now recall [21] that we can write an integral over general complex matrices Bi in terms of positive-
definite Hermitian matrices Xi after the change of variables

Xi := BiBi, i = 2, . . . , n − 1. (2.4)

All the matrices Xi, i = 2, . . . , n − 1, are of the same size γ3N × γ3N . Changing the integration measure
for rectangular complex matrices introduces only a simple logarithmic term (see, e.g., [11], [22]), and the
resulting integral becomes

∫
DX2≥0 · · ·DXn−1≥0 exp

{
N

∞∑

r=1

tr
r

tr[(X2|Λ|2)r] − N tr(X2X
−1
3 ) − · · ·

· · · − N tr(Xn−2X
−1
n−1) − N trXn−1 +

+ (γ2 − γ3)N tr log X2 − γ2N tr log X3 − γ3N tr log(X4 · · ·Xn−1)
}

. (2.5)

The logarithmic term in X2 stabilizes the equilibrium distribution of eigenvalues of this matrix in the
domain of positive real numbers; in the case where γ2 = γ3, we lose this term and must use the technique
of matrix models with hard walls (see, e.g., [23] for a review).

Scaling Xi → Xi|Λ|−2 for all the integration variables, we reduce (2.5) to a more familiar form of an
integral over a chain of matrices,

∫
DX2≥0 · · ·DXn−1≥0 exp

{
N

∞∑

r=1

tr
r

tr(Xr
2 ) − N tr(X2X

−1
3 ) − · · ·

· · · − N tr(Xn−2X
−1
n−1) − N tr(Xn−1|Λ|−2) −

+ (γ2 − γ3)N tr log X2 − γ2N tr log X3 − γ3N tr log(X4 · · ·Xn−1)
}

. (2.6)

We use this expression when deriving the spectral curve equation in the next section. We now proceed
further and express integral (2.6) in terms of the eigenvalues x

(k)
i of the Xk, k = 2, . . . , n − 1.

We apply the Mehta–Itzykson–Zuber integration formula to every term in the chain of matrices in (2.6).
Taking into account that the integral over the unitary group for the term e−N tr XkX−1

k+1 , for instance, gives

∫
DU exp

[
−N

γ3N∑

i,j=1

Uijx
(k)
i U∗

ij [x
(k+1)
j ]−1

]
=

deti,j [e−Nx
(k)
i /x

(k+1)
j ]

Δ(x(k))Δ(1/x(k+1))
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and that
1

Δ(1/x(k+1))
=

γ3N∏

i=1

[x(k+1)
i ]γ3N−1 1

Δ(x(k+1))
,

we finally write expression (2.6) in terms of eigenvalues of the Xk:

∫ ∞

0

γ3N∏

i=1

dx
(2)
i

Δ(x(2))
Δ(|Λ|−2)

n−1∏

k=3

(γ3N∏

i=1

dx
(k)
i

x
(k)
i

) γ3N∏

i=1

{(
x

(2)
i

x
(3)
i

)(γ2−γ3)N

×

× exp
[
N

∞∑

r=1

tr
r

(x(2)
i )r − Nx

(2)
i

x
(3)
i

− · · · − Nx
(n−2)
i

x
(n−1)
i

− Nx
(n−1)
i |Λ|−2

i

]}
. (2.7)

Finally, if we introduce the logarithmic quantities

ϕ
(r)
i = log x

(r)
i , r = 3, . . . , n − 1,

then we can rewrite integral (2.7) in a more transparent form resembling the Toda chain Lagrangian:

∫ ∞

0

γ3N∏

i=1

dx
(2)
i

Δ(x(2))
Δ(|Λ|−2)

γ3N∏

i=1

{∫ ∞

−∞

n−1∏

k=3

dϕ
(k)
i ×

× exp
[
N

∞∑

r=1

tr
r

(x(2)
i )r + (γ2 − γ3)N log x

(2)
i − (γ2 − γ3)Nϕ

(3)
i −

− Nx
(2)
i e−ϕ

(3)
i − Neϕ

(3)
i −ϕ

(4)
i − · · · − Neϕ

(n−2)
i −ϕ

(n−1)
i − Neϕ

(n−1)
i |Λ|−2

i

]}
. (2.8)

In this form, it is clear that all integrals over ϕ
(k)
i converge.

3. The case of the two-profile generating function for Belyi pairs
for n = 3

We now recall the results in [11], where the case n = 3 was considered. In this case, we do not have
“intermediate” integrations over ϕi in (2.8), and the partition function is described by the following lemma.

Lemma 2. In the case where only three ramification points 0, 1, and ∞ are allowed, the generating

function

F [{t1, t2, . . . }, {t1, t2, . . . }, β; N ] =
∑

Γ

1
|AutΓ|N

2−2gβn2

n1∏

i=1

tri

n3∏

k=1

tsk
(3.1)

of Belyi pairs, where we fix two sets of ramification profiles {tr1 , . . . , trn1
} at infinity and {ts1 , . . . , tsn3

} at

1 and we sum over profiles at zero, is given by the integral over positive-definite Hermitian matrices X of

size γN × γN with the external matrix field Λ̃ := |Λ|−2:

Z[t, t] =
γN∏

k=1

|λk|−2βN

∫

γN×γN

DX≥0 ×

× exp
{

N tr[−X |Λ|−2 +
∞∑

m=1

tm
m

Xm + (β − γ) logX ]
}

. (3.2)

Here, ts = tr[(ΛΛ)s].
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Integral (3.2) is a GKM integral [13]; after integration over the eigenvalues xk of X , it becomes the
ratio of two determinants,

Z[t, t] =
γN∏

k=1

|λk|−2βN 1
Δ(λ̃)

∥∥∥∥
∂k1−1

∂λ̃k1−1
k2

f(λ̃k2)
∥∥∥∥

γN

k1,k2=1

, (3.3)

where

f(λ̃) =
∫ ∞

0

xN(β−γ) exp
{
−Nxλ̃ + N

∞∑

m=1

tm
m

xm

}
. (3.4)

Because any GKM integral (in the appropriate normalization) is a tau function of the KP hierarchy (this
was shown for a model with a logarithmic term in the potential in [24]), we immediately conclude that the
exponential eF [{t},{t},γ;N ] of generating function (3.1) modulo the normalization factor

∏γN
k=1 |λk|−2βN is a

tau function of the KP hierarchy (i.e., it satisfies the bilinear Hirota relations) in the times ts described in
Lemma 2.

4. Spectral curve and topological recursion

In this section, we propose a method for deriving the spectral curve of model (2.6), adapting the
technique in [20] to our case of a nonstandard interaction between matrices in the matrix chain. We restrict
ourself here to a technically more transparent case of the three-matrix model given by the integral

∫
DM1 DM2 DM3 exp

{
N tr[V (M1) + M1M

−1
2 − γ2 log M2 + M2M3 + U(M3)]

}
, (4.1)

where the integrations are over positive-definite Hermitian matrices of size γ3N × γ3N and the potentials
V (x) and U(x) are two Laurent polynomials of the respective positive degrees n and r (this consideration
can be easily generalized to the case where V ′(x) and U ′(x) are two rational functions).

Model (4.1) satisfies equations of the two-dimensional Toda chain hierarchy (see [8], [25]), and these
two classes of models are in fact closely related. Hence, solving the problem of finding the spectral curve in
one model can be standardly translated to solving the corresponding problem in the other model. Because
finding spectral curves for multimatrix models is more transparent technically than finding spectral curves
for models with external matrix fields, we stay with the first choice.

We consider the variations of the matrix fields Mi:

δM1 =
1

x − M1
ξ(M2, M3),

δM2 = M2
1

x − M1
η(M1, M3),

δM3 =
1

x − M1
ρ(M1, M2),

(4.2)

where ξ, η, and ρ are Laurent polynomials in their arguments. We introduce the standard notation for the
leading term of the 1/N2-expansion of the one-loop mean of the matrix field M1:

ω1(x) :=
1
N

〈
tr

1
x − M1

〉

0

. (4.3)

Here and hereafter, the subscript 0 of a correlation function indicates the contribution of the leading order
of the 1/N2-expansion. A single trace symbol in the angle brackets pertains to the whole expression inside
the corresponding brackets.
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The exact loop equations obtained using variations (4.2) are

1
N2

〈
tr

1
x − M1

tr
1

x − M1
ξ(M2, M3)

〉c

+ [ω1(x) + V ′(x)]
〈

tr
1

x − M1
ξ(M2, M3)

〉
+

+
〈

tr
V ′(M1) − V ′(x)

x − M1
ξ(M2, M3)

〉
+

〈
trM−1

2

1
x − M1

ξ(M2, M3)
〉

= 0, (4.4)

〈
tr

−M1

x − M1
η(M1, M3)M−1

2

〉
+

〈
tr M3M2

1
x − M1

η(M1, M3)
〉

+

+ (γ2 − γ3)
〈

tr
1

x − M1
η(M1, M3)

〉
= 0, (4.5)

〈
trM2

1
x − M1

ρ(M1, M2)
〉

+
〈

trU ′(M3)
1

x − M1
ρ(M1, M2)

〉
= 0. (4.6)

Complete information about the model is encoded in these loop equations; solving them, a topological
recursion procedure for evaluating all terms in the 1/N2-expansion can be developed. But our goal here is
more modest: we only derive the spectral curve (this nevertheless ensures all the necessary ingredients of
the topological recursion [17]–[19], also see [26], which are the spectral curve itself and two meromorphic
differentials defined on this curve).

Because we obtain the spectral curve in the large-N limit, we disregard the first term in (4.4), which
is of the next order in 1/N2. All other terms in all three equations contribute to the leading order.

We next make several substitutions that allow producing the required identities; in all identities below,
we keep only leading terms in the large-N limit.

The first substitution ξ(M2, M3) = (U ′(M3) − U ′(z))/(M3 − z) yields

[ω1(x) + V ′(x)]
〈

tr
1

x − M1

U ′(M3) − U ′(z)
M3 − z

〉

0

+

+
〈

tr
U ′(M3) − U ′(z)

M3 − z

V ′(M1) − V ′(x)
x − M1

〉

0

+
〈

tr M−1
2

1
x − M1

U ′(M3) − U ′(z)
M3 − z

〉

0

= 0. (4.7)

In the last term in (4.7), we use Eq. (4.5):

〈
tr M−1

2

1
x − M1

U ′(M3) − U ′(z)
M3 − z

〉

0

=
〈

tr M2M
−1
1

1
x − M1

U ′(M3) − U ′(z)
M3 − z

M3

〉

0

+

+ (γ3 − γ2)
〈

tr M−1
1

1
x − M1

U ′(M3) − U ′(z)
M3 − z

〉

0

=

=
1
x

〈
tr M2

1
x − M1

U ′(M3) − U ′(z)
M3 − z

(M3 − z + z)
〉

0

+

+
1
x

〈
trM2M

−1
1

U ′(M3) − U ′(z)
M3 − z

M3

〉

0

+

+ (γ3 − γ2)
1
x

〈
tr

1
x − M1

U ′(M3) − U ′(z)
M3 − z

〉

0

+

+ (γ3 − γ2)
1
x

〈
tr M−1

1

U ′(M3) − U ′(z)
M3 − z

〉

0

=
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=
z

x

〈
tr M2

1
x − M1

U ′(M3) − U ′(z)
M3 − z

〉

0

+

+
1
x

〈
trM2

1
x − M1

(U ′(M3) − U ′(z))
〉

0

+

+ (γ3 − γ2)
1
x

〈
tr

1
x − M1

U ′(M3) − U ′(z)
M3 − z

〉

0

+

+
1
x

〈
trM−1

2

U ′(M3) − U ′(z)
M3 − z

〉

0

, (4.8)

where we again use substitution (4.5) in the last term (in the opposite direction). We introduce the
polynomials

Pn−1,r−1(x, z) :=
〈

tr
U ′(M3) − U ′(z)

M3 − z

V ′(M1) − V ′(x)
x − M1

〉

0

,

Qr−1(z) :=
〈

tr M−1
2

U ′(M3) − U ′(z)
M3 − z

〉

0

.

(4.9)

Equation (4.7) then becomes

[
ω1(x) + V ′(x) +

γ3 − γ2

x

]〈
tr

1
x − M1

U ′(M3) − U ′(z)
M3 − z

〉

0

+

+
z

x

〈
trM2

1
x − M1

U ′(M3) − U ′(z)
M3 − z

〉

0

+
1
x

〈
tr M2

1
x − M1

(U ′(M3) − U ′(z))
〉

0

+

+ Pn−1,r−1(x, z) +
1
x

Qr−1(z) = 0, (4.10)

and it remains only to evaluate the term 〈tr M2(1/(x−M1))(U ′(M3)−U ′(z))〉0. We first note that from (4.6),
we have 〈

trM2
1

x − M1
U ′(M3)

〉

0

=
〈

trM2
2

1
x − M1

〉

0

,

and we can evaluate the correlation functions 〈tr M2
1

x−M1
〉0 and 〈tr M2

2
1

x−M1
〉0 by consecutively substituting

ξ(M2, M3) = M2 and ξ(M2, M3) = M2
2 in (4.4). We introduce two more polynomials

P̂n−1(x) :=
〈

tr
V ′(M1) − V ′(x)

x − M1
M2

〉

0

,

̂̂
Pn−1(x) :=

〈
tr

V ′(M1) − V ′(x)
x − M1

M2
2

〉

0

.

(4.11)

Substituting ξ(M2, M3) = M2 yields the equation

[ω1(x) + V ′(x)]
〈

tr M2
1

x − M1

〉

0

+ P̂n−1(x) + ω1(x) = 0,

substituting ξ(M2, M3) = M2
2 yields

[ω1(x) + V ′(x)]
〈

tr M2
2

1
x − M1

〉

0

+ ̂̂
P n−1(x) +

〈
trM2

1
x − M1

〉

0

= 0,
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and we obtain

〈
tr M2

1
x − M1

〉

0

= −ω1(x) + P̂n−1(x)
ω1(x) + V ′(x)

, (4.12)

〈
tr M2

2

1
x − M1

〉

0

=
1

ω1(x) + V ′(x)

[
− ̂̂

Pn−1(x) +
ω1(x) + P̂n−1(x)
ω1(x) + V ′(x)

]
. (4.13)

Equation (4.10) therefore becomes

[
ω1(x) + V ′(x) +

γ3 − γ2

x

]〈
tr

1
x − M1

U ′(M3) − U ′(z)
M3 − z

〉

0

+

+
z

x

〈
tr M2

1
x − M1

U ′(M3) − U ′(z)
M3 − z

〉

0

+ s(x, z) = 0, (4.14)

where s(x, z) is a rational function

s(x, z) = Pn−1,r−1(x, z) +
1
x

Qr−1(z) +

+
1
x

[
1

ω1 + V ′(x)

(
− ̂̂

Pn−1(x) +
ω1(x) + P̂n−1(x)
ω1(x) + V ′(x)

)
+ U ′(z)

ω1(x) + P̂n−1(x)
ω1(x) + V ′(x)

]
. (4.15)

Finally, substituting ξ(M2, M3) = U ′(M3)−U ′(z)
M3−z M2 in (4.4), we obtain

[ω1(x) + V ′(x)]
〈

trM2
1

x − M1

U ′(M3) − U ′(z)
M3 − z

〉

0

+

+
〈

tr
1

x − M1

U ′(M3) − U ′(z)
M3 − z

〉

0

+ t(x, z) = 0, (4.16)

where

t(x, z) := P̂n−1,r−1(x, z) :=
〈

tr M2
U ′(M3) − U ′(z)

M3 − z

V ′(M1) − V ′(x)
x − M1

〉

0

(4.17)

is again a polynomial function. We now treat Eqs. (4.14) and (4.16) as a system of two linear equations for
two unknowns

〈
tr

1
x − M1

U ′(M3) − U ′(z)
M3 − z

〉

0

and
〈

tr M2
1

x − M1

U ′(M3) − U ′(z)
M3 − z

〉

0

.

We are interested in the case where this system is degenerate, which imposes the constraint on the variable z

det

⎡

⎣ω1(x) + V ′(x) +
γ3 − γ2

x

z

x

1 ω1(x) + V ′(x)

⎤

⎦ = 0 (4.18)

and gives

z = x(ω1(x) + V ′(x))
(

ω1(x) + V ′(x) +
γ3 − γ2

x

)
. (4.19)
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Introducing the new variable

y := ω1(x) + V ′(x) (4.20)

is a standard trick in multimatrix models. The solvability condition for the system of linear equations (4.14)
and (4.16) in the degenerate case is then exactly the spectral curve equation

s(x, z) −
(

y +
γ3 − γ2

x

)
t(x, z) = 0, z = xy2 + (γ3 − γ2)y. (4.21)

Despite its complexity even in the simplest cases (for example, we obtain a hyperelliptic curve of maximum
genus three for the Gaussian potentials V (x) and U(z) in Example 1 below), we still have algebraic curves in
all these cases in contrast to the case of Hurwitz numbers for branching points with only simple ramifications
for which it was conjectured in [27] and shown in [28], [29] that the corresponding spectral curve (in the
case of one-profile Hurwitz numbers) is the Lambert curve given by a nonpolynomial equation x = ye−y.

Example 1. We consider the case of Gaussian potentials V (x) = x2/2 and U(z) = z2/2. All the

polynomials Pn−1,r−1, P̂n−1,r−1, P̂n−1,
̂̂
P n−1, and Qr−1 are then constants; moreover, Pn−1,r−1 = 1 and

P̂n−1,r−1 = P̂n−1. After all cancelations, we then obtain the spectral curve equation

y − x + P̂ − ̂̂
Py + xy2 + Qy2 + y2(y − x)(xy + γ2 − γ3) = 0, (4.22)

which describes a hyperelliptic curve of genus three for general values of the constants.

5. Conclusion

We have constructed a representation in the form of a matrix chain for the generating functions for
the numbers of generalized Belyi fat graphs for hypergeometric Hurwitz numbers with ramifications at n

distinct points and with ramification profiles fixed at two of these n points. We also distinguished between
fat graphs with different numbers of preimages of other ramification points. The corresponding partition
functions are in the class of generalized Kontsevich matrix models and are hence tau functions of the
KP hierarchy, as was previously shown in [14], [8] from the standpoint of the character expansion. We
constructed the matrix-chain representation with a nonstandard interaction

∑n
i=3 tr(Mi−1M

−1
i ) between

adjacent positive-definite Hermitian matrices in the chain in the case where the variables of n−3 cycles are
all equal. We successfully proposed a method for solving models with such interactions. For simplicity, we
here considered only the simplest nontrivial case of the two-dimensional Toda chain with one intermediate
matrix (the case n = 4), but our method is straightforwardly generalizable to the case of n−3 intermediate
matrices with the last (nth) matrix being an external matrix field |Λ|−2.

Having such a generalization in prospect, it would nevertheless be interesting to establish other rela-
tions. For instance, generating function (1.2) in the case of so-called clean Belyi morphisms is related [11]
to the free energy of the Kontsevich–Penner matrix model [30], which is known (see [31]–[33]) to be the
generating function of the numbers of integer points in moduli spaces Mg,s of curves of genus g with s holes
with fixed (integer) perimeters; the very same model is also related [31] by a canonical transformation to
two copies of the Kontsevich matrix model expressed in times related to the discretization of the moduli
spaces Mg,s. It is tempting to generalize these discretization patterns to the cut-and-join operators in [9]
and [14] in the case of hypergeometric Hurwitz numbers and to the Hodge integrals in [34].
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