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EXTERNAL GRAVITATIONAL FIELD OF A NONSTATIC
SPHERICALLY SYMMETRIC BODY IN THE RELATIVISTIC
THEORY OF GRAVITATION

© A. A. Logunov* and M. A. Mestvirishvili*

We demonstrate that the external gravitational field of a nonstatic spherically symmetric body is static.
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In general relativity (GR), which relates the gravitational field to the metric tensor of a Riemannian
space, the Birkhoff theorem proved in a class of admissible functions claims that the external field of a
nonstatic spherically symmetric body can be only static. In the relativistic theory of gravitation (RTG),
the gravitational field ¢*¥ is a physical field in the Minkowski space; the source of this field is the energy—
momentum tensor of all matter fields (including the gravitational field) preserved in the Minkowski space.
Such an approach results in the effective Riemannian space and correspondingly in a system of equations
different from that in GR. The problem of a nonstationary source therefore deserves a special consideration.
We studied this problem in [1], where some mistakes were unfortunately made; correcting them is our aim
here. Moreover, in contrast to [1], the presentation here has a general character.

The complete system of RTG equations is [2]

v 1 v m2 v a v 1 v, af v
RY = g™ R+ g™+ 9" = 9" 9™ |Yas | = 8T, (1)
D,g"" = 8,5 + b5 7 = 0. (2)

We define the physical field ¢*¥ by the equality
g ="+

where g = \/—gg"’, ¥ = \/—yy*, and o = /—y¢*”. This field manifests the same symmetries as
the metric tensor g”* of the Riemannian space.

The coordinate system in RT'G is governed by the metric tensor v, of the Minkowski space. A graviton
rest mass enters Eq. (1). It is well known (see [3], [4]) that introducing the graviton rest mass into the
linear equations of the gravitational field results in a discrepancy: in this case, explaining observational data
for gravitational effects in the solar system requires that a spherically symmetric nonstatic source emit a
negative-energy flow of scalar gravitons, which is inconsistent from the physical standpoint. This observation
dictates that the graviton rest mass must be zero. But this is relevant to a linear theory of gravity; because
the RTG is a nonlinear theory, a nonzero graviton rest mass does not entail such discrepancies in the RTG

framework.
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We show that in the RTG, as well as in GR, an external gravitational field of a nonstationary spherically
symmetric body remains static, i.e., such a nonstatic body does not emit gravitational waves. In the general
case of a nonstatic spherically symmetric body, the effective Riemannian space interval is

ds®> = B(r,r)dr?* — D(r,r)dr® — 2E(r,7) dr dr — W?2(7,7)(d6? + sin® 0 d¢?). (3)
We seek an integrating factor n that makes the expression
dt =n(Bdr — Edr) 4)

a total differential. We note that there are infinitely many such integrating factors. From expression (4),
we have

E o (5)

1
dr= " dt
=T p

n
whence there exists a function «(t,r) whose differential is
dr = adt + adr, (6)
where

We note that transformation (5) does not affect the reference frame adopted in (3). We recall that all
physically measurable quantities must be chronometrically invariant [5]. Substituting (5) in interval (3),

we obtain
a2 = 1 a2 —a2(p + B ~W?2(d6? + sin® 0 d¢?) (7)
n?B B '
Introducing the notation
- ! v—(p+® (8)
- 2B’ B B )’
we rewrite the expression for ds? in the form
ds> = U(t,r)dt* = V(t,r)dr* — W2(t,r)(d6? + sin® 0 dp?). (9)

The functions U, V, and W? characterize the gravitational field of a nonstatic spherically symmetric body.
Therefore, because an integrating factor exists, the general form of the interval of the Riemannian
space of a nonstatic spherically symmetric body has form (9).
For the problem under study determined by interval (9), the interval in the inertial frame in the
Minkowski space has the form in spherical coordinates

do® = dt? — dr? — r?(d#* + sin® 6 d¢?). (10)

Below, we find that the external gravitational field of form (9) generated by a nonstatic spherically
symmetric source in inertial frame (10) can be only static, i.e., the metric coefficients U, V', and W are
independent of the time t.
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Equations (1) for the problem governed by relations (9) and (10) yield equations for U, V, and W (see
formulas (A.28), (A.29), and (A.31) in the appendix):

110/ 10ow2 3 (oW2\® 0 18W2+
w2 2Vor\Ww2 or AVWAN Or or\2VW?2 or

1 OW?dlog(VW) +m2 1 r? 11 1 _0
2UW?2 Ot ot 2 w2 u v)| 7
2UW?2 Ot

1 N 1 9/ 1 ow?2 W2
W2 22U 9t \W? ot 4UW4 ot

1 8W2810g(UW) 2 IRy —0

2VW2 Or or 2 w2 2\u V)| 7

1 9?22 _ 1 OW?2ow? _ 1 9V ow? _ 1 oU OW?
W2 otor 2W4 or Ot 2VW2 ot Or 2UW?2 9r Ot

With expressions (9) and (10) taken into account, Eqgs. (2) become (see formulas (A.23) and (A.24) in

the appendix)
U 0 U
2 _ 2 _
w? = \/V q(r), o (W \/V> =2r VUV, (12)

where ¢(r) is an arbitrary positive function.

=0.

Because the Hilbert causal principle implies that U > 0, V' > 0, and W2 > 0, in what follows, we use
the convenient notation

Ultr) = e, V(tr) =00, WA k) =, ) = e,

In the variables u, v, A, and o, Egs. (11) become

3 1 1 . 1.
- _ v " n2 _ I — :
e e <)\ —|—4()\) 2)\1/>—|—2e /\<1/+2/\>+

2
+ " [1 —r2e™ + ;(e*“ - e”)] =0, (13)

.3, 1. 1 1
- —pu 2 . —vy/ / /
e " +e (/\+4(/\) —2)\M>—26 )\(u —|—2/\)+

2
+ Tg [1 —rZeA (e™# — e"’)} =0, (14)
\/ 1'/_1-/_1'/_
A+ 2)\/\ 2V)\ 2)\,u =0, (15)
where, for example, A = dX/0t and X = OA/dr. Equations (12) become

1
A L v) = olr), (16)
W —v +o =2’ (17)

We introduce the notation

2w=p+v, (18)
f=A—o(r). (19)



In accordance with (16), we have
w—v=2f. (20)

From (18) and (20), we obtain
p=wtf, v=w-J (21)

We rewrite Eqs. (17) in terms of the functions w, f and o:
2f 4+ o' = 2re 270, (22)
Differentiating Eq. (22) with respect to ¢, we obtain
2f' = (2f +o')(w — 2f).

Substituting this expression in Eq. (15) and taking (19) and (21) into account, we obtain the inhomogeneous
linear partial differential equation

ow , Ow; ..,
o =i (23)

The system of ordinary differential equations corresponding to Eq. (23) is

dt dr dw

fro—f s
Hence, we have
dw = 3f dt, dw = —3f"dr.

Adding these equalities, we obtain

30f 30f
dw = 5 ot dt — 28rdr'
The total differential property implies that
0%f —0
otor

and this equality in turn implies that we can represent the function f in the form

Flt,r) = (1) + plr). (24
The general solution of Eq. (23) is
wlt,) = S((0) — ¢(r) + F (), (25)

where F' is an arbitrary function.
With expressions (24) and (25) taken into account, Eq. (22) becomes

2¢' + 0’ =2rexp|— 730(7‘) +F(f)—o]. (26)

RIORN

2

The left-hand side of this equation is independent of ¢; hence, its right-hand side must also be independent
of t. This is possible if () = const: the functions u, v, and A then become independent of ¢. In this case,
the gravitational field of form (9) is static. But we also have another possible solution with F' = f/2. Then

w(t,r) = 2¢(t) — (1),
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and the functions u, v, and A by (21) and (19) must be

p=30@),  vitr)=9E) = 200r),  Atr) =9E) +e(r) +o(r) = f+o (27)

We then obtain the interval in which the variables ¢t and r are separated in the metric coefficients, and the
metric coefficient U depends only on time. Equation (26) then becomes

20 + ¢’ = 2re 3¢ =),
We analyze this case using Eqgs. (13) and (14). Their difference gives
—Vv " 1 N2 1 !/ !/ /
e —)\—2(/\)+2/\(u+1/)+

2

1. 1.
+e M {—)\ - 2(/\)2 + 2)\(/1 + l/)} +n; (eTH—e)=0, (28)
while their sum gives
1
267)\ —eV |:A/I + ()\1)2 o 2)\1(1// _ //4/):| +
. : 1.
+eH {A +(\)? — oAt = v)} +m?(1 —r?e?) =0. (29)
By (16), we have
which allows simplifying Eq. (29),
1 .
2e N —e7 {/\” + (V)% - 2)\/(V/ - u’)] +e MA+m2(1 —r2e ) = 0. (30)
The variables ¢ and  become separated in Eqs. (28) and (30),
3 1 m?
R/ 22 22 9oz — —2p
o'—0 N 26 9 ke™ <%, (31)
G g e (52)
2 2 ’
m2r2
"+ 0" + 247 + 6% + 3p6 — 267377 (1 -, ) = pe 2%, (33)
) +m?e? = pe?v. (34)

We note that the system of equations (22), (31), and (33) has the solution

m2
=0, o =logr?, k=— 5 p=m?. (35)
We now turn to Egs. (32) and (34). We introduce the new variable 1(t) = loga®. Equations (32)

and (34) then become

2

2ai — 84 — ”; a? = ka®, (36)
2ai — 2a* +m?a® = pa®. (37)



Hence, we have

1
19 [m?a® + 2m?a® + 2(k — p)a®). (38)

a* = —
Differentiating, we obtain

1

“T o

[2m?a + 16m?a” + 12(k — p)a®]. (39)
Substituting (38) and (39) in (36), we obtain the relation between the variable separation constants,

p=—2k. (40)

Introducing the new time variable dr = a3 dt, we transform Eq. (38) to the form

1 (da\> m? 1 3
a? <dT> 12 ( ab * ﬁ4a2>’ (41)
where we use the notation
m2
k| = . 42
= s (12)
Equation (39) then becomes
1 d%a m? 1
= — 1— . 43
adr? 6 < ab > (43)

Equation (41) admits a nontrivial solution for 5 < 1. This solution oscillates, and the scale factor a
then changes between its limit values, amin < a < amax- Because the acceleration must be negative at the
turn point amax, we obtain the inequality amax > 1 from (43).

By virtue of expressions (27), the interval in our case becomes
ds®> = a?[a* dt* — e dr? — e (dh? + sin” 0 d¢?)). (44)

We note that for interval (44), harmonic equation (12) is independent of the time variable in the domain
outside the body, where it has the form

C;i(ez“”“’) =2re ¥, (45)

In the expression in square brackets in (44), the three-dimensional spatial part is determined only by
the functions ¢(r) and o(r). Because interval (44) expresses the external gravitational field of a nonstatic
spherically symmetric body in the absence of a wave process and energy flow, the physical solution for
the functions ¢ and o at spatial infinity where the static field is also absent must result in the Euclidean
geometry written in spherical coordinates, i.e., we must have the limits

lim ¢(r) =0, lim (") =72, (46)

T —00 T—00

These two conditions are related by Eq. (45). We write Egs. (31) and (33) in a more compact form,
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expressing them in terms of components of the curvature tensor of the three-dimensional space. They take
the form (see formulas (A.39) and (A.40) in the appendix)

1 2
R%Ql - 267290 <k' + ’n’; e2¢))
(47)

m2r2
R}y + Rigy = 1 (k +, e(“’“’)).

Because the curvature tensor components vanish at spatial infinity, expressions (47) with (46) taken into
account result in the variable separation parameter

k== (48)

From (42), we then have 8 = 1. But in accordance with this equality, Eq. (41) admits only a trivial solution
a =1, and we again obtain a static solution.

We therefore have the general conclusion: for a nonstatic spherically symmetric source in the inertial
frame, the metric coefficients of the external gravitational field interval can only be static. This source
hence does not emit gravitational waves [2]-[4], [6]-]9].

Appendix

The interval of the effective Riemannian space-time for a nonstatic spherically symmetric body has
general form (9). The nonzero coefficients of the connection corresponding to interval (9) are

po o 1oU 0 _ LU o _ 1OV 0 _ 1 8W2’
2U Ot 2U or 2U Ot 2U Ot
P = 21U agg? S0, o = 21/ 88[:’ 01 = 21/ 88‘:’ = 21/ ?9‘;’
g = —21/ 8‘;:2, T, =— 21/ agf sin2f, T2, = 2V1V2 agf’ (A1)
I}, = 2;/2 8;[;2, I'2, = —sinfcosb, ey = 2V1V2 8?;2,
Iy = 2;/2 83:2, '3, = cot 6.

The Minkowski space interval in the inertial system in spherical coordinates has form (10), and the nonzero
coefficients of the connection are

1
A —— yiy = —rsin? 6, V==, Y3, = —sinf cos b, Va3 = cot . (A.2)
r

Using the representation

RUV = 8AF?V - al/rg)\ + P;uri\k - P;)\PI)I\T (A3)



for the Ricci tensor with (A.1) taken into account, we find that the nonzero components of R, are

192V 19U 1 (av>2 1 <8U>2
Roo = -

Tov o Tovare Tave\ar ) Tauv\or
1 8U8V+ 1 ovoUu 1 82W2+ 1 [OW? 2+
4V2 or or AUV ot ot W2 a2 oaw4\ ot

1 oU ow? 1 oU ow?
2UW?2 ot ot 2VW?2 or or '

R 1OV _1ouov 19U 1 (U 2
HTou o 4uz ot ot 20 or? T 4U2\ Or

1 82W2+ 1 [OW? 2+ 1 8V8W2+ 1 9V oU
W2 Or2 2W4\ or 2UW?2 9t Ot AUV Or Or

(A.5)

1 oovow? 1 (ov?
VW2 or or AUV \ ot )’

1 82W2+ 1 8V8W2+ 1 9V OW?
2V or? 4UV ot Ot 4V?2 or Or

1 62W2_ 1 8U8W2_ 1 oU OwW?
2U 2 4U2 at Ot AUV or or

R33 = RQQ sin2 9, (A?)

Roo =

+1, (A.6)

1 62W2+ 1 8W28W2+ 1 oUow?
W2 orot  2W4* ot or 2UW?2 or Ot

N 1 oV ow?
2VW?2 ot or '

Ro1 =

and the scalar curvature R = g°” R, has the form

po 1 92U 1 ovVoU 1 0%V 1 (av)z_

TUvorr oveU ar or UV o2 T ouvz\ ot

2 82W2+ 1 [ow? 2+ 1 oUov 1 [(0U 2+
UW?2 a2 ' 2UW4\ ot VU2 ot ot 2VU2\ Or

2 0WE 1 (oW1 U ow?
VI orz  2vWA\ or ) TUPW? ot ot

1 oV ow? 1 oU ow? 1 oV ow? 2

TVewror ar T UVW2ar or  UVW2 ot ot W2 (A-9)

We next find the components of the tensors
1 1
Ryy — 2gm,R, RE — 25{,‘R. (A.10)
Substituting (A.4) and (A.9) in the identity

1 1
Roo — 29001‘1’ = Rgo — 2UR,
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we obtain
1 U U [oW?\? U 0V ow?
Roo = JUR= gy 4VW4( or ) Towrvz or ar T

2 2\ 2 27772
1 9V oW 1 <8W> U o°W (A.ll)

Tovw2 o o Tawi\ ot ) Tvwe a2
Because
RO-'r= (R - tUr (A.12)
0Tt T\ T 2 ) '
we obtain the expression for the left-hand side of (A.12):
1 1 1 fow?\? 1 oV ow?
0 — =
Ro— R W2+4VW4< or > I Oy O

1 oV ow? 1 [ow?\? 1 92W?2
+ - . (A.13)
QUVW?2 9t 0Ot AUWA N\ ot W2V or2

Analogously, substituting (A.5) and (A.9) in the identity
1 1
B = guR =R+ VR,

we obtain
1 1 1 02W?2 1 OW2oU
But VE= =V ¥ ywe a2 w2y or or
Lo Loawrou 1 (oWERNE 1 (WP (A.14)
2U2W2 ot ot AUWA\ ot AVWA\ or ' '
But because
Rl—lR——l R +1VR
L R 74 ) ’
we have
1 1 1 92w? 1 W2
R _lp- N ) - oW?oU
2 w2 T UW?2 912 2UVW?2 Or Or
1 OwW?9U 1 /ow2\? 1 [ow?\? (A.15)
W2W2 Ot Ot AUW4\ ot VWA or ) '

We can also find that for 1
Roo + 2W2R

after substituting (A.6) and (A.9), we obtain the expression
1o o[ 1 W? 1 [PV U 1 92w?
Rz ) WHR = =W [2UW2 oz Touver T o) Tovwe o
CwRA 1 (oW 2+ 1 ow2ov 1 (ovou  [(oU\® N
4 |VWE or V2Ww?2 or or VU?2\ 0t Ot or
1 ow?oUu 1 <8W2>2_

L (ovav(avTY -
Uvz\ or or ot UW?2 ot ot UW4\ ot
1 [(OW20U W2 oV
_UVW2< or or ot GtH’ (4.16)
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and for

we obtain the expression
o lp 1] 1 82W2+ 1 (0*V 09U 1 w2 N
22 20UW? 92 UV \ot2  or2) VW2 or?

LL[L oW1 oWV 1 fovou  (oUNTY |
4| VW4 or VZW? or or VU?2\ 0t Ot or

1 <8U8V <8V>2> 1 OwW?2oU

uvz\or or \o0t) ) U2W2 ot ot
1 (oWR\? 1 (oWPoU  OW?oV (A17)
Uw4\ ot UVW?2\ or or ot ot )] '
Finally, by virtue of (A.8), we obtain the expression for RY:
o 1 1/ 1 0*°w? 1 ow?2ow?
Rl =_Ron = — — —
U U\W?2 9tor 2W* ot or
1 oUow? 1 oV ow?
— — . (A.18)
2UW?2 or ot 2VW?2 ot Or
Introducing the notation
2 1
MF = n; <5fj + 9" Yar — 251‘,‘9“5%5) (A.19)
we find that because
1 1 1 1
00 _ 1 _ 22 _ _ 33 _ _ A.20
U’ v’ g w2’ g W2sin?0’ ( )
the nonzero components of M} are
2 2
o m T 1/1 - 1
MO_z[l w2 To\u v

M} = W2—2(U—‘1/)], (A.21)

m? 1/1 1
M3 = M§ = 0 {1—2<U+V>}

Taking equalities (A.20) and the equality
V—9=VUVW?sin6

into account, for the tensor density components g = /—gg"”, we obtain

g% = \/‘[j W2sing, ' = —\/g W2sing,  §*2 = —VUVsin#,
(A.22)
3

1
P =-Vuv g* =0 for u# .
sin 6
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Using (A.2) and (A.22) in Eq. (2), we obtain

gt <\/ng) =0 (A.23)
and
gr (\/5W2> =2rVUV. (A.24)
It is obvious from (A.23) that
ng’ — q(r), (A.25)

where ¢(r) is an arbitrary positive function depending only on 7.
We now rewrite (A.13) and (A.15). We write four terms of (A.13) in the form

Lo L wE L oW\ ovowE
W2 W2V or2 AVWAN\ or 2W2V2 dr or

1 1 a1 oWt 3 1 fown\? o/ 1 ow?
W2 2V oar\ W2 or 4VWL\ or ar\2Vw?2 or )’
and the two remaining terms in the form

2 2\ 2 2
1 oV oW 1 (6W) 1 oW alog(VW).

VW2 ot ot  AUW4A\ ot ) — 20W2 ot ot

We then have

g0 lp_ 11O 1 0w\ 3 1 (oWR\'
O 27T w2 2 ar\ W2 or AVWA\ or

2 2
8( ! aW) L aw alog(VVV). (A.26)

“or\avwz or ) Touw? ot ot

Analogously, we write four terms of (A.15) in the form

L1 W1 oW 1 wRaU
w2 UW?2 9t2 AUWAN\ 8t QW22 ot ot

_ 1 ta/1own o3 8W22+8 1 ow?
W2 2Uat\ W2 0Ot AUWAN\ ot ot \2W2U ot
and the remaining two terms in the form

log(UW).

1 owPou 1 (ow\?_ 1 ow? 9
QUVW?2 9r Or AVWAN\ ar | 2VW2 9r or

Hence,

o lpo Lo 1O owRy 3 oW
oo™ w2 " uat\ w2 ot AUWAN ot

8( 1 8W2> 1 ow? o

Toc\aw2w ot ) T ovw2 ar or

log(UW). (A.27)
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Taking expressions (A.17), (A.21), (A.26), and (A.27) into account, for the system of equations

RV — ;551~z+ M¥ = 5T,

v

we obtain
i )
a ;r (2V1VV2 82;2)+2U1W2 82{2 aat log(VW) +
v {“vﬁﬁé(é‘;)]:”& (A.28)
e e A e ()
* 8675 <2U1W2 82[;2)_2%4/2 82:2 ;T log(UW) +
(e e

27772 2 2 27772
R%—;R—FMQQZI[ 1 oW 1<5V 5U> 1 5W}+

20UwW?2 o2 TUuv\or2  or2) VW2 or?

LIt OW?2 2+ 1 w29V 1 (aVOoU [(dU 2 N
4| VWL Or V2W?2 or Or VU2\ ot ot or
1 (oUdvV [0V 2 1 OW2oU oV oW\
uve\ or or ot UVW2\ ar or ot ot
1 /ow2\> 1 aw2oU] m? 1/1 1 )
_UW4< ot > U2 o 8t} 2 [1_2<U+V)]_%T2’ (4.30)

_ RO 1 9*w? 1 ow?ow? 1 ovow? 1 oUoOwW?

= — — _ 70
YUUW? otor 2WAU or ot UVW?2 ot or  2U2W? or Ot S (A.31)

According to (44), the square of the length element of the spatial component of the interval ds? is
di? = e 22 dr® + 977 (d6? + sin® 0 d¢?).
We let 1, denote the corresponding metric coefficients, i.e.,
my = e 2, Nag = e?(MFo(r), N33 = 7o sin? @), Nmn = 0 for m # n.

Using these expressions, we can find that the nonzero components of the connection
1 L7
Nmn = 277 (OmMkn + OnMkm — OkNmn)
are .
m = —¢'(r), M = _2(90/ +0')e?r, 33 = 1 sin” 0,
(A.32)

1
7]%2 = 77%3 = 2(%0/ + '), 77?2,3 = —sinfcosb, 7733 = cot 6.
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It is obvious that
n, =o', 1, = cot o, 4, = 0. (A.33)

For the components of the curvature tensor of the three-dimensional space

annp = "nfnp - 810777]?!111 + nrenpnfn - nfnnnfpv (A34)
we obtain the expressions
1 1 3p+o " " 1 / / / /
R313 = Rypsin® ), (A.36)
2 1 /! 1 1 / / / /
R121=—2<p +o +2(<p +d)(3¢' + )|, (A.37)

1
Rips = [1 - 4(<P/ + U/)QBBSHG] sin? 6, Ris; = Riy,
1
Ry =1— (¢'+0))%e™r. (A.38)
With relation (A.37) taken into account in Eq. (31), we obtain
2 1 —2¢p m2 2¢ A
R121 = 26 k"’ 2 € . ( 39)
Analogously, adding (A.35) and (A.38) and taking (40) into account, we can write Eq. (33) in the form
m2r2
Ry + Rigp = €17 <l€ + 9 e_(“°+‘7)>. (A.40)
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