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EXTERNAL GRAVITATIONAL FIELD OF A NONSTATIC

SPHERICALLY SYMMETRIC BODY IN THE RELATIVISTIC

THEORY OF GRAVITATION

A. A. Logunov∗ and M. A. Mestvirishvili∗

We demonstrate that the external gravitational field of a nonstatic spherically symmetric body is static.
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In general relativity (GR), which relates the gravitational field to the metric tensor of a Riemannian
space, the Birkhoff theorem proved in a class of admissible functions claims that the external field of a
nonstatic spherically symmetric body can be only static. In the relativistic theory of gravitation (RTG),
the gravitational field φμν is a physical field in the Minkowski space; the source of this field is the energy–
momentum tensor of all matter fields (including the gravitational field) preserved in the Minkowski space.
Such an approach results in the effective Riemannian space and correspondingly in a system of equations
different from that in GR. The problem of a nonstationary source therefore deserves a special consideration.
We studied this problem in [1], where some mistakes were unfortunately made; correcting them is our aim
here. Moreover, in contrast to [1], the presentation here has a general character.

The complete system of RTG equations is [2]

Rμν − 1
2
gμνR +

m2

2

[
gμν +

(
gμαgνβ − 1

2
gμνgαβ

)
γαβ

]
= 8πT μν, (1)

Dν g̃νμ = ∂ν g̃νμ + γμ
αβ g̃αβ = 0. (2)

We define the physical field φμν by the equality

g̃μν = γ̃μν + φ̃μν ,

where g̃μν =
√−ggμν , γ̃μν =

√−γγμν , and φ̃μν =
√−γφμν . This field manifests the same symmetries as

the metric tensor gμν of the Riemannian space.
The coordinate system in RTG is governed by the metric tensor γμν of the Minkowski space. A graviton

rest mass enters Eq. (1). It is well known (see [3], [4]) that introducing the graviton rest mass into the
linear equations of the gravitational field results in a discrepancy: in this case, explaining observational data
for gravitational effects in the solar system requires that a spherically symmetric nonstatic source emit a
negative-energy flow of scalar gravitons, which is inconsistent from the physical standpoint. This observation
dictates that the graviton rest mass must be zero. But this is relevant to a linear theory of gravity; because
the RTG is a nonlinear theory, a nonzero graviton rest mass does not entail such discrepancies in the RTG
framework.
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We show that in the RTG, as well as in GR, an external gravitational field of a nonstationary spherically
symmetric body remains static, i.e., such a nonstatic body does not emit gravitational waves. In the general
case of a nonstatic spherically symmetric body, the effective Riemannian space interval is

ds2 = B(τ, r) dτ2 − D(τ, r) dr2 − 2E(τ, r) dr dτ − W 2(τ, r)(dθ2 + sin2 θ dφ2). (3)

We seek an integrating factor η that makes the expression

dt = η(B dτ − E dr) (4)

a total differential. We note that there are infinitely many such integrating factors. From expression (4),
we have

dτ =
1

ηB
dt +

E

B
dr, (5)

whence there exists a function α(t, r) whose differential is

dτ = α̇ dt + ά dr, (6)

where

α̇ =
1

ηB
, ά =

E

B
.

We note that transformation (5) does not affect the reference frame adopted in (3). We recall that all
physically measurable quantities must be chronometrically invariant [5]. Substituting (5) in interval (3),
we obtain

ds2 =
1

η2B
dt2 − dr2

(
D +

E2

B

)
−W 2(dθ2 + sin2 θ dφ2). (7)

Introducing the notation

U =
1

η2B
, V =

(
D +

E2

B

)
, (8)

we rewrite the expression for ds2 in the form

ds2 = U(t, r) dt2 − V (t, r) dr2 − W 2(t, r)(dθ2 + sin2 θ dφ2). (9)

The functions U , V , and W 2 characterize the gravitational field of a nonstatic spherically symmetric body.
Therefore, because an integrating factor exists, the general form of the interval of the Riemannian

space of a nonstatic spherically symmetric body has form (9).
For the problem under study determined by interval (9), the interval in the inertial frame in the

Minkowski space has the form in spherical coordinates

dσ2 = dt2 − dr2 − r2(dθ2 + sin2 θ dφ2). (10)

Below, we find that the external gravitational field of form (9) generated by a nonstatic spherically
symmetric source in inertial frame (10) can be only static, i.e., the metric coefficients U , V , and W are
independent of the time t.
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Equations (1) for the problem governed by relations (9) and (10) yield equations for U , V , and W (see
formulas (A.28), (A.29), and (A.31) in the appendix):

1
W 2

− 1
2V

∂

∂r

(
1

W 2

∂W 2

∂r

)
− 3

4V W 4

(
∂W 2

∂r

)2

− ∂

∂r

(
1

2V W 2

∂W 2

∂r

)
+

+
1

2UW 2

∂W 2

∂t

∂ log(V W )
∂t

+
m2

2

[
1 − r2

W 2
+

1
2

(
1
U

− 1
V

)]
= 0,

1
W 2

+
1

2U

∂

∂t

(
1

W 2

∂W 2

∂t

)
+

3
4UW 4

(
∂W 2

∂t

)2

+
∂

∂t

(
1

2UW 2

∂W 2

∂t

)
−

− 1
2V W 2

∂W 2

∂r

∂ log(UW )
∂r

+
m2

2

[
1 − r2

W 2
− 1

2

(
1
U

− 1
V

)]
= 0,

1
W 2

∂2W 2

∂t ∂r
− 1

2W 4

∂W 2

∂r

∂W 2

∂t
− 1

2V W 2

∂V

∂t

∂W 2

∂r
− 1

2UW 2

∂U

∂r

∂W 2

∂t
= 0.

(11)

With expressions (9) and (10) taken into account, Eqs. (2) become (see formulas (A.23) and (A.24) in
the appendix)

W 2 =

√
U

V
q(r),

∂

∂r

(
W 2

√
U

V

)
= 2r

√
UV , (12)

where q(r) is an arbitrary positive function.
Because the Hilbert causal principle implies that U > 0, V > 0, and W 2 > 0, in what follows, we use

the convenient notation

U(t, r) = eμ(t,r), V (t, r) = eν(t,r), W 2(t, r) = eλ(t,r), q(r) = eσ(r).

In the variables μ, ν, λ, and σ, Eqs. (11) become

e−λ − e−ν

(
λ′′ +

3
4
(λ′)2 − 1

2
λ′ν′

)
+

1
2
e−μλ̇

(
ν̇ +

1
2
λ̇

)
+

+
m2

2

[
1 − r2e−λ +

1
2
(e−μ − e−ν)

]
= 0, (13)

e−λ + e−μ

(
λ̈ +

3
4
(λ̇)2 − 1

2
λ̇μ̇

)
− 1

2
e−νλ′

(
μ′ +

1
2
λ′

)
+

+
m2

2

[
1 − r2e−λ − 1

2
(e−μ − e−ν)

]
= 0, (14)

λ̇′ +
1
2
λ̇λ′ − 1

2
ν̇λ′ − 1

2
λ̇μ′ = 0, (15)

where, for example, λ̇ = ∂λ/∂t and λ′ = ∂λ/∂r. Equations (12) become

λ − 1
2
(μ − ν) = σ(r), (16)

μ′ − ν′ + σ′ = 2reν−λ. (17)

We introduce the notation

2ω = μ + ν, (18)

f = λ − σ (r). (19)
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In accordance with (16), we have
μ − ν = 2f. (20)

From (18) and (20), we obtain
μ = ω + f, ν = ω − f. (21)

We rewrite Eqs. (17) in terms of the functions ω, f and σ:

2f ′ + σ′ = 2reω−2f−σ. (22)

Differentiating Eq. (22) with respect to t, we obtain

2ḟ ′ = (2f ′ + σ′)(ω̇ − 2ḟ).

Substituting this expression in Eq. (15) and taking (19) and (21) into account, we obtain the inhomogeneous
linear partial differential equation

∂ω

∂t
f ′ − ∂ω

∂r
ḟ = 3ḟf ′. (23)

The system of ordinary differential equations corresponding to Eq. (23) is

dt

f ′ =
dr

−ḟ
=

dω

3ḟf ′
.

Hence, we have
dω = 3ḟ dt, dω = −3f ′ dr.

Adding these equalities, we obtain

dω =
3
2

∂f

∂t
dt − 3

2
∂f

∂r
dr.

The total differential property implies that
∂2f

∂t ∂r
= 0,

and this equality in turn implies that we can represent the function f in the form

f(t, r) = ψ(t) + ϕ(r). (24)

The general solution of Eq. (23) is

ω(t, r) =
3
2
(ψ(t) − ϕ(r)) + F (f), (25)

where F is an arbitrary function.
With expressions (24) and (25) taken into account, Eq. (22) becomes

2ϕ′ + σ′ = 2r exp
[
−1

2
ψ(t) − 7

2
ϕ(r) + F (f) − σ

]
. (26)

The left-hand side of this equation is independent of t; hence, its right-hand side must also be independent
of t. This is possible if ψ(t) = const: the functions μ, ν, and λ then become independent of t. In this case,

the gravitational field of form (9) is static. But we also have another possible solution with F = f/2. Then

ω(t, r) = 2ψ(t) − ϕ(r),
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and the functions μ, ν, and λ by (21) and (19) must be

μ = 3ψ(t), ν(t, r) = ψ(t) − 2ϕ(r), λ(t, r) = ψ(t) + ϕ(r) + σ(r) = f + σ. (27)

We then obtain the interval in which the variables t and r are separated in the metric coefficients, and the
metric coefficient U depends only on time. Equation (26) then becomes

2ϕ′ + σ′ = 2re−3ϕ(r)−σ(r).

We analyze this case using Eqs. (13) and (14). Their difference gives

e−ν

[
−λ′′ − 1

2
(λ′)2 +

1
2
λ′(μ′ + ν′)

]
+

+ e−μ

[
−λ̈ − 1

2
(λ̇)2 +

1
2
λ̇(μ̇ + ν̇)

]
+

m2

2
(e−μ − e−ν) = 0, (28)

while their sum gives

2e−λ − e−ν

[
λ′′ + (λ′)2 − 1

2
λ′(ν′ − μ′)

]
+

+ e−μ

[
λ̈ + (λ̇)2 − 1

2
λ̇(μ̇ − ν̇)

]
+ m2(1 − r2e−λ) = 0. (29)

By (16), we have

(λ̇)2 − 1
2
λ̇(μ̇ − ν̇) = 0,

which allows simplifying Eq. (29),

2e−λ − e−ν

[
λ′′ + (λ′)2 − 1

2
λ′(ν′ − μ′)

]
+ e−μλ̈ + m2(1 − r2e−λ) = 0. (30)

The variables t and r become separated in Eqs. (28) and (30),

− ϕ′′ − σ′′ − 3
2
ϕ́2 − 1

2
σ́2 − 2ϕ́σ́ − m2

2
= ke−2ϕ, (31)

ψ̈ − 3
2
ψ̇2 − m2

2
= ke2ψ, (32)

ϕ′′ + σ′′ + 2ϕ́2 + σ́2 + 3ϕ́σ́ − 2e−3ϕ−σ

(
1 − m2r2

2

)
= pe−2ϕ, (33)

ψ̈ + m2e3ψ = pe2ψ. (34)

We note that the system of equations (22), (31), and (33) has the solution

ϕ = 0, σ = log r2, k = −m2

2
, p = m2. (35)

We now turn to Eqs. (32) and (34). We introduce the new variable ψ(t) = log a2. Equations (32)
and (34) then become

2aä − 8ȧ2 − m2

2
a2 = ka6, (36)

2aä − 2ȧ2 + m2a8 = pa6. (37)
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Hence, we have

ȧ2 = − 1
12

[m2a2 + 2m2a8 + 2(k − p)a6]. (38)

Differentiating, we obtain

ä = − 1
24

[2m2a + 16m2a7 + 12(k − p)a5]. (39)

Substituting (38) and (39) in (36), we obtain the relation between the variable separation constants,

p = −2k. (40)

Introducing the new time variable dτ = a3 dt, we transform Eq. (38) to the form

1
a2

(
da

dτ

)2

=
m2

12

(
− 1

a6
− 2 +

3
β4a2

)
, (41)

where we use the notation

|k| =
m2

2β4
. (42)

Equation (39) then becomes
1
a

d2a

dτ2
= −m2

6

(
1 − 1

a6

)
. (43)

Equation (41) admits a nontrivial solution for β < 1. This solution oscillates, and the scale factor a

then changes between its limit values, amin ≤ a ≤ amax. Because the acceleration must be negative at the
turn point amax, we obtain the inequality amax > 1 from (43).

By virtue of expressions (27), the interval in our case becomes

ds2 = a2[a4 dt2 − e−2ϕ dr2 − eϕ+σ(dθ2 + sin2 θ dφ2)]. (44)

We note that for interval (44), harmonic equation (12) is independent of the time variable in the domain
outside the body, where it has the form

d

dr
(e2ϕ+σ) = 2re−ϕ. (45)

In the expression in square brackets in (44), the three-dimensional spatial part is determined only by
the functions ϕ(r) and σ(r). Because interval (44) expresses the external gravitational field of a nonstatic
spherically symmetric body in the absence of a wave process and energy flow, the physical solution for
the functions ϕ and σ at spatial infinity where the static field is also absent must result in the Euclidean
geometry written in spherical coordinates, i.e., we must have the limits

lim
r→∞

ϕ(r) = 0, lim
r→∞

eσ(r) = r2. (46)

These two conditions are related by Eq. (45). We write Eqs. (31) and (33) in a more compact form,
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expressing them in terms of components of the curvature tensor of the three-dimensional space. They take
the form (see formulas (A.39) and (A.40) in the appendix)

R2
121 =

1
2
e−2ϕ

(
k +

m2

2
e2ϕ

)
,

R1
212 + R3

232 = eϕ+σ

(
k +

m2r2

2
e−(ϕ+σ)

)
.

(47)

Because the curvature tensor components vanish at spatial infinity, expressions (47) with (46) taken into
account result in the variable separation parameter

k = −m2

2
. (48)

From (42), we then have β = 1. But in accordance with this equality, Eq. (41) admits only a trivial solution
a = 1, and we again obtain a static solution.

We therefore have the general conclusion: for a nonstatic spherically symmetric source in the inertial
frame, the metric coefficients of the external gravitational field interval can only be static. This source
hence does not emit gravitational waves [2]–[4], [6]–[9].

Appendix

The interval of the effective Riemannian space–time for a nonstatic spherically symmetric body has
general form (9). The nonzero coefficients of the connection corresponding to interval (9) are

Γ0
00 =

1
2U

∂U

∂t
, Γ0

01 =
1

2U

∂U

∂r
, Γ0

11 =
1

2U

∂V

∂t
, Γ0

22 =
1

2U

∂W 2

∂t
,

Γ0
33 =

1
2U

∂W 2

∂t
sin2 θ, Γ1

00 =
1

2V

∂U

∂r
, Γ1

01 =
1

2V

∂V

∂t
, Γ1

11 =
1

2V

∂V

∂r
,

Γ1
22 = − 1

2V

∂W 2

∂r
, Γ1

33 = − 1
2V

∂W 2

∂r
sin2 θ, Γ2

02 =
1

2W 2

∂W 2

∂t
,

Γ2
12 =

1
2W 2

∂W 2

∂r
, Γ2

33 = − sin θ cos θ, Γ3
03 =

1
2W 2

∂W 2

∂t
,

Γ3
13 =

1
2W 2

∂W 2

∂r
, Γ3

23 = cot θ.

(A.1)

The Minkowski space interval in the inertial system in spherical coordinates has form (10), and the nonzero
coefficients of the connection are

γ1
22 = −r, γ1

33 = −r sin2 θ, γ2
12 = γ3

13 =
1
r
, γ2

33 = − sin θ cos θ, γ3
23 = cot θ. (A.2)

Using the representation

Rσν = ∂λΓλ
σν − ∂νΓλ

σλ + Γτ
σνΓλ

τλ − Γτ
σλΓλ

ντ (A.3)
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for the Ricci tensor with (A.1) taken into account, we find that the nonzero components of Rσν are

R00 = − 1
2V

∂2V

∂t2
+

1
2V

∂2U

∂r2
+

1
4V 2

(
∂V

∂t

)2

− 1
4UV

(
∂U

∂r

)2

−

− 1
4V 2

∂U

∂r

∂V

∂r
+

1
4UV

∂V

∂t

∂U

∂t
− 1

W 2

∂2W 2

∂t2
+

1
2W 4

(
∂W 2

∂t

)2

+

+
1

2UW 2

∂U

∂t

∂W 2

∂t
+

1
2V W 2

∂U

∂r

∂W 2

∂r
, (A.4)

R11 =
1

2U

∂2V

∂t2
− 1

4U2

∂U

∂t

∂V

∂t
− 1

2U

∂2U

∂r2
+

1
4U2

(
∂U

∂r

)2

−

− 1
W 2

∂2W 2

∂r2
+

1
2W 4

(
∂W 2

∂r

)2

+
1

2UW 2

∂V

∂t

∂W 2

∂t
+

1
4UV

∂V

∂r

∂U

∂r
+

+
1

2V W 2

∂V

∂r

∂W 2

∂r
− 1

4UV

(
∂V

∂t

)2

, (A.5)

R22 = − 1
2V

∂2W 2

∂r2
+

1
4UV

∂V

∂t

∂W 2

∂t
+

1
4V 2

∂V

∂r

∂W 2

∂r
+

+
1

2U

∂2W 2

∂t2
− 1

4U2

∂U

∂t

∂W 2

∂t
− 1

4UV

∂U

∂r

∂W 2

∂r
+ 1, (A.6)

R33 = R22 sin2 θ, (A.7)

R01 = − 1
W 2

∂2W 2

∂r ∂t
+

1
2W 4

∂W 2

∂t

∂W 2

∂r
+

1
2UW 2

∂U

∂r

∂W 2

∂t
+

+
1

2V W 2

∂V

∂t

∂W 2

∂r
, (A.8)

and the scalar curvature R = gσνRσν has the form

R =
1

UV

∂2U

∂r2
− 1

2V 2U

∂V

∂r

∂U

∂r
− 1

UV

∂2V

∂t2
+

1
2UV 2

(
∂V

∂t

)2

−

− 2
UW 2

∂2W 2

∂t2
+

1
2UW 4

(
∂W 2

∂t

)2

+
1

2V U2

∂U

∂t

∂V

∂t
− 1

2V U2

(
∂U

∂r

)2

+

+
2

V W 2

∂2W 2

∂r2
− 1

2V W 4

(
∂W 2

∂r

)2

+
1

U2W 2

∂U

∂t

∂W 2

∂t
−

− 1
V 2W 2

∂V

∂r

∂W 2

∂r
+

1
UV W 2

∂U

∂r

∂W 2

∂r
− 1

UV W 2

∂V

∂t

∂W 2

∂t
− 2

W 2
. (A.9)

We next find the components of the tensors

Rσν − 1
2
gσνR, Rμ

ν − 1
2
δμ
ν R. (A.10)

Substituting (A.4) and (A.9) in the identity

R00 −
1
2
g00R ≡ R00 −

1
2
UR,
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we obtain

R00 −
1
2
UR =

U

W 2
+

U

4V W 4

(
∂W 2

∂r

)2

+
U

2W 2V 2

∂V

∂r

∂W 2

∂r
+

+
1

2V W 2

∂V

∂t

∂W 2

∂t
+

1
4W 4

(
∂W 2

∂t

)2

− U

V W 2

∂2W 2

∂r2
. (A.11)

Because

R0
0 −

1
2
R =

1
U

(
R00 −

1
2
UR

)
, (A.12)

we obtain the expression for the left-hand side of (A.12):

R0
0 −

1
2
R =

1
W 2

+
1

4V W 4

(
∂W 2

∂r

)2

+
1

2V 2W 2

∂V

∂r

∂W 2

∂r
+

+
1

2UV W 2

∂V

∂t

∂W 2

∂t
+

1
4UW 4

(
∂W 2

∂t

)2

− 1
W 2V

∂2W 2

∂r2
. (A.13)

Analogously, substituting (A.5) and (A.9) in the identity

R11 −
1
2
g11R ≡ R11 +

1
2
V R,

we obtain

R11 +
1
2
V R = − V

[
1

W 2
+

1
UW 2

∂2W 2

∂t2
− 1

2UW 2V

∂W 2

∂r

∂U

∂r
+

+
1

2U2W 2

∂W 2

∂t

∂U

∂t
− 1

4UW 4

(
∂W 2

∂t

)2

− 1
4V W 4

(
∂W 2

∂r

)2 ]
. (A.14)

But because

R1
1 −

1
2
R = − 1

V

(
R11 +

1
2
V R

)
,

we have

R1
1 −

1
2
R =

1
W 2

+
1

UW 2

∂2W 2

∂t2
− 1

2UV W 2

∂W 2

∂r

∂U

∂r
−

− 1
2U2W 2

∂W 2

∂t

∂U

∂t
− 1

4UW 4

(
∂W 2

∂t

)2

− 1
4V W 4

(
∂W 2

∂r

)2

. (A.15)

We can also find that for
R22 +

1
2
W 2R

after substituting (A.6) and (A.9), we obtain the expression

R22 +
1
2
W 2R = − W 2

[
1

2UW 2

∂2W 2

∂t2
+

1
2UV

(
∂2V

∂t2
− ∂2U

∂r2

)
− 1

2V W 2

∂2W 2

∂r2

]
−

− W 2

4

[
1

V W 4

(
∂W 2

∂r

)2

+
1

V 2W 2

∂W 2

∂r

∂V

∂r
− 1

V U2

(
∂V

∂t

∂U

∂t
−

(
∂U

∂r

)2 )
+

+
1

UV 2

(
∂U

∂r

∂V

∂r
−

(
∂V

∂t

)2 )
− 1

U2W 2

∂W 2

∂t

∂U

∂t
− 1

UW 4

(
∂W 2

∂t

)2

−

− 1
UV W 2

(
∂W 2

∂r

∂U

∂r
− ∂W 2

∂t

∂V

∂t

)]
, (A.16)
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and for

R2
2 −

1
2
R = − 1

W 2

(
R22 +

1
2
W 2R

)
,

we obtain the expression

R2
2 −

1
2
R =

1
2

[
1

UW 2

∂2W 2

∂t2
+

1
UV

(
∂2V

∂t2
− ∂2U

∂r2

)
− 1

V W 2

∂2W 2

∂r2

]
+

+
1
4

[
1

V W 4

(
∂W 2

∂r

)2

+
1

V 2W 2

∂W 2

∂r

∂V

∂r
− 1

V U2

(
∂V

∂t

∂U

∂t
−

(
∂U

∂r

)2 )
+

+
1

UV 2

(
∂U

∂r

∂V

∂r
−

(
∂V

∂t

)2 )
− 1

U2W 2

∂W 2

∂t

∂U

∂t
−

− 1
UW 4

(
∂W 2

∂t

)2

− 1
UV W 2

(
∂W 2

∂r

∂U

∂r
− ∂W 2

∂t

∂V

∂t

)]
. (A.17)

Finally, by virtue of (A.8), we obtain the expression for R0
1:

R0
1 =

1
U

R01 = − 1
U

(
1

W 2

∂2W 2

∂t ∂r
− 1

2W 4

∂W 2

∂t

∂W 2

∂r
−

− 1
2UW 2

∂U

∂r

∂W 2

∂t
− 1

2V W 2

∂V

∂t

∂W 2

∂r

)
. (A.18)

Introducing the notation

Mμ
ν =

m2

2

(
δμ
ν + gμαγαν − 1

2
δμ
ν gαβγαβ

)
, (A.19)

we find that because

g00 =
1
U

, g11 = − 1
V

, g22 = − 1
W 2

, g33 = − 1
W 2 sin2 θ

, (A.20)

the nonzero components of Mμ
ν are

M0
0 =

m2

2

[
1 − r2

W 2
+

1
2

(
1
U

− 1
V

)]
,

M1
1 =

m2

2

[
1 − r2

W 2
− 1

2

(
1
U

− 1
V

)]
,

M2
2 = M3

3 =
m2

2

[
1 − 1

2

(
1
U

+
1
V

)]
.

(A.21)

Taking equalities (A.20) and the equality

√
−g =

√
UV W 2 sin θ

into account, for the tensor density components g̃μν =
√−ggμν , we obtain

g̃00 =

√
V

U
W 2 sin θ, g̃11 = −

√
U

V
W 2 sin θ, g̃22 = −

√
UV sin θ,

g̃33 = −
√

UV
1

sin θ
, g̃μν = 0 for μ �= ν.

(A.22)
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Using (A.2) and (A.22) in Eq. (2), we obtain

∂

∂t

(√
V

U
W 2

)
= 0 (A.23)

and
∂

∂r

(√
U

V
W 2

)
= 2r

√
UV . (A.24)

It is obvious from (A.23) that √
V

U
W 2 = q(r), (A.25)

where q(r) is an arbitrary positive function depending only on r.
We now rewrite (A.13) and (A.15). We write four terms of (A.13) in the form

1
W 2

− 1
W 2V

∂2W 2

∂r2
+

1
4V W 4

(
∂W 2

∂r

)2

+
1

2W 2V 2

∂V

∂r

∂W 2

∂r
=

=
1

W 2
− 1

2V

∂

∂r

(
1

W 2

∂W 2

∂r

)
−3

4
1

V W 4

(
∂W 2

∂r

)2

− ∂

∂r

(
1

2V W 2

∂W 2

∂r

)
,

and the two remaining terms in the form

1
2UV W 2

∂V

∂t

∂W 2

∂t
+

1
4UW 4

(
∂W 2

∂t

)2

=
1

2UW 2

∂W 2

∂t

∂

∂t
log(V W ).

We then have

R0
0 −

1
2
R =

1
W 2

− 1
2V

∂

∂r

(
1

W 2

∂W 2

∂r

)
−3

4
1

V W 4

(
∂W 2

∂r

)2

−

− ∂

∂r

(
1

2V W 2

∂W 2

∂r

)
+

1
2UW 2

∂W 2

∂t

∂

∂t
log(V W ). (A.26)

Analogously, we write four terms of (A.15) in the form

1
W 2

+
1

UW 2

∂2W 2

∂t2
− 1

4UW 4

(
∂W 2

∂t

)2

− 1
2W 2U2

∂W 2

∂t

∂U

∂t
=

=
1

W 2
+

1
2U

∂

∂t

(
1

W 2

∂W 2

∂t

)
+

3
4UW 4

(
∂W 2

∂t

)2

+
∂

∂t

(
1

2W 2U

∂W 2

∂t

)

and the remaining two terms in the form

− 1
2UV W 2

∂W 2

∂r

∂U

∂r
− 1

4V W 4

(
∂W 2

∂r

)2

= − 1
2V W 2

∂W 2

∂r

∂

∂r
log(UW ).

Hence,

R1
1 −

1
2
R =

1
W 2

+
1

2U

∂

∂t

(
1

W 2

∂W 2

∂t

)
+

3
4UW 4

(
∂W 2

∂t

)2

+

+
∂

∂t

(
1

2W 2U

∂W 2

∂t

)
− 1

2V W 2

∂W 2

∂r

∂

∂r
log(UW ). (A.27)
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Taking expressions (A.17), (A.21), (A.26), and (A.27) into account, for the system of equations

Rμ
ν − 1

2
δμ
ν R + Mμ

ν = κT μ
ν ,

we obtain

R0
0 −

1
2
R + M0

0 =
1

W 2
− 1

2V

∂

∂r

(
1

W 2

∂W 2

∂r

)
− 3

4V W 4

(
∂W 2

∂r

)2

−

− ∂

∂r

(
1

2V W 2

∂W 2

∂r

)
+

1
2UW 2

∂W 2

∂t

∂

∂t
log(V W ) +

+
m2

2

[
1 − r2

W 2
+

1
2

(
1
U

− 1
V

)]
= κT 0

0 , (A.28)

R1
1 −

1
2
R + M1

1 =
1

W 2
+

1
2U

∂

∂t

(
1

W 2

∂W 2

∂t

)
+

3
4UW 4

(
∂W 2

∂t

)2

+

+
∂

∂t

(
1

2UW 2

∂W 2

∂t

)
− 1

2V W 2

∂W 2

∂r

∂

∂r
log(UW ) +

+
m2

2

[
1 − r2

W 2
− 1

2

(
1
U

− 1
V

)]
= κT 1

1 , (A.29)

R2
2 −

1
2
R + M2

2 =
1
2

[
1

UW 2

∂2W 2

∂t2
+

1
UV

(
∂2V

∂t2
− ∂2U

∂r2

)
− 1

V W 2

∂2W 2

∂r2

]
+

+
1
4

[
1

V W 4

(
∂W 2

∂r

)2

+
1

V 2W 2

∂W 2

∂r

∂V

∂r
− 1

V U2

(
∂V

∂t

∂U

∂t
−

(
∂U

∂r

)2 )
+

+
1

UV 2

(
∂U

∂r

∂V

∂r
−

(
∂V

∂t

)2 )
− 1

UV W 2

(
∂W 2

∂r

∂U

∂r
− ∂V

∂t

∂W 2

∂t

)
−

− 1
UW 4

(
∂W 2

∂t

)2

− 1
U2W 2

∂W 2

∂t

∂U

∂t

]
+

m2

2

[
1 − 1

2

(
1
U

+
1
V

)]
= κT 2

2 , (A.30)

− R0
1 =

1
UW 2

∂2W 2

∂t ∂r
− 1

2W 4U

∂W 2

∂r

∂W 2

∂t
− 1

2UV W 2

∂V

∂t

∂W 2

∂r
− 1

2U2W 2

∂U

∂r

∂W 2

∂t
= −κT 0

1 . (A.31)

According to (44), the square of the length element of the spatial component of the interval ds2 is

dl2 = e−2ϕ dr2 + eϕ+σ(dθ2 + sin2 θ dφ2).

We let ηmn denote the corresponding metric coefficients, i.e.,

η11 = e−2ϕ(r), η22 = eϕ(r)+σ(r), η33 = η22 sin2 θ, ηmn = 0 for m �= n.

Using these expressions, we can find that the nonzero components of the connection

ηl
mn =

1
2
ηlk(∂mηkn + ∂nηkm − ∂kηmn)

are
η1
11 = −ϕ′(r), η1

22 = −1
2
(ϕ′ + σ′)e3ϕ+σ, η1

33 = η1
22 sin2 θ,

η2
12 = η3

13 =
1
2
(ϕ′ + σ′), η2

33 = − sin θ cos θ, η3
23 = cot θ.

(A.32)
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It is obvious that
ηp
1p = σ′, ηp

2p = cot θ, ηp
3p = 0. (A.33)

For the components of the curvature tensor of the three-dimensional space

Rk
mnp = ∂nηk

mp − ∂pη
k
mn + ηe

mpη
k
en − ηe

mnηk
ep, (A.34)

we obtain the expressions

R1
212 = −1

2
e3ϕ+σ

[
ϕ′′ + σ′′ +

1
2
(ϕ′ + σ′)(3ϕ′ + σ′)

]
, (A.35)

R1
313 = R1

212 sin2 θ, (A.36)

R2
121 = −1

2

[
ϕ′′ + σ′′ +

1
2
(ϕ′ + σ′)(3ϕ′ + σ′)

]
, (A.37)

R2
323 =

[
1 − 1

4
(ϕ′ + σ′)2e3ϕ+σ

]
sin2 θ, R3

131 = R2
121,

R3
232 = 1 − 1

4
(ϕ′ + σ′)2e3ϕ+σ. (A.38)

With relation (A.37) taken into account in Eq. (31), we obtain

R2
121 =

1
2
e−2ϕ

(
k +

m2

2
e2ϕ

)
. (A.39)

Analogously, adding (A.35) and (A.38) and taking (40) into account, we can write Eq. (33) in the form

R1
212 + R3

232 = eϕ+σ

(
k +

m2r2

2
e−(ϕ+σ)

)
. (A.40)
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